Title: LAUNDRY DETERGENT COMPOSITIONS COMPRISING ZWITTERIONIC POLYAMINES

\[
\begin{align*}
\left(\text{R}^1\right)_2^{+} & - \text{R} - \left[N^+ - \text{R}^{-}\right]_n - \left[N^+ (\text{R}^1)\right]_2 \\
\text{Q} & \text{Q} \quad \text{Q} \quad \text{Q} \\
\end{align*}
\]

(57) Abstract: The present invention relates to laundry detergent composition comprising: from about 0.01 %, most preferably from about 3 % to about 50 %, most preferably to about 7 % by weight, of a hydrophobically modified polyamine having formula (I): wherein R is C2-C30 linear or branched alkylene, and mixtures thereof; R2 is an alkyleneoxy unit having the formula: \((\text{R}^2\text{O})_x\text{R}^3\) wherein \(\text{R}^2 \) is a linear or branched alkyleny, and mixtures thereof; \(\text{R}^3 \) is hydrogen, C1-C12 alkyl, C1-C12 alkylene, an anionic unit, and mixtures thereof; x is from about 15 to about 30; Q is a hydrophobic quaternizing unit selected from the group consisting of C5-C10 linear or branched alkyl, C6-C20 cycloalkyl, C7-C30 substituted or unsubstituted alkylene, and mixtures thereof; X is an anion present in sufficient amount to provide electronic neutrality; n is from 0 to 4, from about 0.01 % by weight, of surfactant; the balance carriers and adjunct ingredients.
LAUNDRY DETERGENT COMPOSITIONS COMPRISING
ZWITTERIONIC POLYMAMINES

FIELD OF THE INVENTION

The present invention relates to laundry detergent compositions comprising one or more hydrophobically modified polyamines which provide enhanced hydrophilic soil, \textit{inter alia}, clay, removal benefits. The present invention also relates to methods for removing hydrophilic soil form wearing apparel.

BACKGROUND OF THE INVENTION

Fabric, especially clothing, can become soiled with a variety of foreign substances ranging from hydrophobic stains (grease, oil) to hydrophilic stains (clay). The level of cleaning which is necessary to remove said foreign substances depends to a large degree upon the amount of stain present and the degree to which the foreign substance has contacted the fabric fibers. Grass stains usually involve direct abrasive contact with vegetative matter thereby producing highly penetrating stains. Clay soil stains, although in some instances contacting the fabric fibers with less force, nevertheless provide a different type of soil removal problem due to the high degree of charge associated with the clay itself. This high surface charge density may act to repel some laundry adjunct ingredients, \textit{inter alia}, clay dispersants, thereby resisting any appreciable peptization and dispersal of the clay into the laundry liquor.

A surfactant per se is not all that is necessary to remove unwanted clay soils and stains. In fact, most surfactants by themselves in water are surprisingly poor at removing clay soils from fabric. not all surfactants work equally well on all types of stains. In addition to surfactants, polyamine-based hydrophilic soil dispersants are added to laundry detergent compositions to “carry away” clay soils from the fabric surface and to stabilize the removed particles in solution sufficiently to minimize the possibility that the clay soil will be re-deposited upon the fabric. However, unless the clay can be initially removed from the soiled fabric, especially in the case of hydrophilic fibers, \textit{inter alia}, cotton, there will be nothing in solution for the dispersants to bind to and keep suspended.

There is a long felt need in the art for laundry detergent compositions which can effectively break up and remove embedded clay and other hydrophilic soils from fabric. In addition, as the concentration of hydrophilic soil increases in the laundry liquor, there is a need for a surfactant system which will be able to handle this increased soil load. Also there is a long
felt need for a clay soil active adjunct ingredient which can be optimized to fit the particular laundry detergent embodiment, *inter alia*, granular, liquid, and which can be therefore tailored to match the surfactant system. There has further been a long felt need for a method for cleaning hydrophilic soils from fabric wherein the hydrophilic soils are effectively peptized, dispersed, and suspended in the laundry liquor.

SUMMARY OF THE INVENTION

It has now been surprisingly discovered that laundry detergent compositions comprising fully quaternized polyethoxylated polyamines wherein said polyethoxy units are capped with anionic units and wherein the polyamine backbone is comprised of relatively hydrophobic backbone spacer units, said polyamines can be hydrophobically modified by the selection of certain quaternizing units to provide enhanced removal of soils from clothing. The laundry detergent compositions of the present invention are especially effective in removal of clay and other hydrophilic soils from fabric. When used together with a suitable surfactant system, the hydrophobically modified polyamines of the present invention provides for removal of stains which were once believed ruinous to fabric, especially cellulose comprising fabric.

The first aspect of the present invention relates to laundry detergent compositions comprising:

A) from about 0.01%, preferably from about 0.1%, more preferably from about 1%, most preferably from about 3% to about 50%, preferably to about 20%, more preferably to about 10%, most preferably to about 7% by weight, of a hydrophobically modified polyamine having the formula:

\[
\left[\left(R^1 \right)_2 Q \right] \left(N \right) \left(\frac{+^R}{-^Q} \right) \left(N \right) \left(\frac{+^R}{-^Q} \right) \left(N \right) \left(\frac{+^R}{-^Q} \right) _n \left(+^R \right)_2 \left(\frac{+^R}{-^Q} \right) X
\]

wherein \(R \) is \(C_5-C_{20} \) linear or branched alkylene, and mixtures thereof; \(R^1 \) is an alkyleneoxy unit having the formula:

\[
-(R^2O)_x-R^3
\]

wherein \(R^2 \) is \(C_2-C_4 \) linear or branched alkylene, and mixtures thereof; \(R^3 \) is an anionic unit, and mixtures thereof; \(x \) is from about 15 to about 30; \(Q \) is a hydrophobic quaternizing unit selected from the group consisting of \(C_8-C_{20} \) linear or branched alkyl, \(C_6-C_{30} \) cycloalkyl, \(C_7-C_{30} \) substituted or unsubstituted...
alkylenearyl, and mixtures thereof; X is an anion present in sufficient amount to provide electronic neutrality; n is from 0 to 4;

B) from about 0.01% by weight, of a surfactant system comprising one or more surfactants selected from:

i) from 0% to 100% by weight, of one or more anionic surfactants;
ii) from 0% to 100% by weight, of one or more nonionic surfactants;
iii) optionally from 0.1% to about 80% by weight, of one or more cationic surfactants;
iv) optionally from 0.1% to about 80% by weight, of one or more zwitterionic surfactants;
v) optionally from 0.1% to about 80% by weight, of one or more ampholytic surfactants; or
vi) mixtures thereof;

C) the balance carriers and adjunct ingredients.

The present invention also relates to a method for cleaning fabric, said method comprising the step of contacting an article of manufacture comprising fabric, preferably clothing, with an aqueous solution of a laundry detergent composition comprising a hydrophobically modified polyamine of the present invention.

These and other objects, features and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims. All percentages, ratios and proportions herein are by weight, unless otherwise specified. All temperatures are in degrees Celsius (° C) unless otherwise specified. All documents cited are in relevant part, incorporated herein by reference.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to hydrophobically modified quaternized zwitterionic polyamines which are suitable for use in laundry detergent compositions. The hydrophobically modified zwitterionic polyamines of the present invention provide enhanced body soil and perspiration soil removal benefits.

It has been surprisingly discovered that hydrophobically modified quaternized zwitterionic polyamines have increased effectiveness when treating fabric which is soiled with human body oils, perspiration, etc. Without wishing to be limited by theory, the hydrophobically modified quaternary zwitterionic polyamines of the present invention have an unexpected balance of properties which makes the compounds amenable to penetrating fabric to solubilize greasy, oily
stains, while maintaining water solubility, and preserving the particulate soil suspension
properties needed to direct the dirt away from the fabric thereby avoiding re-deposition. In
addition, the hydrophobically modified zwitterionic polyamines of the present invention reinforce
the cleaning actions of high suds and high phosphate cleaning systems.

When present in laundry detergent compositions, the zwitterionic polyamines are
effective in an amount from about 0.01%, preferably from about 0.1%, more preferably from
about 1%, most preferably from about 3% to about 50%, preferably to about 20%, more
preferably to about 10%, most preferably to about 7% by weight, of said laundry detergent
composition.

Hydrophobically Modified Quaternized Zwitterionic Polyamines

For the purposes of the present invention the term “hydrophobically modified” is defined
herein as the “reaction of a linear polyamine comprising from 2 to 5 nitrogens wherein each
nitrogen has its backbone hydrogens replaced by an anionic unit-capped polyalkylenecxy unit
comprising at least about 15 alklyleneoxy units, with at least one equivalent per nitrogen of a
quaternizing agent, said quaternizing agents comprising a linear alkyl moiety having at least 8
carbon atoms, a cyclic alkyl moiety having at least 6 carbon atoms, an alkylenearyl unit, *inter
alia*, benzyl, having at least 7 carbon atoms, or mixtures thereof”.

A “polyamine” for the purposes of the present invention is “an amine having less than 6
backbone nitrogen atoms and no branching”, whereas for the purposes of the present invention,
amines comprising more than 5 nitrogens are defined as “oligomeric amines” (oligoamines) or
“polymeric amines” (polyalkylenamines or polyalkyleneimines).

The hydrophobically modified zwitterionic polyamines of the present invention have the
formula:

\[
\left[(R')_2N-R\left[\left(N^+ \right)^{-}_n \left(N^+ \right)^{-}_Q \right] \right] \times X
\]

wherein R is C₆-C₂₀ linear or branched alkylene, and mixtures thereof; in one embodiment R is C₆-
-C₁₀ linear alkylene, in another embodiment R is C₆-C₈ linear alkylene, in yet another embodiment
each of the R units are hexylene units, typically linear hexylene units.

R¹ is an anionic unit-capped polyalkylenecxy unit having the formula:

\[-(R^2O)_x− R^3\]

wherein R² is C₂-C₄ linear or branched alkylene, and mixtures thereof. The term linear or
branched as it refers to R² include any linear or branched alkylene unit comprising a total of from
2 to 4 carbon atoms. In one embodiment R² comprises ethylene, 1,2-propylene, and mixtures thereof; in still another embodiment each R² unit is an ethylene unit. One embodiment of the present invention which provides advantages in a bleach comprising composition relates to hydrophobically modified zwitterionic polyamines comprising the first 1-6, preferably the first 1-3 of alkyleneoxy units as 1,2-propyleneoxy units followed by the balance ethyleneoxy units.

R³ is an anionic capping unit, and mixtures thereof. What is meant herein as "an anionic capping unit, and mixtures thereof" is the R³ unit may comprise a single anionic unit or each R³ may be a different anionic capping unit, or R³ may comprise any mixture of anionic units." Non-limiting examples of anionic units which comprise one embodiment of the present invention are anionic units selected from the group consisting of:

a) -(CH₂)₃CO₂M;
b) -C(O)(CH₂)₃CO₂M;
c) -(CH₂)₃PO₂M;
d) -(CH₂)₃OPO₂M;
e) -(CH₂)₃SO₂M;
f) -CH₂(CHSO₂M)(CH₂)₃SO₂M;
g) -CH₂(CHSO₂M)(CH₂)₃SO₂M;
h) -C(O)CH₂CH(SO₂M)CO₂M;
i) -C(O)CH₂CH(CO₂M)NHCH(CO₂M)CH₂CO₂M;
j) and mixtures thereof;

wherein M is hydrogen or a cation which provides charge neutrality. For the purposes of the present invention, all M units, whether associated with a hydrophobically modified zwitterionic polyamine, surfactant, or adjunct ingredient, can either be a hydrogen atom or a cation depending upon the form isolated by the artisan or the relative pK of the system wherein the compound is used. Non-limiting examples of preferred cations include sodium, potassium, ammonium, and mixtures thereof. The index f is from 0 to about 10, one embodiment of the present invention fixes the range of the index f from 0 to 2.

The index x which describes the average number of alkyleneoxy units attached to the backbone nitrogen is from about 15 to about 30, preferably from 15 to 25, more preferably from 18 to 23, most preferred average value of alkyleneoxy units is 20. The formulator will recognize that when ethoxylating a zwitterionic polyamine, only an average number or statistical distribution of alkyleneoxy units will be known. Therefore, depending upon how "tightly" or how "exactly" a zwitterionic polyamine is alkoxylated, the average value may vary from embodiment to embodiment.
Q is a hydrophobic quaternizing unit and each Q is independently C₉-C₃₀ linear or branched alkyl, C₅-C₃₀ cycloalkyl, C₄-C₅ₐ substituted or unsubstituted alkylenearyl, and mixtures thereof; in one embodiment of the present invention Q is a hydrophobic quaternizing unit selected from the group consisting of C₇-C₃₀ substituted or unsubstituted alkylenearyl, and mixtures thereof; more preferably benzyl, substituted benzyl, naphthyl, substituted naphthyl, and mixtures thereof. For the purposes of the present invention the formulae:

\[(\text{CH}_2)_w \uparrow \downarrow \]

or

\[(\text{CH}_2)_w \uparrow \downarrow \]

stands for the term “naphthyl” depending upon whether said unit comprises α-substitution or β-substitution. The index w has the value from 0 to 20. Other alkylene aryl units include besides benzyl, alkylenearyl units having the formula:

\[(\text{CH}_2)_z \uparrow \downarrow \]

wherein the index z is from 1 to 24.

For the purposes of the present invention the term “substituted” as it applies to alkylenearyl units suitable as Q units, are one or more C₁⁻C₁₂ linear or branch alkyl moieties, provided the total number of carbon atoms including the aromatic ring does not exceed 30 carbon atoms.

A non-limiting example of a substituted alkylenearyl unit according to the present invention has the formula:

\[(\text{CH}_2) \uparrow \downarrow \]

which is a 3,5-di-tert-butyl benzyl moiety.

The index n represents the number of secondary nitrogens in the backbone. The index n has the value from 0 to 4, preferably from 0 to 2.

X is an anion present in sufficient amount to provide electronic neutrality. Non-limiting examples of anions are chlorine, bromine, iodine, methylsulfate, and mixtures thereof.
An example of a preferred hydrophobically modified zwitterionic polyamine according to the present invention has the formula:

wherein X is a water soluble anion selected from the group consisting of chlorine, bromine, iodine, methylsulfate, and mixtures thereof.

SURFACANT SYSTEM

The laundry detergent compositions of the present invention comprise from about 0.01%, preferably from about 1%, more preferably from about 5%, most preferably from 10% to about 80%, preferably to about 50%, more preferably to about 30%, by weight of a surfactant system, said surfactant system comprising one or more surfactants selected from:

- from 0% to 100% by weight, of one or more anionic surfactants;
- from 0% to 100% by weight, of one or more nonionic surfactants;
- optionally from 0.1% to about 80% by weight, of one or more cationic surfactants;
- optionally from 0.1% to about 80% by weight, of one or more zwitterionic surfactants;
- optionally from 0.1% to about 80% by weight, of one or more ampholytic surfactants; or
- mixtures thereof.

A preferred surfactant system according to the present invention comprises from about 0.01% by weight, of one or more surfactants selected from:

- from 1% to about 100% by weight, of an anionic surfactant selected from:
 - linear alkyl benzene sulfonates;
 - mid-chain branched aryl sulfonate surfactants having the formula:
wherein A is a mid-chain branched alkyl unit having the formula:

\[
\begin{array}{c}
\text{CH}_3(CH_2)_xCH(CH_2)_yCH(CH_2)_z \text{--}
\end{array}
\]

wherein R and R\(^1\) are each independently hydrogen, C\(_1\)-C\(_3\) alkyl, and mixtures thereof, provided the total number of carbon atoms in said alkyl unit is from 6 to 18 and at least one of R and R\(^1\) is not hydrogen; x is an integer from 0 to 13; y is an integer from 0 to 13; z is 0 or 1; R\(^2\) is hydrogen, C\(_1\)-C\(_3\) alkyl, and mixtures thereof; M\(^+\) is a water soluble cation with sufficient charge to provide neutrality;

c) branched alkyl sulfate surfactants having the formula:

\[
\text{CH}_3\text{CH}_2\text{(CH}_2)\text{mCH}_2\text{OSO}_3\text{M},
\]

or the formula:

\[
\text{CH}_3\text{CH}_2\text{(CH}_2)\text{mCH}_2\text{(OCH}_2\text{CH}_2)\text{yOSO}_3\text{M},
\]

d) mid-chain branched alkyl sulfate surfactants having the formula:

\[
\begin{array}{c}
\text{CH}_3\text{CH}_2\text{(CH}_2)\text{wCH(CH}_2)\text{xCH(CH}_2)\text{yCH(CH}_2)\text{zOSO}_3\text{M},}
\end{array}
\]

or the formula:

\[
\begin{array}{c}
\text{CH}_3\text{CH}_2\text{(CH}_2)\text{wCH(CH}_2)\text{xCH(CH}_2)\text{yCH(CH}_2)\text{zOR}_3\text{mOSO}_3\text{M},}
\end{array}
\]

wherein R, R\(^1\), and R\(^2\) are each independently hydrogen, C\(_1\)-C\(_3\) alkyl, and mixtures thereof, provided the total number of carbon atoms in said surfactant is from 14 to 20 and at least one of R, R\(^1\), and R\(^2\) is not hydrogen; the index w is an integer from 0 to 13; x is an integer from 0 to 13; y is an integer from 0 to 13; z is an integer of at least 1; provided w + x + y + z is from 8 to 14 and the total number of carbon atoms in a surfactant is from 14 to 20; R\(^3\) is ethylene, 1,2-propylene, 1,3-propylene, 1,2-butylene, 1,4-butylene, and mixtures thereof; the average value of the index m is at least about 0.01; M is a water soluble cation of sufficient charge to provide electronic neutrality;

ii) from 0% to 100% by weight, of one or more nonionic surfactants;

iii) optionally from 0.1% to about 80% by weight, of one or more cationic surfactants;
iv) optionally from 0.1% to about 80% by weight, of one or more zwitterionic surfactants;

v) optionally from 0.1% to about 80% by weight, of one or more ampholytic surfactants; or

vi) mixtures thereof.

Depending upon the embodiment of the present invention one or more categories of surfactants may be chosen by the formulator, however, at least one anionic or at least one nonionic surfactant must be present. Within each category of surfactant, more than one type of surfactant can be selected.

Nonlimiting examples of surfactants useful herein include:

a) C_{11}-C_{18} alkyl benzene sulfonates (LAS);
b) C_{10}-C_{20} primary, branched-chain and random alkyl sulfates (AS);
c) C_{10}-C_{18} secondary (2,3) alkyl sulfates having the formula:

\[
\text{CH}_3(\text{CH}_2)_x(\text{CH})\text{CH}_3 \quad \text{or} \quad \text{CH}_3(\text{CH}_2)_y(\text{CH})\text{CH}_2\text{CH}_3
\]

wherein x and (y + 1) are integers of at least about 7, preferably at least about 9; said surfactants disclosed in U.S. 3,234,258 Morris, issued February 8, 1966; U.S. 5,075,041 Lutz, issued December 24, 1991; U.S. 5,349,101 Lutz et al., issued September 20, 1994; and U.S. 5,389,277 Prieto, issued February 14, 1995 each incorporated herein by reference;

d) C_{10}-C_{18} alkyl alkoxy sulfates (AE_xS) wherein preferably x is from 1-7;
e) C_{10}-C_{18} alkyl alkoxy carboxylates preferably comprising 1-5 ethoxy units;
f) C_{12}-C_{18} alkyl ethoxylates, C_{6}-C_{12} alkyl phenol ethoxylates wherein the ethoxylation units are a mixture of ethyleneoxy and propyleneoxy units, C_{12}-C_{18} alcohol and C_{6}-C_{12} alkyl phenol condensates with ethylene oxide/propylene oxide block polymers inter alia Pluronic® ex BASF which are disclosed in U.S. 3,929,678 Laughlin et al., issued December 30, 1975, incorporated herein by reference;
g) Alkylpolysaccharides as disclosed in U.S. 4,565,647 Llenado, issued January 26, 1986, incorporated herein by reference;
h) Polyhydroxy fatty acid amides having the formula:
wherein R is C_{7}-C_{21} linear alkyl, C_{7}-C_{21} branched alkyl, C_{7}-C_{21} linear alkenyl, C_{7}-C_{21} branched alkenyl, and mixtures thereof.

R^1 is ethylene; R^2 is C_{1}-C_{4} linear alkyl, C_{1}-C_{4} branched alkyl, and mixtures thereof; preferably R^2 is 1,2-propylene. Nonionic surfactants which comprise a mixture of R^1 and R^2 units preferably comprise from about 4 to about 12 ethylene units in combination with from about 1 to about 4 1,2-propylene units. The units may be alternating, or grouped together in any combination suitable to the formulator. Preferably the ratio of R^1 units to R^2 units is from about 4:1 to about 8:1. Preferably an R^2 units (i.e., 1,2-propylene) is attached to the nitrogen atom followed by the balance of the chain comprising from 4 to 8 ethylene units.

R^3 is hydrogen, C_{1}-C_{4} linear alkyl, C_{1}-C_{4} branched alkyl, and mixtures thereof; preferably hydrogen or methyl, more preferably hydrogen.

R^4 is hydrogen, C_{1}-C_{4} linear alkyl, C_{1}-C_{4} branched alkyl, and mixtures thereof; preferably hydrogen. When the index m is equal to 2 the index n must be equal to 0 and the R^4 unit is absent and is instead replaced by a -[(R^1O)x(R^2O)zR^3] unit.

The index m is 1 or 2, the index n is 0 or 1, provided that when m is equal to 1, n is equal to 1; and when m is 2 n is 0; preferably m is equal to 1 and n is equal to one, resulting in one -[(R^1O)x(R^2O)zR^3] unit and R^4 being present on the nitrogen. The index x is from 0 to about 50, preferably from about 3 to about 25, more preferably from about 3 to about 10. The index y is from 0 to about 10, preferably 0, however when the index y is not equal to 0, y is from 1 to about 4. Preferably all of the alkyleneoxy units are ethyleneoxy units. Those skilled in the art of ethoxylated polyoxyalkylene alkyl amide surface active agents will recognized that the values for the indices x and y are average values and the true values may range over several values depending upon the process used to alkoxylate the amides.

Suitable means for preparing the polyoxyalkylene alkylamide surface active agents of the present invention can be found in "Surfactant Science Series", Editor Martin Schick, Volume I, Chapter 8 (1967) and Volume XIX, Chapter 1 (1987) included herein by reference.

Mid-chain Branched Alkyl Sulfates

The surfactant systems of the present invention may comprise a mid-chain branched alkyl sulfate surfactant and/or a mid-chain branched alkyl alkoxy sulfate surfactant. Because mid-chain branched alkyl sulfate or alkyl alkoxy sulfate surfactants are not required when mid-chain branched aryl sulfonate surfactants are present, the surfactant system comprises from 0%
present from 0.01%, preferably from about 0.1% more preferably from about 1% to about 100%, preferably to about 80% by weight, preferably to about 60%, most preferably to about 30% by weight, of the surfactant system. When the mid-chain branched alkyl sulfate surfactants or mid-chain branched alkyl alkoxy sulfate surfactants comprise 100% of the surfactant system said surfactants will comprise up to 60% by weight of the final laundry detergent composition.

The mid-chain branched alkyl sulfate surfactants of the present invention have the formula:

$$R \quad R' \quad R''$$

$$\text{CH}_3\text{CH}_2(\text{CH}_2)_w\text{CH}(\text{CH}_2)_x\text{CH}(\text{CH}_2)_y\text{CH}(\text{CH}_2)_z\text{OSO}_3^\text{M}_n,$$

10 the alkyl alkoxy sulfates have the formula:

$$R \quad R' \quad R''$$

$$\text{CH}_3\text{CH}_2(\text{CH}_2)_w\text{CH}(\text{CH}_2)_x\text{CH}(\text{CH}_2)_y\text{CH}(\text{CH}_2)_z(\text{OR}_3)_m\text{OSO}_3^\text{M}_n,$$

wherein R, R', and R'' are each independently hydrogen, C_1-C_3 alkyl, and mixtures thereof; provided at least one of R, R', and R'' is not hydrogen; preferably R, R', and R'' are methyl; preferably one of R, R', and R'' is methyl and the other units are hydrogen. The total number of carbon atoms in the mid-chain branched alkyl sulfate and alkyl alkoxy sulfate surfactants is from 14 to 20; the index w is an integer from 0 to 13; x is an integer from 0 to 13; y is an integer from 0 to 13; z is an integer of at least 1; provided $w + x + y + z$ is from 8 to 14 and the total number of carbon atoms in a surfactant is from 14 to 20; R'' is C_1-C_4 linear or branched alkylene, preferably ethylene, 1,2-propylene, 1,3-propylene, 1,2-butyylene, 1,4-butyylene, and mixtures thereof.

However, a preferred embodiment of the present invention comprises from 1 to 3 units wherein R'' is 1,2-propylene, 1,3-propylene, or mixtures thereof followed by the balance of the R'' units comprising ethylene units. Another preferred embodiment comprises R'' units which are randomly ethylene and 1,2-propylene units. The average value of the index m is at least about 0.01. When the index m has low values, the surfactant system comprises mostly alkyl sulfates with a small amount of alkyl alkoxy sulfate surfactant. Some tertiary carbon atoms may be present in the alkyl chain, however, this embodiment is not desired.

M denotes a cation, preferably hydrogen, a water soluble cation, and mixtures thereof. Non-limiting examples of water soluble cations include sodium, potassium, lithium, ammonium, alkyl ammonium, and mixtures thereof.
The preferred mid-chain branched alkyl sulfate and alkyl alkoxy sulfate surfactants of the present invention are “substantially linear” surfactants. The term “substantially linear” is defined for the purposes of the present invention as “alkyl units which comprise one branching unit or the chemical reaction products which comprise mixtures of linear (non-branched) alkyl units and alkyl units which comprise one branching unit”. The term “chemical reaction products” refers to the admixture obtained by a process wherein substantially linear alkyl units are the desired product but nevertheless some non-branched alkyl units are formed. When this definition is taken together with preferably one of \(R, R^1, \) and \(R^2 \) is methyl and the other units are hydrogen, the preferred mid-chain branched alkyl sulfate and alkyl alkoxy sulfate surfactants comprise one methyl branch, preferably said methyl branch is not on the \(\alpha, \beta, \) or the second to the last carbon atom. Typically the branched chains are a mixture of isomers.

The following illustrate preferred examples of mid-chain branched alkyl sulfate and alkoxy alkyl sulfate surfactants.

8-Methylundecyl sulfate:

\[
\text{SO}_3\text{M}
\]

3-Methylundecyl sulfate:

\[
\text{SO}_3\text{M}
\]

3-Methyltridecyl sulfate:

\[
\text{SO}_3\text{M}
\]

8-Methyltridecyl sulfate:

\[
\text{SO}_3\text{M}
\]

Mid-chain Branched Aryl Sulphonates

The surfactant systems of the present invention may comprise a mid-chain branched aryl sulphonate surfactant. Because mid-chain branched aryl sulfonate surfactants may not be present when mid-chain branched alkyl sulfate and/or alkyl alkoxy surfactants are present, the surfactant system comprises from 0%, when present from 0.01%, preferably from about 0.1% more
preferably from about 1% to about 100%, preferably to about 80% by weight, preferably to about 60%, most preferably to about 30% by weight, of the surfactant system. When the mid-chain branched aryl sulphonate surfactants comprise 100% of the surfactant system said mid-chain branched aryl sulphonate surfactants will comprise up to 60% by weight of the final laundry detergent composition.

The mid-chain branched aryl sulphonates of the present invention have the formula:

![Chemical structure](image)

wherein A is a mid-chain branched alkyl unit having the formula:

![Chemical structure](image)

wherein R and R¹ are each independently hydrogen, C₁-C₃ alkyl, and mixtures thereof, provided at least one of R and R¹ is not hydrogen; preferably at least one R or R¹ is methyl; wherein the total number of carbon atoms in said alkyl unit is from 6 to 18. Some tertiary carbon atoms may be present in the alkyl chain, however, this embodiment is not desired.

The integer x is from 0 to 13. The integer y is from 0 to 13. The integer z is either 0 or 1, preferably 0.

R² is hydrogen, C₁-C₃ alkyl, and mixtures thereof. Preferably R² is hydrogen.

M* denotes a water soluble cation with sufficient charge to provide neutrality, preferably hydrogen, a water soluble cation, and mixtures thereof. Non-limiting examples of water soluble cations include sodium, potassium, lithium, ammonium, alkyl ammonium, and mixtures thereof.

In one embodiment of the present invention mid-chain branched aryl sulphonate surfactants are “substantially linear aryl” surfactants. The term “substantially linear aryl” is defined for the purposes of the present invention as “an alkyl unit which is taken together with an aryl unit wherein said alkyl unit preferably comprises one branching unit, however, a non-branched linear alkyl unit having an aryl unit bonded to the 2-carbon position as part of an admixture is included as a substantially linear aryl surfactant”. The preferred alkyl units do not have a methyl branch on the second to the last carbon atom. Typically the branched chains are a mixture of isomers. However, in the case of the mid-chained branched aryl sulphonates of the
present invention, the relative position of the aryl moiety is key to the functionality of the surfactant. Preferably the aryl moiety is attached to the second carbon atom in the branched chain as illustrated herein below.

In one or more embodiments mid-chain branched aryl sulphonates of the present invention will comprise a mixture of branched chains. Preferably R^1 is methyl, the index z is equal to 0, and the sulphate moiety is para (1,4) to the branched alkyl substituent thereby resulting in a “2-phenyl aryl sulphonate” defined herein by the general formula:

![Chemical structure 1]

Typically 2-phenyl aryl sulphonates are formed as a mixture together with “3-phenyl aryl sulphonates” defined herein by the general formula:

![Chemical structure 2]

The surfactant properties of the mid-chain branched aryl sulphonates of the present invention can be modified by varying the ratio of 2-phenyl to 3-phenyl isomers in the final surfactant mixture. A convenient means for describing the relative amounts of isomers present is the “2/3 phenyl index” defined herein as “100 times the quotient of the amount of 2-phenyl isomer present divided by the amount of the 3-phenyl isomer which is present”. Any convenient means, NMR, *inter alia*, can be used to determine the relative amounts of isomers present. A preferred 2/3 phenyl index is at least about 275 which corresponds to at least 2.75 times more 2-phenyl isomer present than the 3-phenyl isomer in the surfactant mixture. The preferred 2/3-phenyl index according to the present invention is from about 275, more preferably from about
350, most preferably from about 500 to about 10,000, preferably to about 1200, more preferably to about 700.

Those of ordinary skill in the art will recognize that the mid-chain branched surfactants of the present invention will be a mixture of isomers and the composition of the mixture will vary depending upon the process which is selected by the formulator to make the surfactants. For example, the following admixture is considered to comprise a substantially linear mid-chain branched aryl sulphonate admixture according to the present invention. Sodium *para*-[(7-methylnonan-2-yl)benzenesulphonate, sodium *para*-[(6-methylnonan-2-yl)benzenesulphonate, sodium *para*-[(7-methylnonan-3-yl)benzene-sulphonate, sodium *para*-[(7-methyldecan-2-yl)benzenesulphonate, sodium *para*-[(7-methylnonanyl)benzenesulphonate.

FORMULATIONS

The compositions of the present invention may be in any form, *inter alia*, liquid, granular, paste. Depending upon the specific form of the laundry composition, as well as, the expected use thereof, the formulator may will use different surfactant and adjunct ingredient combinations.

The Heavy Duty Granular compositions according to the present invention comprise:

a) from about 0.01%, preferably from about 0.1%, more preferably from 1%, most preferably from 3% to about 20%, preferably to about 10%, more preferably to about 7% by weight, of a hydrophobically modified polyamine; and

b) from about 0.01% by weight, preferably from about 0.1% more preferably from about 1% to about 60%, preferably to about 30% by weight, of said composition, of a surfactant system, said surfactant system comprising:

i) from 0.01%, preferably from about 0.1% more preferably from about 1% to about 100%, preferably to about 80% by weight, preferably to about 60%, most preferably to about 30% by weight, of a surfactant selected from the group consisting of alkyl sulfate surfactants, alkoxy sulfate surfactants, mid-chain branched alkyl sulfate surfactants, mid-chain branched alkoxy sulfate surfactants, mid-chain branched aryl sulfonate surfactants, and mixtures thereof;

ii) optionally and preferably, from 0.01%, preferably from about 0.1% more preferably from about 1% to about 100%, preferably to about 80% by weight, preferably to about 60%, most preferably to about 30% by weight, of one or more anionic surfactants;
optionally, from 0.01%, preferably from about 0.1% more preferably from about 1% to about 100%, preferably to about 80% by weight, preferably to about 60%, most preferably to about 30% by weight, of one or more nonionic surfactants.

HDG laundry detergent compositions will typically comprise more of anionic detergents. Therefore, the formulator will employ a zwitterionic polyamine having a greater number of anionic units than the number of backbone cationic units. This net charge balance will ameliorate the negative interaction of the surfactant molecules with the hydrophilic soil active zwitterionic polymers.

By contrast, the Heavy Duty Liquid (HDL) compositions according to the present invention comprise:

a) from about 0.01%, preferably from about 0.1%, more preferably from 1%, most preferably from 3% to about 20%, preferably to about 10%, more preferably to about 5% by weight, of a zwitterionic polyamine wherein said polyamine comprises less than or equal number of anionic substituents than the number of backbone quaternary nitrogen units; and

b) from about 0.01% by weight, preferably from about 0.1% more preferably from about 1% to about 60%, preferably to about 30% by weight, of said composition, of a surfactant system, said surfactant system comprising:

i) from 0.01%, preferably from about 0.1% more preferably from about 1% to about 100%, preferably to about 80% by weight, preferably to about 60%, most preferably to about 30% by weight, of a surfactant selected from the group consisting of mid-chain branched alkyl sulfate surfactants, mid-chain branched alkoxy sulfate surfactants, mid-chain branched aryl sulfonate surfactants, and mixtures thereof;

ii) preferably, from 0.01%, preferably from about 0.1% more preferably from about 1% to about 100%, preferably to about 80% by weight, preferably to about 60%, most preferably to about 30% by weight, of one or more nonionic surfactants, said nonionic surfactants selected from the group consisting of alcohols, alcohol ethoxylates, polyoxyalkylene alkylamides, and mixtures thereof;

iii) optionally, from 0.01%, preferably from about 0.1% more preferably from about 1% to about 100%, preferably to about 80% by weight,
preferably to about 60%, most preferably to about 30% by weight, of one or more nonionic surfactants.

HDL laundry detergent compositions will typically comprise more of a lesser amount of an anionic detersive surfactant and more nonionic surfactants. Therefore, the formulator will employ a zwitterionic polyamine having an equal number of anionic units as the number of cationic units or a greater number of cationic backbone units than the number of anionic units.

BLEACHING SYSTEM

The hydrophobically modified polyamine-comprising laundry detergent compositions of the present invention may optionally comprise a bleaching system. Bleaching systems typically comprise a "bleaching agent" (source of hydrogen peroxide) and an "initiator" or "catalyst".

Preferred laundry detergent compositions of the present invention which comprise a bleaching system, comprise:

a) from about 0.01% by weight, of a hydrophobically modified polyamine according to the present invention;

b) from about 0.01% by weight, of a surfactant system comprising:
 i) from 0% to 100% by weight, of the surfactant system one or more anionic surfactants;
 ii) from 0% to 100% by weight, of the surfactant system one or more nonionic surfactants;
 iii) optionally from 0.1% to about 80% by weight, of the surfactant system one or more cationic surfactants;
 iv) optionally from 0.1% to about 80% by weight, of the surfactant system one or more zwitterionic surfactants;
 v) optionally from 0.1% to about 80% by weight, of the surfactant system one or more ampholytic surfactants; or
 vi) mixtures thereof;

c) from about 1%, preferably from about 5% to about 80%, preferably to about 50% by weight, of the laundry detergent composition, a peroxylene bleaching system comprising:
 i) from about 40%, preferably from about 50%, more preferably from about 60% to about 100%, preferably to about 95%, more preferably to about 80% by weight, of the bleaching system, a source of hydrogen peroxide;
ii) optionally from about 0.1%, preferably from about 0.5% to about 60%, preferably to about 40% by weight, of the bleaching system, a beach activator;

iii) optionally from about 1 ppb (0.0000001%), more preferably from about 100 ppb (0.00001%), yet more preferably from about 500 ppb (0.00005%), still more preferably from about 1 ppm (0.0001%) to about 99.9%, more preferably to about 50%, yet more preferably to about 5%, still more preferably to about 500 ppm (0.05%) by weight of the composition, of a transition-metal bleach catalyst;

iv) optionally from about 0.1% by weight, of a pre-formed peroxygent bleaching agent; and

d) the balance carriers and other adjunct ingredients.

Bleaching Agents - Hydrogen peroxide sources are described in detail in the herein incorporated Kirk Othmer's Encyclopedia of Chemical Technology, 4th Ed (1992, John Wiley & Sons), Vol. 4, pp. 271-300 "Bleaching Agents (Survey)", and include the various forms of sodium perborate and sodium percarbonate, including various coated and modified forms.

Sources of hydrogen peroxide which are suitable for use in the compositions of the present invention include, but are not limited to, perborates, percarbonates, perphosphates, persulfates, and mixtures thereof. Preferred sources of hydrogen peroxide are sodium perborate monohydrate, sodium perborate tetrahydrate, sodium percarbonate and sodium persulfate, more preferably are sodium perborate monohydrate, sodium perborate tetrahydrate, and sodium percarbonate. When present the source of hydrogen peroxide is present at a level of from about 40%, preferably from about 50%, more preferably from about 60% to about 100%, preferably to about 95%, more preferably to about 80% by weight, of the bleaching system. Embodiments which are bleach comprising pre-soak compositions may comprise from 5% to 99% of the source of hydrogen peroxide.

A preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers. Optionally, the percarbonate can be coated with a silicate, borate or water-soluble surfactants.

Bleach Activators

Preferably, the source of hydrogen peroxide (peroxygent bleach component) in the composition is formulated with an activator (peracid precursor). The activator is present at levels
of from about 0.01%, preferably from about 0.5%, more preferably from about 1% to about 15%, preferably to about 10%, more preferably to about 8%, by weight of the composition. Also, bleach activators will comprise from about 0.1% to about 60% by weight, of the bleaching system. When the herein described bleaching system comprises 60% by weight, of an activator (the maximal amount) and said composition (bleaching composition, laundry detergent, or otherwise) comprises 15% by weight of said activator (the maximal amount by weight), said composition will comprise 25% by weight of a bleaching system (60% of which is bleach activator, 40% a source of hydrogen peroxide). However, this is not meant to restrict the formulato to a 60:40 ratio of activator to hydrogen peroxide source.

Preferably the mole ratio of peroxoxygen bleaching compound (as AvO) to bleach activator in the present invention generally ranges from at least 1:1, preferably from about 20:1, more preferably from about 10:1 to about 1:1, preferably to about 3:1.

Preferred activators are selected from the group consisting of tetraacetyl ethylene diamine (TAED), benzoylcaprolactam (BzCL), 4-nitrobenzoylcaprolactam, 3-chlorobenzoylcaprolactam, benzoyloxybenzenesulphonate (BOBS), nonanoyloxybenzenesulphonate (NOBS), phenyl benzoate (PhBz), decanoyloxybenzenesulphonate (C_{10}-OBS), benzoylvalerolactam (BZVL), octanoyloxybenzenesulphonate (C_{8}-OBS), perhydrolyzable esters and mixtures thereof, most preferably benzoylcaprolactam and benzoylvalerolactam. Particularly preferred bleach activators in the pH range from about 8 to about 9.5 are those selected having an OBS or VL leaving group.

Preferred hydrophobic bleach activators include, but are not limited to, nonanoyloxybenzenesulphonate (NOBS), 4-[N-(nonaoyl) amino hexanoyloxy]-benzene sulfonate sodium salt (NACA-OBS) an example of which is described in U.S. Patent No. 5,523,434, dodecanoyloxybenzenesulphonate (LOBS or C_{12}-OBS), 10-undecenoyloxybenzenesulphonate (UDOBS or C_{12}-OBS with unsaturation in the 10 position), and decanoyloxybenzoic acid (DOBA).

Preferred bleach activators are those described in U.S. 5,698,504 Christie et al., issued December 16, 1997; U.S. 5,695,679 Christie et al. issued December 9, 1997; U.S. 5,686,401 Willey et al., issued November 11, 1997; U.S. 5,686,014 Hartshorn et al., issued November 11, 1997; U.S. 5,405,412 Willey et al., issued April 11, 1995; U.S. 5,405,413 Willey et al., issued April 11, 1995; U.S. 5,130,045 Mitchel et al., issued July 14, 1992; and U.S. 4,412,934 Chung et al., issued November 1, 1983, and copending patent applications U. S. Serial Nos. 08/709,072, 08/064,564; acyl lactam activators, as described in U.S. 5,698,504, U.S. 5,695,679 and U.S. 5,686,014, each of which is cited herein above, are very useful herein, especially the acyl
caprolactams (see for example WO 94-28102 A) and acyl valerolactams, U.S. 5,503,639 Willey et al., issued April 2, 1996 all of which are incorporated herein by reference.

Quaternary substituted bleach activators may also be included. The present cleaning compositions preferably comprise a quaternary substituted bleach activator (QSBA) or a quaternary substituted peracid (QSP); more preferably, the former. Preferred QSBA structures are further described in U.S. 5,686,015 Willey et al., issued November 11, 1997; U.S. 5,654,421 Taylor et al., issued August 5, 1997; U.S. 5,460,747 Gosselink et al., issued October 24, 1995; U.S. 5,584,888 Miracle et al., issued December 17, 1996; and U.S. 5,578,136 Taylor et al., issued November 26, 1996; all of which are incorporated herein by reference.

Highly preferred bleach activators useful herein are amide-substituted as described in U.S. 5,698,504, U.S. 5,695,679, and U.S. 5,686,014 each of which are cited herein above. Preferred examples of such bleach activators include: (6-octanamidocaproxy)oxybenzenesulfonate, (6-nonanamidocaproxy)oxybenzenesulfonate, (6-decanamidocaproxy)oxybenzenesulfonate and mixtures thereof.

Other useful activators, disclosed in U.S. 5,698,504, U.S. 5,695,679, U.S. 5,686,014 each of which is cited herein above and U.S. 4,966,723 Hodge et al., issued October 30, 1990, include benzoxazin-type activators, such as a C₆H₄ ring to which is fused in the 1,2-positions a moiety --C(O)OC(R³)=N--.

Depending on the activator and precise application, good bleaching results can be obtained from bleaching systems having with in-use pH of from about 6 to about 13, preferably from about 9.0 to about 10.5. Typically, for example, activators with electron-withdrawing moieties are used for near-neutral or sub-neutral pH ranges. Alkalis and buffering agents can be used to secure such pH.

Transition Metal Bleach Catalyst

The laundry detergent compositions of the present invention optionally comprises a bleaching system which contains one or more bleach catalysts. Selected bleach catalysts *inter alia* 5,12-dimethyl-1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane manganese (II) chloride may be formulated into bleaching systems which do not require a source of hydrogen peroxide or peroxygen bleach. The compositions comprise from about 1 ppb (0.000001%), more preferably from about 100 ppb (0.00001%), yet more preferably from about 500 ppb (0.00005%), still more preferably from about 1 ppm (0.0001%) to about 99.9%, more preferably to about 50%, yet more preferably to about 5%, still more preferably to about 500 ppm (0.05%) by weight of the composition, of a transition-metal bleach catalyst.

Further examples of preferred macrocyclic ligand comprising bleach catalysts are described in WO 98/39406 A1 published September 11, 1998 and included herein by reference. Suitable examples of these bleach catalysts include:

Dichloro-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane manganese(II)

Dialquo-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane manganese(II) hexafluorophosphate

Aquo-hydroxy-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane manganese(III)

hexafluorophosphate

Dialquo-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane manganese(II) tetrafluoroborate

Dichloro-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane manganese(III)

hexafluorophosphate

Dichloro-5,12-di-n-butyl-1,5,8,12-tetraaza bicyclo[6.6.2]hexadecane manganese(II)

Dichloro-5,12-dibenzyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane manganese(II)

Dichloro-5-n-butyl-12-methyl-1,5,8,12-tetraaza- bicyclo[6.6.2]hexadecane manganese(II)

Dichloro-5-n-octyl-12-methyl-1,5,8,12-tetraaza- bicyclo[6.6.2]hexadecane manganese(II)

Dichloro-5-n-butyl-12-methyl-1,5,8,12-tetraaza- bicyclo[6.6.2]hexadecane manganese(II).
Pre-formed Bleaching Agents

The bleaching systems of the present invention may optionally further comprise from 0.1%, preferably from 1%, more preferably from 5% to about 10%, preferably to about 7% by weight, of one or more pre-formed bleaching agents. Pre-formed bleaching materials typically have the general formula:

\[
\text{HO} - \text{O} - \text{C} - \text{R} - \text{Y}
\]

wherein \(R \) is a \(\text{C}_1-\text{C}_{22} \) alkylene, \(\text{C}_1-\text{C}_{22} \) substituted alkylene, phenylene, \(\text{C}_6-\text{C}_{22} \) substituted phenylene, and mixtures thereof, \(Y \) is hydrogen, halogen, alkyl, aryl, -\(\text{C}(\text{O})\text{OH} \), -\(\text{C}(\text{O})\text{OOH} \), and mixtures thereof.

The organic percarboxylic acids usable in the present invention can contain either one or two peroxy groups and can be either aliphatic or aromatic. When the organic percarboxylic acid is aliphatic, the unsubstituted acid has the general formula:

\[
\text{HO} - \text{O} - \text{C} - (\text{CH}_2)_n - \text{Y}
\]

wherein \(Y \) can be hydrogen, methyl, methyl chloride, carboxylate, percarboxylate; and \(n \) is an integer having the value from 1 to 20.

When the organic percarboxylic acid is aromatic, the unsubstituted acid has the general formula:

\[
\text{HO} - \text{O} - \text{C} - \text{Y}
\]

wherein \(Y \) can be hydrogen, alkyl, haloalkyl, carboxylate, percarboxylate, and mixtures thereof.

Typical monoperoxy percarboxylic acids useful herein include alkyl percarboxylic acids and aryl percarboxylic acids such as:

i) \(\text{peroxybenzoic acid and ring-substituted peroxybenzoic acids, e.g., peroxy-o-naphthoic acid;} \)

ii) \(\text{aliphatic, substituted aliphatic and arylalkyl monoperoxy acids, e.g. peroxylauric acid, peroxysearic acid, and N,N-phthaloyaminoperoxycapeproic acid (PAP).} \)

Typical diperoxy percarboxylic acids useful herein include alkyl diperoxy acids and aryldiperoxy acids, such as:

iii) \(1,12\text{-diperoxydodecanedioic acid;} \)
iv) 1,9-diperoxyazelaic acid;
v) diperoxybrassylic acid; diperoxysebacic acid and diperoxyisophthalic acid;
vi) 2-decylidiperoxybutane-1,4-dioic acid;
vii) 4,4'-sulfonybisperoxybenzoic acid.

A non-limiting example of a highly preferred pre-formed bleach includes 6-nonylamino-6-oxoper oxyxaproic acid (NAPAA) as described in U.S. Pat. No. 4,634,551 Burns et al., issued Jan. 6, 1987 included herein by reference.

As well as the herein described peroxgen bleaching compositions, the compositions of the present invention may also comprise as the bleaching agent a chlorine-type bleaching material. Such agents are well known in the art, and include for example sodium dichloroisocyanurate ("NaDCC"). However, chlorine-type bleaches are less preferred for compositions which comprise enzymes.

ADJUNCT INGREDIENTS

The following are non-limiting examples of adjunct ingredients useful in the laundry compositions of the present invention, said adjunct ingredients include builders, optical brighteners, soil release polymers, dye transfer agents, dispersents, enzymes, suds suppressers, dyes, perfumes, colorants, filler salts, hydro tropes, photoactivators, fluorescers, fabric conditioners, hydrolyzable surfactants, preservatives, anti-oxidants, chelants, stabilizers, anti-shrinkage agents, anti-wrinkle agents, germicides, fungicides, anti corrosion agents, and mixtures thereof.

Enzymes

The term "enzyme" or "detergent enzyme", as used herein, means any enzyme having a cleaning, stain removing or otherwise beneficial effect in a laundry, hard surface cleaning, or other cleaning formulation or composition as described herein. In general, enzymes are present in the compositions of the present invention at a level of from 0.0001%, more preferably from 0.0005%, most preferably from 0.001% to 2%, preferably to 0.1%, more preferably to 0.02% by weight, of pure enzyme. Preferred enzymes are hydrolases such as proteases, amylases and lipases. Preferred enzymes for liquid laundry purposes include, but are not limited to, *inter alia* proteases, cellulases, lipases and peroxidases.

Protease Enzymes

The preferred liquid laundry detergent compositions according to the present invention further comprise at least 0.001% by weight, of a protease enzyme. However, an effective amount of protease enzyme is sufficient for use in the liquid laundry detergent compositions described
herein. The term "an effective amount" refers to any amount capable of producing a cleaning, stain removal, soil removal, whitening, deodorizing, or freshness improving effect on substrates such as fabrics. In practical terms for current commercial preparations, typical amounts are up to about 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the detergent composition. Stated otherwise, the compositions herein will typically comprise from 0.001% to 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation. The protease enzymes of the present invention are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.

Preferred liquid laundry detergent compositions of the present invention comprise modified protease enzymes derived from *Bacillus amyloliquefaciens* or *Bacillus lichenatus*. For the purposes of the present invention, protease enzymes derived from *B. amyloliquefaciens* are further referred to as "subtilisin BPN'" also referred to as "Protease A" and protease enzymes derived from *B. Lichenatus* are further referred to as "subtilisin 309". For the purposes of the present invention, the numbering of *Bacillus amyloliquefaciens* subtilisin, as described in the patent applications of A. Baeck, et al., entitled "Protease-Containing Cleaning Compositions" having US Serial No. 08/322,676, serves as the amino acid sequence numbering system for both subtilisin BPN' and subtilisin 309.

Derivatives of *Bacillus amyloliquefaciens* subtilisin -BPN' enzymes

A preferred protease enzyme for use in the present invention is a variant of Protease A (BPN') which is a non-naturally occurring carbonyl hydrolase variant having a different proteolytic activity, stability, substrate specificity, pH profile and/or performance characteristic as compared to the precursor carbonyl hydrolase from which the amino acid sequence of the variant is derived. This variant of BPN' is disclosed in EP 130,756 A, January 9, 1985.

Protease B

A preferred protease enzyme for use in the present invention is Protease B. Protease B is a non-naturally occurring carbonyl hydrolase variant having a different proteolytic activity, stability, substrate specificity, pH profile and/or performance characteristic as compared to the precursor carbonyl hydrolase from which the amino acid sequence of the variant is derived.

Protease B is a variant of BPN' in which tyrosine is replaced with leucine at position +217 and as further disclosed in EP 303,761 A, April 28, 1987 and EP 130,756 A, January 9, 1985.

Protease C

A preferred protease enzyme for use in the compositions of the present invention Protease C. Protease C is a variant of an alkaline serine protease from *Bacillus* in which lysine replaced
arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274. Protease C is described in EP 90915958.4, corresponding to WO 91/06637, Published May 16, 1991. Genetically modified variants, particularly of Protease C, are also included herein.

5 Protease D

A preferred protease enzyme for use in the present invention is Protease D. Protease D is a carbonyl hydrolase variant derived from Bacillus lentus subtilisin as described in WO 95/10615 published April 20, 1995 by Genencor International.

A further preferred protease enzyme for use in combination with the modified polyamines of the present invention is ALCALASE® from Novo. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,243,784 to Novo. Other suitable proteases include SAVINASE® from Novo and MAXATASE® from International Bio-Synthetics, Inc., The Netherlands. See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 9318140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 9203529 A to Novo. Other preferred proteases include those of WO 9510591 A to Procter & Gamble. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO 9507791 to Procter & Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 9425583 to Novo.

Other particularly useful proteases are described in PCT Application Nos. PCT/US98/22588, PCT/US98/22482 and PCT/US98/22486 all filed on October 23, 1998 from The Procter & Gamble Company.

Also suitable for the present invention are proteases described in patent applications EP 251 446 and WO 91/06637, protease BLAP® described in WO91/02792 and their variants described in WO 95/23221.

See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 93/18140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO 95/07791 to Procter & Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo. Other suitable proteases are described in EP 516 200 by Unilever.
Commercially available proteases useful in the present invention are known as
ESPERASE®, ALCALASE®, DURAZYM®, SAVINASE®, EVERLASE® and KANNASE®
all from Novo Nordisk A/S of Denmark, and as MAXATASE®, MAXACAL®, PROPERASE®
and MAXAPEM® all from Genencor International (formerly Gist-Brocades of The Netherlands).

A preferred protease for use in the present invention is the protease enzyme as described in

In addition to the above-described protease enzymes, other enzymes suitable for use in
the liquid laundry detergent compositions of the present invention are further described herein
below.

Other Enzymes

Enzymes in addition to the protease enzyme can be included in the present detergent
compositions for a variety of purposes, including removal of protein-based, carbohydrate-based,
or triglyceride-based stains from surfaces such as textiles, for the prevention of refugee dye
transfer, for example in laundering, and for fabric restoration. Suitable enzymes include
amyloses, lipases, cellulases, peroxidases, and mixtures thereof of any suitable origin, such as
vegetable, animal, bacterial, fungal and yeast origin. Preferred selections are influenced by
factors such as pH-activity and/or stability optima, thermostability, and stability to active
detergents, builders and the like. In this respect bacterial or fungal enzymes are preferred, such as
bacterial amylases and proteases, and fungal cellulases.

Amylases suitable herein include, for example, α-amylases described in GB 1,296,839 to
Novo; RAPIDASE®, International Bio-Synthetics, Inc. and TERMAMYL®, Novo.
FUNGAMYL® from Novo is especially useful. Engineering of enzymes for improved stability,
e.g., oxidative stability, is known. See, for example J. Biological Chem., Vol. 260, No. 11, June

Cellulases usable herein include both bacterial and fungal types, preferably having a pH
optimum between 5 and 9.5. U.S. 4,435,307, Barbesgaard et al, March 6, 1984, discloses
suitable fungal cellulases from Humicola insolens or Hymucola strain DSM1800 or a cellulase
212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the
hepatopancreas of a marine mollusk, Dolabella Auricularia Solander. Suitable cellulases are also
disclosed in GB-A-2,075,028; GB-A-2,095,275 and DE-OS-2,247,832. CAREZYME® (Novo)
is especially useful. See also WO 9117243 to Novo.

Suitable lipase enzymes for detergent usage include those produced by microorganisms of
the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in GB
This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," or "Amano-P." Other suitable commercial lipases include Amano-CES, lipases ex *Chromobacter viscosum*, e.g. *Chromobacter viscosum var. lipolyticum* NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; *Chromobacter viscosum* lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex *Pseudomonas gladioli*.

LIPOLASE® enzyme derived from *Humicola lanuginosa* and commercially available from Novo, see also EP 341,947, is a preferred lipase for use herein. Lipase and amylase variants stabilized against peroxidase enzymes are described in WO 9414951 A to Novo. See also WO 9205249 and RD 94359044.

Cutinase enzymes suitable for use herein are described in WO 8809367 A to Genencor.

Peroxidase enzymes may be used in combination with oxygen sources, e.g., percarbonate, perborate, hydrogen peroxide, etc., for "solution bleaching" or prevention of transfer of dyes or pigments removed from substrates during the wash to other substrates present in the wash solution. Known peroxidases include horseradish peroxidase, ligninase, and haloperoxidases such as chloro- or bromo-peroxidase. Peroxidase-containing detergent compositions are disclosed in WO 89099813 A, October 19, 1989 to Novo and WO 8909813 A to Novo.

A range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139 McCarty et al., issued January 5, 1971. Enzymes are further disclosed in U.S. 4,101,457 Place et al., issued July 18, 1978, and U.S. 4,507,219 Hughes, issued March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4,261,868 Hora et al., issued April 14, 1981. Enzymes for use herein can be stabilized by various techniques. Enzyme stabilization techniques are disclosed and exemplified in U.S. 3,600,319 Gedge et al., issued August 17, 1971; EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. 3,519,570. A useful *Bacillus*, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.

Enzyme Stabilizing System

Enzyme-containing, including but not limited to, liquid compositions, herein may comprise from about 0.001%, preferably from about 0.005%, more preferably from about 0.01% to about 10%, preferably to about 8%, more preferably to about 6% by weight, of an enzyme stabilizing system. The enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such a system may be inherently provided by other formulation actives, or be added separately, e.g., by the formulator or by a manufacturer of
detergent-ready enzymes. Such stabilizing systems can, for example, comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acids, boronic acids, and mixtures thereof, and are designed to address different stabilization problems depending on the type and physical form of the detergent composition.

One stabilizing approach is the use of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes. Calcium ions are generally more effective than magnesium ions and are preferred herein if only one type of cation is being used. Typical detergent compositions, especially liquids, will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 8 to about 12 millimoles of calcium ion per liter of finished detergent composition, though variation is possible depending on factors including the multiplicity, type and levels of enzymes incorporated. Preferably water-soluble calcium or magnesium salts are employed, including for example calcium chloride, calcium hydroxide, calcium formate, calcium malate, calcium maleate, calcium hydroxide and calcium acetate; more generally, calcium sulfate or magnesium salts corresponding to the exemplified calcium salts may be used. Further increased levels of Calcium and/or Magnesium may of course be useful, for example for promoting the grease-cutting action of certain types of surfactant.

Another stabilizing approach is by use of borate species disclosed in U.S. 4,537,706 Severson, issued August 27, 1985. Borate stabilizers, when used, may be at levels of up to 10% or more of the composition though more typically, levels of up to about 3% by weight of boric acid or other borate compounds such as borax or orthoborate are suitable for liquid detergent use. Substituted boric acids such as phenylboronic acid, butaneboronic acid, p-bromophenylboronic acid or the like can be used in place of boric acid and reduced levels of total boron in detergent compositions may be possible though the use of such substituted boron derivatives.

Stabilizing systems of certain cleaning compositions may further comprise from 0, preferably from about 0.01% to about 10%, preferably to about 6% by weight, of chlorine bleach scavengers, added to prevent chlorine bleach species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions. While chlorine levels in water may be small, typically in the range from about 0.5 ppm to about 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme, for example during fabric-washing, can be relatively large; accordingly, enzyme stability to chlorine in-use is sometimes problematic. Since perborate or percarbonate, which have the ability to react with chlorine bleach, may present in certain of the instant compositions in amounts accounted for separately from the stabilizing system, the use of additional stabilizers against chlorine, may,
most generally, not be essential, though improved results may be obtainable from their use.
Suitable chlorine scavenger anions are widely known and readily available, and, if used, can be
salts containing ammonium cations with sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetraacetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used. Likewise, special enzyme inhibition systems can be
corporated such that different enzymes have maximum compatibility. Other conventional
scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate, sodium perborate monohydrate and sodium percarbonate, as well as
phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, malate, tartrate,
salicylate, etc., and mixtures thereof can be used if desired. In general, since the chlorine
scavenger function can be performed by ingredients separately listed under better recognized
functions, (e.g., hydrogen peroxide sources), there is no absolute requirement to add a separate
chlorine scavenger unless a compound performing that function to the desired extent is absent
from an enzyme-containing embodiment of the invention; even then, the scavenger is added only
for optimum results. Moreover, the formulator will exercise a chemist's normal skill in avoiding
the use of any enzyme scavenger or stabilizer which is majorly incompatible, as formulated, with
other reactive ingredients, if used. In relation to the use of ammonium salts, such salts can be
simply admixed with the detergent composition but are prone to adsorb water and/or liberate
ammonia during storage. Accordingly, such materials, if present, are desirably protected in a
particle such as that described in US 4,652,392 Baginski et al., issued March 24, 1987.

Builders - The laundry detergent compositions of the present invention preferably
comprise one or more detergent builders or builder systems. When present, the compositions will
typically comprise at least about 1% builder, preferably from about 5%, more preferably from
about 10% to about 80%, preferably to about 50%, more preferably to about 30% by weight, of
detergent builder.

The level of builder can vary widely depending upon the end use of the composition and
its desired physical form. When present, the compositions will typically comprise at least about
1% builder. Formulations typically comprise from about 5% to about 50%, more typically about
5% to about 30%, by weight, of detergent builder. Granular formulations typically comprise
from about 10% to about 80%, more typically from about 15% to about 50% by weight, of the
detergent builder. Lower or higher levels of builder, however, are not meant to be excluded.

Inorganic or P-containing detergent builders include, but are not limited to, the alkali
metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the
tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates. However, non-phosphate builders are required in some locales. Importantly, the compositions herein function surprisingly well even in the presence of the so-called "weak" builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt" situation that may occur with zeolite or layered silicate builders.

Examples of silicate builders are the alkali metal silicates, particularly those having a SiO₂:Na₂O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. 4,664,839 Rieck, issued May 12, 1987. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na₂SiO₅ morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3,417,649 and DE-A-3,742,043. SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSiₓO₂x₊₁·yH₂O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms. As noted above, the delta-Na₂SiO₅ (NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.

Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.

Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:

\[[M₂(zAl₂O₃)₂y₁] \times H₂O \]

wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.

Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. 3,985,669, Krummel et al, issued October 12, 1976. Preferred
synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:

\[\text{Na}_{12}[(\text{AlO}_2)_{12}(\text{SiO}_2)_{12}] \cdot x\text{H}_2\text{O} \]

wherein \(x \) is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Dehydrated zeolites (\(x = 0 - 10 \)) may also be used herein. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter.

Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, "poly-
carboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.

Included among the polycarboxylate builders are a variety of categories of useful mate-
rials. One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in U.S. 3,128,287 Berg, issued April 7, 1964, and

U.S. 3,635,830 Lamberti et al., issued January 18, 1972. See also "TMS/TDS" builders of U.S.

4,663,071 Bush et al., issued May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. 3,923,679 Rapko,

issued December 2, 1975; U.S. 4,158,635 Crutchfield et al., issued June 19, 1979; U.S. 4,120,874

Crutchfield et al., issued October 17, 1978; and U.S. 4,102,903 Crutchfield et al., issued July 25,

1978.

Other useful detergency builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-

trisulphonic acid, and carboxymethylxysuccinic acid, the various alkali metal, ammonium and

substituted ammonium salts of polycarboxylic acids such as ethylenediamine tetraacetic acid and

nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethylxysuccinic acid, and soluble salts thereof.

Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt), are

polycarboxylate builders of particular importance for heavy duty liquid detergent formulations
due to their availability from renewable resources and their biodegradability. Citrates can also be

used in granular compositions, especially in combination with zeolite and/or layered silicate

builders. Oxydisuccinates are also especially useful in such compositions and combinations.
Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. 4,566,984, Bush, issued January 28, 1986. Useful succinic acid builders include the C₅-C₂₀ alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is do-decenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurysuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.

Other suitable polycarboxylates are disclosed in U.S. 4,144,226, Crutchfield et al., issued March 13, 1979 and in U.S. 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322.

Fatty acids, e.g., C₁₂-C₁₈ monocarboxylic acids, can also be incorporated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity. Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.

In situations where phosphorus-based builders can be used, and especially in the formulation of bars used for hand-laundering operations, the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used. Phosphonate builders such as ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137) can also be used.

Dispersants

A description of other suitable polyalkyleneimine dispersants which may be optionally combined with the bleach stable dispersants of the present invention can be found in U.S. 4,597,898 Vander Meer, issued July 1, 1986; European Patent Application 111,965 Oh and Gosselink, published June 27, 1984; European Patent Application 111,984 Gosselink, published June 27, 1984; European Patent Application 112,592 Gosselink, published July 4, 1984; U.S. 4,548,744 Connor, issued October 22, 1985; and U.S. 5,565,145 Watson et al., issued October 15, 1996; all of which are included herein by reference. However, any suitable clay/soil dispersant or anti-redeposition agent can be used in the laundry compositions of the present invention.

In addition, polymeric dispersing agents which include polymeric polycarboxylates and polyethylene glycols, are suitable for use in the present invention. Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form. Unsaturated monomeric acids that can be polymerized to form
suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride),
fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic
acid. The presence in the polymeric polycarboxylates herein or monomeric segments, containing
no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that
such segments do not constitute more than about 40% by weight.

Particularly suitable polymeric polycarboxylates can be derived from acrylic acid. Such
acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized
acrylic acid. The average molecular weight of such polymers in the acid form preferably ranges
from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from
about 4,000 to 5,000. Water-soluble salts of such acrylic acid polymers can include, for example,
the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are
known materials. Use of polyacrylates of this type in detergent compositions has been disclosed,
for example, in U.S. 3,308,067 Diehl, issued March 7, 1967.

Acrylic/maleic-based copolymers may also be used as a preferred component of the
dispersing/anti-redemption agent. Such materials include the water-soluble salts of copolymers
of acrylic acid and maleic acid. The average molecular weight of such copolymers in the acid
form preferably ranges from about 2,000, preferably from about 5,000, more preferably from
about 7,000 to 100,000, more preferably to 75,000, most preferably to 65,000. The ratio of
acrylate to maleate segments in such copolymers will generally range from about 30:1 to about
1:1, more preferably from about 10:1 to 2:1. Water-soluble salts of such acrylic acid/maleic acid
copolymers can include, for example, the alkali metal, ammonium and substituted ammonium
salts. Soluble acrylate/maleate copolymers of this type are known materials which are described
193,360, published September 3, 1986, which also describes such polymers comprising
hydroxypropylacrylate. Still other useful dispersing agents include the maleic/acylic/vinyl
 alcohol terpolymers. Such materials are also disclosed in EP 193,360, including, for example, the
45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.

Another polymeric material which can be included is polyethylene glycol (PEG). PEG
can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition
agent. Typical molecular weight ranges for these purposes range from about 500 to about
100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about
10,000.
Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders. Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.

Soil Release Agents

The compositions according to the present invention may optionally comprise one or more soil release agents. If utilized, soil release agents will generally comprise from about 0.01%, preferably from about 0.1%, more preferably from about 0.2% to about 10%, preferably to about 5%, more preferably to about 3% by weight, of the composition. Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of the laundry cycle and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.

METHOD OF USE

The present invention further relates to a method for removing hydrophobic soils, inter alia, body oils, perspiration and other human body soils form fabric, preferably clothing, said
method comprising the step of contacting fabric in need of cleaning with an aqueous solution containing at least 0.01% by weight, of a laundry detergent composition comprising:

A) from about 0.01% by weight of a hydrophobically modified polyamine having the formula:

\[
\left(\frac{R^1}{Q}\right)_n + R^{-} \rightarrow \left(\frac{\left[\frac{R^1}{Q}\right]_n}{Q}\right) + \left(\frac{\left[\frac{R}{Q}\right]_n}{Q}\right) + X^{-}
\]

wherein R is C₅₋C₂₀ linear or branched alkylene, and mixtures thereof; R¹ is an alkyleneoxy unit having the formula:

\[-(R^2O)_x\cdot R^3\]

wherein R² is C₅₋C₄ linear or branched alkylene, and mixtures thereof; R³ is an anionic unit, and mixtures thereof; x is from about 15 to about 30; Q is a hydrophobic quaternizing unit selected from the group consisting of C₈₋C₃₀ linear or branched alkyl, C₆₋C₃₀ cycloalkyl, C₁₋C₃₀ substituted or unsubstituted alkyleneary, and mixtures thereof; X is an anion present in sufficient amount to provide electronic neutrality; n is from 0 to 4;

B) from about 0.01% by weight, of a surfactant system comprising one or more surfactants selected from:

i) from 0% to 100% by weight, of one or more anionic surfactants;

ii) from 0% to 100% by weight, of one or more nonionic surfactants;

iii) optionally from 0.1% to about 80% by weight, of one or more cationic surfactants;

iv) optionally from 0.1% to about 80% by weight, of one or more zwitterionic surfactants;

v) optionally from 0.1% to about 80% by weight, of one or more amphoteric surfactants; or

vi) mixtures thereof;

C) the balance carriers and adjunct ingredients

Preferably the aqueous solution comprises at least about 0.01% (100 ppm), preferably at least about 1% (1000 ppm) by weight, of said laundry detergent composition.

The compositions of the present invention can be suitably prepared by any process chosen by the formulator, non-limiting examples of which are described in U.S. 5,691,297 Nassano et al., issued November 11, 1997; U.S. 5,574,005 Welch et al., issued November 12, 1996; U.S.
EXAMPLE 1

Synthesis of ethoxylated (E20) bis(hexamethylene)triamine

tribenzyl quaternary ammonium bromide

Ethoxylation of Bis(hexamethylene)triamine to Average E20 per NH - The ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid. A ~20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.

A 362 g portion of Bis(hexamethylene)triamine (BHMT) (m.w. 215, (Aldrich), 1.68 moles, 5.04 moles nitrogen, 8.4 moles ethoxylatable (NH) sites, is added to the autoclave. The autoclave is then sealed and purged of air (by applying vacuum to minus 28" Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure). The autoclave contents are heated to 80 °C while applying vacuum. After about one hour, the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105 °C. Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate. The ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm.

The temperature is maintained between 100 and 110 °C while the total pressure is allowed to gradually increase during the course of the reaction. After a total of 370 grams of ethylene oxide (8.4 moles) has been charged to the autoclave, the temperature is increased to 110 °C and the autoclave is allowed to stir for an additional 2 hours. At this point, vacuum is applied to remove any residual unreacted ethylene oxide.

Next, vacuum is continuously applied while the autoclave is cooled to about 50 °C while introducing 181.5 g of a 25% sodium methoxide in methanol solution (0.84 moles, to achieve a 10% catalyst loading based upon ethoxylatable sites functions). The methoxide solution is removed from the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 100 °C. A device is used to monitor the power consumed by the agitator. The
agitator power is monitored along with the temperature and pressure. Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1.5 hours indicating that most of the methanol has been removed. The mixture is further heated and agitated under vacuum for an additional 30 minutes.

Vacuum is removed and the autoclave is cooled to 105 °C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure. The autoclave is charged to 200 psia with nitrogen. Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100 and 110 °C and limiting any temperature increases due to reaction exotherm. After the addition of 4180 g of ethylene oxide (95 mol, resulting in a total of 20 moles of ethylene oxide per mole of ethoxylatable sites on BHMT), the temperature is increased to 110 °C and the mixture stirred for an additional 2 hours.

The reaction mixture is then collected into a 22 L three neck round bottomed flask purged with nitrogen. The strong alkali catalyst is neutralized by slow addition of 80.7 g methanesulfonic acid (0.84 moles) with heating (100 °C) and mechanical stirring. The reaction mixture is then removed of residual ethylene oxide and deodorized by sparging an inert gas (argon or nitrogen) into the mixture through a gas dispersion frit while agitating and heating the mixture to 120 °C for 1 hour. The final reaction product is cooled slightly and stored in a glass container purged with nitrogen.

Quaternization of BHMT E20 to 90 mol% (3 mol N per mol polymer) - Into a weighed, 1000ml, 3 neck round bottom flask fitted with argon inlet, condenser, addition funnel, thermometer, mechanical stirring and argon outlet (connected to a bubbler) is added BHMT EO20 (522.8g, 0.333 mol N, 98% active, m.w.-4615) under argon. The material is heated to 80°C with stirring until melted. Next, benzyl bromide (61.6g, 0.36mol, Aldrich, m.w.-171.04) is slowly added to the melted BHMT EO20 using an addition funnel over a period of 10 minutes. The reaction complete after stirring at 80°C for 6 hours. The reaction mixture is dissolved in 500g water and adjusted to pH>7 using 1N NaOH followed by transfer to a plastic container for storage.

Sulfation of BHMT E20 to 90% - Under argon, the reaction mixture from the quaternization step is cooled to 5°C using an ice bath (BHMT E20, 90+mol% quat, 0.59 mol OH). Chlorosulfonic acid (72g, 0.61 mol, 99%, mw-116.52) is slowly added using an addition
funnel. The temperature of the reaction mixture is not allowed to rise above 10°C. The ice bath is removed and the reaction is allowed to rise to room temperature. After 6 hrs. the reaction is complete. The reaction is again cooled to 5°C and sodium methoxide (264g, 1.22 mol, Aldrich, 25% in methanol, m.w.-54.02) is slowly added to the rapidly stirred mixture. The temperature of the reaction mixture is not allowed to rise above 10°C. The reaction mixture is transferred to a single neck round bottom flask. Purified water (1300ml) is added to the reaction mixture and the methylene chloride, methanol and some water is stripped off on a rotary evaporator at 50°C. The clear, light yellow solution is transferred to a bottle for storage. The final product pH is checked and adjusted to ~9 using 1N NaOH or 1N HCl as needed.

The following are non-limiting examples of the compositions according to the present invention.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{14}-C_{15} alkyl E1.0 sulfate</td>
<td>22.5</td>
<td>22.5</td>
<td>22.5</td>
<td>22.5</td>
</tr>
<tr>
<td>Linear alkyl benzene sulfonate</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>C_{10} amidopropyl DMA</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>C_{12}-C_{14} alkyl E7.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>C_{12}-C_{18} alkyl fatty acid</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Rapseed fatty acid</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>protease</td>
<td>0.8</td>
<td>1.57</td>
<td>1.57</td>
<td>1.57</td>
</tr>
<tr>
<td>amylase</td>
<td>0.055</td>
<td>0.088</td>
<td>0.088</td>
<td>0.088</td>
</tr>
<tr>
<td>cellulase</td>
<td>0.188</td>
<td>0.055</td>
<td>0.055</td>
<td>0.055</td>
</tr>
<tr>
<td>lipase</td>
<td>0.06</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>mannane</td>
<td>0.007</td>
<td>0.0033</td>
<td>0.0033</td>
<td>0.0033</td>
</tr>
<tr>
<td>Sodium metaborate</td>
<td>2.0</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Ca formate/CaCl_{2}</td>
<td>0.02</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Modified polyamine</td>
<td>0.035</td>
<td>0.034</td>
<td>0.034</td>
<td>0.034</td>
</tr>
<tr>
<td>Bleach catalyst</td>
<td>0.65</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>Hydrophobic dispersant</td>
<td>0.147</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

38
Soil release agent 3
0.10
0.10
0.10
0.10
Suds suppressor
0.60
0.60
0.60
0.60
Water and minors
balance
balance
balance
balance

1. Hydrophobically modified polyamine according to Example 1.
2. 1,5-bis(hydroxymethylene)-3,7-dimethyl-2,4-bis(2-pyridyl)-3,7-diazabicyclo[3.3.1]-nonan-9-
 ol manganese(II) dichloride 1/2H2O.
5. Soil release agent according to U.S. Patent 4,968,451, Scheibel et al., issued November 6,
 1990.

The following examples include compositions which comprise an adjunct bleaching
agent.

TABLE II

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium C11-C13 alkylbenzene-sulfonate</td>
<td>13.3</td>
<td>13.7</td>
<td>10.4</td>
<td>11.1</td>
</tr>
<tr>
<td>Sodium C14-C15 alcohol sulfate</td>
<td>3.9</td>
<td>4.0</td>
<td>4.5</td>
<td>11.2</td>
</tr>
<tr>
<td>Sodium C14-C15 alcohol ethoxylate (0.5) sulfate</td>
<td>2.0</td>
<td>2.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sodium C14-C15 alcohol ethoxylate (6.5)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Tallow fatty acid</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.1</td>
</tr>
<tr>
<td>Sodium tripolyphosphate</td>
<td>--</td>
<td>41.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Zeolite A, hydrate (0.1-10 micron size)</td>
<td>26.3</td>
<td>--</td>
<td>21.3</td>
<td>28.0</td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>23.9</td>
<td>12.4</td>
<td>25.2</td>
<td>16.1</td>
</tr>
<tr>
<td>Sodium Polyacrylate (45%)</td>
<td>3.4</td>
<td>--</td>
<td>2.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Sodium silicate (1:6 ratio NaO/SiO2)(46%)</td>
<td>2.4</td>
<td>6.4</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Sodium sulfate</td>
<td>10.5</td>
<td>10.9</td>
<td>8.2</td>
<td>15.0</td>
</tr>
<tr>
<td>Sodium perborate</td>
<td>1.0</td>
<td>1.0</td>
<td>5.0</td>
<td>--</td>
</tr>
<tr>
<td>Poly(ethyleneglycol), MW ~4000 (50%)</td>
<td>1.7</td>
<td>0.4</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Citric acid</td>
<td>--</td>
<td>--</td>
<td>3.0</td>
<td>--</td>
</tr>
<tr>
<td>Bleach catalyst 1</td>
<td>0.035</td>
<td>0.030</td>
<td>0.034</td>
<td>0.028</td>
</tr>
<tr>
<td>Bleach activator 2</td>
<td>--</td>
<td>--</td>
<td>5.9</td>
<td>--</td>
</tr>
<tr>
<td>Ingredients</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Sodium C₁₁⁻C₁₃ alkylbenzene-sulfonate</td>
<td>13.3</td>
<td>13.7</td>
<td>10.4</td>
<td>11.1</td>
</tr>
<tr>
<td>Sodium C₁₄⁻C₁₅ alcohol sulfate</td>
<td>3.9</td>
<td>4.0</td>
<td>4.5</td>
<td>11.2</td>
</tr>
<tr>
<td>Sodium C₁₄⁻C₁₅ alcohol ethoxylate (0.5) sulfate</td>
<td>2.0</td>
<td>2.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sodium C₁₄⁻C₁₅ alcohol ethoxylate (6.5)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Tallow fatty acid</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.1</td>
</tr>
<tr>
<td>Sodium tripolyphosphate</td>
<td>--</td>
<td>41.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Zeolite A, hydrate (0.1-10 micron size)</td>
<td>26.3</td>
<td>--</td>
<td>21.3</td>
<td>28.0</td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>23.9</td>
<td>12.4</td>
<td>25.2</td>
<td>16.1</td>
</tr>
<tr>
<td>Sodium Polyacrylate (45%)</td>
<td>3.4</td>
<td>--</td>
<td>2.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Sodium silicate (1:6 ratio NaO/SiO₂)(46%)</td>
<td>2.4</td>
<td>6.4</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Sodium sulfate</td>
<td>10.5</td>
<td>10.9</td>
<td>8.2</td>
<td>15.0</td>
</tr>
<tr>
<td>Poly(ethyleneglycol), MW ~4000 (50%)</td>
<td>1.7</td>
<td>0.4</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Citric acid</td>
<td>--</td>
<td>--</td>
<td>3.0</td>
<td>--</td>
</tr>
<tr>
<td>Bleach catalyst</td>
<td>0.10</td>
<td>0.07</td>
<td>0.035</td>
<td>0.028</td>
</tr>
<tr>
<td>Hydrophobically modified polyamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.65</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Hydrophobic dispersant 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil release agent 6</td>
<td>0.147</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Suds suppresser</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Water and minors 7</td>
<td>balance</td>
<td>balance</td>
<td>balance</td>
<td>balance</td>
</tr>
</tbody>
</table>

1. 1,5-bis(hydroxymethylene)-3,7-dimethyl-2,4-bis(2-pyridyl)-3,7-diazabicyclo[3.3.1]-nonan-9-ol manganese(II) dichloride 1/2H₂O.

2. Hydrophobically modified polyamine according to Example 1.

3. Potassium sulfite.

6. Balance to 100% can, for example, include minors like optical brightener, perfume, soil dispersant, chelating agents, dye transfer inhibiting agents, additional water, and fillers, including CaCO₃, talc, silicates, etc.

The compositions of the present invention can be suitably prepared by any process chosen by the formulator, non-limiting examples of which are described in U.S. 5,691,297 Nassano et al., issued November 11, 1997; U.S. 5,574,005 Welch et al., issued November 12, 1996; U.S. 5,569,645 Dininiwell et al., issued October 29, 1996; U.S. 5,565,422 Del Greco et al., issued October 15, 1996; U.S. 5,516,448 Capeci et al., issued May 14, 1996; U.S. 5,489,392 Capeci et al., issued February 6, 1996; U.S. 5,486,303 Capeci et al., issued January 23, 1996 all of which are incorporated herein by reference.
What is claimed is:

1. A laundry detergent composition comprising:
 A) from 0.01% to 50% by weight, of a hydrophobically modified polyamine having the formula:
 \[
 \left[\frac{\text{R}^1}{\text{Q}} \right]_n \overset{+}{\text{R}} \left[\frac{\text{N}^+\text{R}}{\text{Q}} \right]_n \overset{-}{\text{N}} \left(\frac{\text{R}^1}{\text{Q}} \right)_2 \times^* \]
 wherein R is C₆-C₂₀ linear or branched alkylene, and mixtures thereof; R¹ is an alkyleneoxy unit having the formula:
 \[-(\text{R}^2\text{O})_x-\text{R}^3\]
 wherein R² is C₂-C₄ linear or branched alkylene, and mixtures thereof; R³ is an anionic unit, and mixtures thereof; x is from 15 to 30; Q is a hydrophobic quaternizing unit selected from the group consisting of C₈-C₃₀ linear or branched alkyl, C₆-C₃₀ cycloalkyl, C₇-C₃₀ substituted or unsubstituted alkylenearyl, and mixtures thereof; X is an anion present in sufficient amount to provide electronic neutrality; n is from 0 to 4;
 B) from 0.01% to 60% by weight, of a surfactant system comprising one or more surfactants selected from:
 i) from 0% to 100% by weight, of one or more anionic surfactants;
 ii) from 0% to 100% by weight, of one or more nonionic surfactants;
 iii) optionally from 0.1% to 80% by weight, of one or more cationic surfactants;
 iv) optionally from 0.1% to 80% by weight, of one or more zwitterionic surfactants;
 v) optionally from 0.1% to 80% by weight, of one or more ampholytic surfactants; or
 vi) mixtures thereof;
 C) the balance carriers and adjunct ingredients.

2. A composition according to Claim 1 wherein R is hexylene; R² is ethylene, 1,2-propylene, and mixtures thereof.
3. A composition according to either Claim 1 or 2 wherein R¹ is selected from the group consisting of:
 a) -\((\text{CH}_2)\text{CO}_2\text{M}\);
 b) -\((\text{O})(\text{CH}_2)\text{CO}_2\text{M}\);
 c) -\((\text{CH}_2)\text{PO}_3\text{M}\);
 d) -\((\text{CH}_2)\text{OPO}_3\text{M}\);
 e) -\((\text{CH}_2)\text{SO}_4\text{M}\);
 f) -\((\text{CH}_2)(\text{CHSO}_2\text{M})(\text{CH}_2)\text{SO}_3\text{M}\);
 g) -\((\text{CH}_2)(\text{CHSO}_2\text{M})(\text{CH}_2)\text{SO}_3\text{M}\);
 h) -\((\text{O})\text{CH}_2\text{CH}(\text{SO}_2\text{M})\text{CO}_2\text{M}\);
 i) -\((\text{O})\text{CH}_2\text{CH}(\text{CO}_2\text{M})\text{NHCH}(\text{CO}_2\text{M})\text{CH}_2\text{CO}_2\text{M}\);
 j) and mixtures thereof;

 wherein M is hydrogen or a cation which provides charge neutrality.

4. A composition according to any of Claims 1-3 wherein the index x is from 15 to 25.

5. A composition according to any or Claims 1-4 wherein Q is \(\text{C}_{12}-\text{C}_{14}\) linear alkyl, \(\text{C}_{7}-\text{C}_{12}\) substituted or unsubstituted alkylenearyl, and mixtures thereof.

6. A composition according to any of Claims 1-5 wherein said hydrophobically modified polyamine has the formula:

 \[
 \begin{align*}
 \text{MO}_3\text{S(OCH}_2\text{CH}_2)_\text{SO}_3\text{M} & \quad \text{N}^+ \quad \text{X}^+ \quad \text{N}^+ \quad \text{X}^+

 \text{(CH}_2\text{CH}_2\text{O})_\text{SO}_3\text{M} & \quad \text{(CH}_2\text{CH}_2\text{O})_\text{SO}_3\text{M} & \quad \text{(CH}_2\text{CH}_2\text{O})_\text{SO}_3\text{M}
 \end{align*}
 \]

 wherein M is a water soluble cation; X is a water soluble anion selected from the group consisting of chlorine, bromine, iodine, methylsulfate, and mixtures thereof.

7. A composition according to any of Claims 1-6 wherein said surfactant system comprises from 0.01% by weight to 100%, of one or more surfactants selected from:
 i) from 1% to 80% by weight, of an anionic surfactant selected from:
 a) linear alkyl benzene sulfonates;
b) mid-chain branched aryl sulfonate surfactants having the formula:

\[
\begin{array}{c}
\text{A} \\
\text{SO}_3\text{M}'
\end{array}
\]

wherein A is a mid-chain branched alkyl unit having the formula:

\[
\begin{array}{c}
\text{R} \\
\text{CH}_3(\text{CH}_2)_x\text{CH}(\text{CH}_2)_y\text{CH}(\text{CH}_2)_z
\end{array}
\]

wherein R and R\(^1\) are each independently hydrogen, C\(_1\)-C\(_3\) alkyl, and mixtures thereof, provided the total number of carbon atoms in said alkyl unit is from 6 to 18 and at least one of R and R\(^1\) is not hydrogen; x is an integer from 0 to 13; y is an integer from 0 to 13; z is 0 or 1; R\(^2\) is hydrogen, C\(_1\)-C\(_3\) alkyl, and mixtures thereof; M\(^*\) is a water soluble cation with sufficient charge to provide neutrality;

c) branched alkyl sulfate surfactants having the formula:

\[
\text{CH}_3\text{CH}_2(\text{CH}_2)_m\text{CH}_2\text{OSO}_3\text{M}^*;
\]

or the formula:

\[
\text{CH}_3\text{CH}_2(\text{CH}_2)_m\text{CH}_2(\text{OCH}_2\text{CH}_2)_y\text{OSO}_3\text{M}^*.
\]

d) mid-chain branched alkyl sulfate surfactants having the formula:

\[
\begin{array}{c}
\text{R} \\
\text{CH}_3\text{CH}_2(\text{CH}_2)_w\text{CH}(\text{CH}_2)_x\text{CH}(\text{CH}_2)_y\text{CH}(\text{CH}_2)_z\text{OSO}_3\text{M}^*.
\end{array}
\]

or the formula:

\[
\begin{array}{c}
\text{R} \\
\text{CH}_3\text{CH}_2(\text{CH}_2)_w\text{CH}(\text{CH}_2)_x\text{CH}(\text{CH}_2)_y\text{CH}(\text{CH}_2)_z(\text{OR}_3)_m\text{OSO}_3\text{M}^*.
\end{array}
\]

wherein R, R\(^1\), and R\(^2\) are each independently hydrogen, C\(_1\)-C\(_3\) alkyl, and mixtures thereof, provided the total number of carbon atoms in said surfactant is from 14 to 20 and at least one of R, R\(^1\), and R\(^2\) is not hydrogen; the index w is an integer from 0 to 13; x is an integer from 0 to 13; y is an integer from 0 to 13; z is an integer of at least 1; provided w + x + y + z is from 8 to 14 and the total number of carbon atoms in a
surfactant is from 14 to 20; \(R^3 \) is ethylene, 1,2-propylene, 1,3-propylene, 1,2-butylene, 1,4-butylene, and mixtures thereof; the average value of the index \(m \) is at least 0.01; \(M \) is hydrogen, a water soluble cation of sufficient charge to provide electronic neutrality, and mixtures thereof;

ii) from 0% to 100% by weight, of one or more nonionic surfactants;
iii) optionally from 0.1% to 80% by weight, of one or more cationic surfactants;
iv) optionally from 0.1% to 80% by weight, of one or more zwitterionic surfactants;
v) optionally from 0.1% to 80% by weight, of one or more ampholytic surfactants;
or
vi) mixtures thereof.

8. A composition according to any of Claims 1-7 further comprising from 1% by weight, of a peroxxygen bleaching system comprising:
i) from 40% by weight, of the bleaching system, a source of hydrogen peroxide;
ii) optionally from 0.1% by weight, of the bleaching system, a beach activator;
iii) optionally from 1 ppb of the composition, of a transition-metal bleach catalyst; and
iv) optionally from 0.1% by weight, of a pre-formed peroxxygen bleaching agent.

9. A laundry detergent composition comprising:
A) from 0.01% by weight of a hydrophobically modified polyamine having the formula:

\[
\text{MO}_3\text{S(OCH}_2\text{CH}_3\text{)}_{2n}\text{SO}_3\text{M} \quad (\text{CH}_2\text{CH}_3\text{)}_2\text{SO}_3\text{M} \quad (\text{CH}_2\text{CH}_3\text{)}_2\text{SO}_3\text{M}
\]

wherein \(M \) is a water soluble cation; \(X \) is a water soluble anion selected from the group consisting of chlorine, bromine, iodine, methylsulfate, and mixtures thereof.

B) from 0.01% to 60% by weight, of a surfactant system comprising one or more surfactants selected from:
i) from 0% to 100% by weight, of one or more anionic surfactants;
ii) from 0% to 100% by weight, of one or more nonionic surfactants;
iii) optionally from 0.1% to 80% by weight, of one or more cationic surfactants;

iv) optionally from 0.1% to 80% by weight, of one or more zwitterionic surfactants;

v) optionally from 0.1% to 80% by weight, of one or more ampholytic surfactants; or

vi) mixtures thereof;

C) the balance carriers and adjunct ingredients.

10. A method for cleaning fabric comprising the step of contacting an article of fabric with an aqueous solution containing at least 0.1% by weight of a composition comprising:

A) from 0.01% to 50% by weight of a hydrophobically modified polyamine having the formula:

\[
\begin{bmatrix}
(R^1)\underline{N}^{-}R^{-}[N\underline{+}R]_n^{-}-[N\underline{+}R]_n^{-}N(R^1)_{2}^{+} \\
Q & Q & Q
\end{bmatrix}
\]

wherein \(R \) is \(C_1-C_{26} \) linear or branched alkylene, and mixtures thereof; \(R^1 \) is an alkyleneoxy unit having the formula:

\[-(R^2O)_x- R^3\]

wherein \(R^2 \) is \(C_2-C_4 \) linear or branched alkylene, and mixtures thereof; \(R^3 \) is an anionic unit selected from the group consisting of:

a) \(-(CH_2)_,CO_2M;\)
b) \(C(O)(CH_2)_,CO_2M;\)
c) \(-(CH_2)PO_3M;\)
d) \(-(CH_2)_,OPO_3M;\)
e) \(-(CH_2)SO_3M;\)
f) \(CH_2(CHSO_3M)(CH_2),SO_3M;\)
g) \(CH_2(CHSO_3M)(CH_2),SO_3M;\)
h) \(C(O)CH_2CH(SO_3M)CO_2M;\)
i) \(C(O)CH_2CH(CO_2M)NHCH(CO_2M)CH_2CO_2M;\)
j) and mixtures thereof;

wherein the index \(f \) is from 0 to 10; \(M \) is hydrogen or a cation which provides charge neutrality.; \(x \) is from 15 to 30; \(Q \) is a hydrophobic quaternizing unit.
selected from the group consisting of C₆-C₃₀ linear or branched alkyl, C₆-C₃₀ cycloalkyl, C₆-C₃₀ substituted or unsubstituted alkylenearyl, and mixtures thereof; X is an anion present in sufficient amount to provide electronic neutrality; n is from 0 to 4;

B) from 0.01% to 60% by weight, of a surfactant system comprising one or more surfactants selected from:
 i) from 0% to 100% by weight, of one or more anionic surfactants;
 ii) from 0% to 100% by weight, of one or more nonionic surfactants;
 iii) optionally from 0.1% to 80% by weight, of one or more cationic surfactants;
 iv) optionally from 0.1% to 80% by weight, of one or more zwitterionic surfactants;
 v) optionally from 0.1% to 80% by weight, of one or more ampholytic surfactants; or
 vi) mixtures thereof;

C) the balance carriers and adjunct ingredients.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC | C11D3/37 |

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

| IPC | C11D |

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 111 976 A (PROCTER & GAMBLE) 27 June 1984 (1984-06-27) claim 18; examples</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 112 592 A (PROCTER & GAMBLE) 4 July 1984 (1984-07-04) page 17, line 30 - page 21, line 18; examples III-V</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>WO 99 42551 A (PROCTER & GAMBLE (US)) 26 August 1999 (1999-08-26) claims 1,2; examples A-C</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>WO 97 44417 A (PROCTER & GAMBLE (US)) 27 November 1997 (1997-11-27) claim 1; example 4</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 * A* document defining the general state of the art which is not considered to be of particular relevance
 * E* earlier document but published on or after the international filing date
 * L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * O* document referring to an oral disclosure, use, exhibition or other means
 * P* document published prior to the international filing date but later than the priority date claimed

* I* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* X* document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* Y* document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

* Q* document member of the same patent family

Date of the actual completion of the international search: 7 March 2001

Date of mailing of the international search report: 18/04/2001

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx: 31 651 epe nl
Fax: (+31-70) 340-3016

Authorized officer

Saunders, T

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 1210000 A</td>
<td>19-08-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3381441 D</td>
<td>17-05-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4661288 A</td>
<td>28-04-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1215064 A</td>
<td>09-12-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3380443 D</td>
<td>28-09-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4622378 A</td>
<td>11-11-1986</td>
</tr>
<tr>
<td>WO 9942551 A</td>
<td>26-08-1999</td>
<td>BR 9908117 A</td>
<td>24-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1056827 A</td>
<td>06-12-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2255011 A</td>
<td>27-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1225668 A</td>
<td>11-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9803717 A</td>
<td>14-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0906382 A</td>
<td>07-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710446 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710668 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710669 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710670 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710671 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710672 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710673 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710674 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710677 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710680 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2255008 A</td>
<td>20-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2255009 A</td>
<td>20-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2255012 A</td>
<td>20-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2255594 A</td>
<td>20-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1225679 A</td>
<td>11-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1225681 A</td>
<td>11-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1225669 A</td>
<td>11-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1225670 A</td>
<td>11-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1225680 A</td>
<td>11-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1225671 A</td>
<td>11-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1225676 A</td>
<td>11-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9803712 A</td>
<td>12-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9803713 A</td>
<td>14-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9803714 A</td>
<td>14-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9803715 A</td>
<td>12-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9803718 A</td>
<td>17-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0906400 A</td>
<td>07-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0912675 A</td>
<td>06-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0912667 A</td>
<td>06-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0912697 A</td>
<td>06-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0912668 A</td>
<td>06-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0912692 A</td>
<td>06-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0901518 A</td>
<td>17-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0912693 A</td>
<td>06-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0906385 A</td>
<td>07-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0906386 A</td>
<td>07-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2317390 A</td>
<td>25-03-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11511777 T</td>
<td>12-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11511786 T</td>
<td>12-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11511787 T</td>
<td>12-10-1999</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
<td>Publication date</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>WO 9744417 A</td>
<td></td>
<td>JP 11511788 T</td>
<td>12-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11512781 T</td>
<td>02-11-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11511789 T</td>
<td>12-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11511790 T</td>
<td>12-10-1999</td>
</tr>
</tbody>
</table>