Title: PROCEDURE AND MEANS FOR GENERATING TURBULENCE IN STOCK SUSPENSION FLOW

Abstract: The present invention relates to a procedure for generating and maintaining turbulence in a stock suspension flow being conducted through a turbulence generator (10) into the slice duct (12) of the headbox and therefrom through a slice opening (13) to the web former. The invention also relates to the turbulence generator, comprising a number of superimposed turbulence pipes (14a,) arranged in rows (R) extending across the entire width of the headbox. The stock suspension flow is with the aid of the turbulence pipes (14a,) distributed into several superimposed layers, and the impact of the turbulence generating and maintaining elements (16) is directed thereto, for which elements the stepped expansion spots (16) of the flow cross-section area of a turbulence pipe (14) are used, and/or the trailing elements starting from between the pipe rows (R) and extending to the slice duct (12) of the headbox. In different layers of the flow, turbulence is generated in different phases of the flow by arranging said expansion spots (16) and/or the trailing elements in superimposed layers to be located at different distances from the slice opening (13) of the headbox, whereby a different turbulence prevails at the slice opening (13) in different layers of the stock suspension flow.
Procedure and means for generating turbulence in stock suspension flow

The present invention relates to a procedure for generating and maintaining turbulence in stock suspension flow conducted through a turbulence generator into the slice duct of the headbox and therefrom through the slice opening to the web former, in which procedure the stock suspension flow is with the aid of turbulence pipes divided into a number of superimposed layers, whereafter the effect of the elements creating and maintaining turbulence is directed thereupon.

The invention also relates to a turbulence generator of the headbox of a paper machine, comprising a number of overlapping turbulence pipes being arranged in rows and extending across the entire width of the headbox, through which pipes the stock suspension flow to be conducted from the headbox to the web former is arranged to flow and which turbulence pipes are provided with stepwise expansion of the flow cross-section area between the inlet and outlet of the pipe, and to which turbulence generator a plurality of headbox dividers or lamellae can moreover be connected, starting from between the pipe rows and extending to the slice duct of the headbox.

It is of vital importance, considering the quality of the paper / board being manufactured, to understand what kind of turbulence spectrum of stock suspension flow prevails in the slice duct of the headbox and in the subsequent web former. The turbulence generated with the aid of the turbulence generator in the stock suspension flow will decrease quite rapidly unless turbulence energy is continuously added in the flow. The formation of paper or board is best enhanced by small-scale vortices which efficiently disintegrate fibre bundles. Large-scale vortices may even be detrimental considering the formation of paper. Owing to the properties of the turbulence, the small-scale vortices are first to reduce in the
flow, whereby, for instance, the surface layer of the web on the Fourdrinier wire and the middle layer of the web on a gap former tend to be more flocculated than the other layers due to decreasing turbulence. A generally employed manner to increase turbulence energy in the flow by using the draw between the slice jet and the wire does not act in the area being dewatered last. In order to have more turbulence in said area, the draw is to be great. Hereby, the formation of the area dewatered first is easily deteriorated to the extent that the formation of the entire product can no longer be improved. A similar progress may also occur when endeavours are made in the web former to introduce turbulence energy into a stock suspension layer not yet dewatered, e.g. by means of loading lists through a layer already dewatered.

In majority of the state-of-art turbulence generators, all turbulence pipes are mutually identical because the aim is to achieve homogeneous turbulence in different parts of the stock flow. Such turbulence generators make no difference between the bottom, surface and middle layers of the web. In web formation, said layers become, however, dewatered at different times. On the Fourdrinier wire, the surface layer is dewatered last and in the gap former the layer to be dewatered last is the middle layer.

In patent specification US. 5,124,002, a turbulence generator is disclosed in which the flow cross-section areas of the turbulence pipes in superimposed layers differ in size and shape, and advantageously, the mutual spaces between the pipes are also different. In this manner, a different microturbulence level can be generated in different layers of the stock suspension flow discharging from the turbulence generator into the slice duct, and such paper can be manufactured which is provided with different fibre orientations in superimposed layers. The flow cross-section area of each turbulence pipe remains the same from the first part of the pipe to the end thereof.
Such turbulence generators are also known in the art in which the flow cross-section area of the turbulence pipes is step-wise expanded at least at one spot between the inlet and the outlet of the pipe. In the turbulence generators known in the art, the expansion spots of the pipe are at equal distance from the outlet of the pipe in all pipes. One such prior art design is disclosed in US. patent specification No. 5,183,537.

The objective of the present invention is to develop a new procedure for generating and maintaining turbulence and a new kind of turbulence generator, with the aid of which a different turbulence can be generated in different layers of stock suspension flow flowing out of the headbox.

One more aim of the invention is to achieve an application in which the turbulence of the stock suspension layer dewatered last in the former after the headbox can be maintained closer to the optimal level during the formation than with currently used turbulence generators. Thus, the aim is a stock suspension flow in which the turbulence is "freshest", and consequently, most lasting in the layers of the flow which stay "running" longest. When the impact of the factors generating turbulence in the flow ceases, the turbulence begins to slow down rapidly. The turbulence is the fresher the shorter length the flow has propagated after the generation of turbulence.

To achieve said objectives and those to be disclosed below, the procedure of the invention is characterized in that turbulence is generated in different layers of the flow in different phases of the flow by arranging the elements generating and maintaining turbulence at different distances from the slice opening of the headbox, so that a different turbulence prevails in different layers of the stock suspension flow.

Respectively, the turbulence generator of the invention is characterized in that the distance of the expansion spot of the turbulence pipes in superimposed pipe rows
from the slice opening of the headbox and/or the distance of the tips of the trailing elements in association with the pipe rows from the slice opening of the headbox is different so that at the slice opening, the turbulence is different in different layers of the stock suspension flow.

In an advantageous embodiment of the invention, the expansion spots of individual turbulence pipes of a turbulence generator are so stepped that in the superimposed turbulence pipe rows, the expansion of the flow cross-section area is carried out at a different distance from the slice opening of the headbox. The later the phase is in which the cross-section area of a turbulence pipe expands, the fresher is the turbulence as the stock suspension flow discharges from the slice opening of the headbox onto the forming wire or into the gap between the forming wires. The expansion spots of the turbulence pipes acting on the layer of the stock suspension flow to be dewatered last are arranged to be last in the flow direction, that is, closest to the slice opening.

In addition to stepping the expansion spots, or instead of it, a different turbulence can be generated in different layers of the stock suspension flow by providing, after the turbulence pipes, trailing elements extending to the slice duct, which in superimposed flow layers extend to a different distance from the slice opening of the headbox. The trailing elements can be fixed in length or their lengths can be adjustable, as in US. patent specification No. 4,133,713. Alternatively, the fixing point of a trailing element in the longitudinal direction to the headbox can be adjustable, as in FI patent specification No. 88317. The purpose of the trailing elements is to keep different layers of the stock suspension flow separated as long as possible after a different turbulence has first been generated in the layers, for example, by stepping the expansion parts or by employing turbulence pipes differing in the flow cross-section area. The trailing elements maintain and strengthen the difference of turbulences prevailing between different layers. Alternatively, all trailing elements can be mutually of equal length, whereby
various levels of turbulence prevailing in different layers can be achieved solely with the aid of structural differences of turbulence pipes.

The invention is described below more in detail, reference being made to the figures of the accompanying drawing, to which, however, the invention is not intended to be exclusively restricted.

Figure 1 presents schematically a headbox provided with a turbulence generator of the invention, being particularly appropriate for use in connection with a gap former.

Figure 2 presents a turbulence generator which is particularly appropriate for use in connection with a Fourdrinier or hybride former.

Figure 3 presents a turbulence generator according to a second embodiment of the invention particularly for a gap former.

Figure 4 presents a turbulence generator appropriate for Fourdrinier and hybride formers.

Figure 5 presents a turbulence generator appropriate for a gap former, in which two advantageous embodiments of the invention are combined.

Figure 1 presents in cross-section a simplified headbox 2 for a paper machine. Stock suspension is brought to the headbox 2 via a cross-direction stock inlet header 4, wherefrom the flow is distributed into a number of distributor pipes in machine direction. Subsequent to the distributor pipes 6, the stock suspension flows through an equalization chamber 8 into the flow pipes 14a, ... 14a₅ of the turbulence generator 10, and further, into a wedgewise tapering slice duct 12, wherefrom the stock suspension spray is discharged through a slice opening 13 to the web former.
The turbulence pipes 14a1...14a5 of the turbulence generator 10 are arranged in five superimposed rows R1...R5 extending in cross machine direction across the entire width of the headbox 2. Each individual turbulence pipe 14a1...14a5 comprises an initial section 15 relatively narrow in cross-section, expanding stepwise at point 16 into an end section 17 wider than the initial section 15. Preferably, the initial section 15 of the pipe is circular in cross-section and also the end section 17 starts circular at the expansion 16 but ends rectangular on the side of the slice cone 12, so that necks 18 are left between the superimposed turbulence pipes 14a1...14a5. As known in the art, the cross-section of the latter part can also be different, such as triangle, square or polygon. The expansions 16 of the flow cross-section area in the turbulence pipes 14a1...14a5 cause a change of the flow rate in the stock suspension flowing through the turbulence generator 10 and an increase in the amount of turbulence.

Thus, each row Rn of turbulence pipes comprises a plurality of parallel turbulence pipes 14an, these being mutually identical in said horizontal row Rn. The subscript n refers to the order number 1 to 5 of the pipe, starting from the topmost pipe. The superimposed turbulence pipes 14a1...14a5 differ from one another in the respect that the expansion spot 16 of the flow duct 14an is in different pipe rows R1...R5 placed at a different distance ln from the slice opening 13 of the headbox. Said distance ln reduces in the order 11>l2=l3>l4>l5.

The headbox as in Figure 1 is intended for use in association with the gap former. When a web is dewatered between two wires, the middle layer thereof is dewatered last. In order to maintain a sufficient micro-turbulence level considering the achieving of uniform formation as long as possible also in the middle layer of the stock flow being dewatered last, the expansions 16 in the centremost row of pipes R3 are positioned closest to the outlet end of the turbulence generator 10 and the slice opening 13 of the headbox, respectively, in
the topmost \(R_1 \) and the lowermost \(R_3 \) pipe row, the expansions 16 are farthermost from the outlet end of the turbulence generator 10.

Figure 2 presents a turbulence generator 10 which is particularly appropriate for use in association with the web forming units starting with a Fourdrinier wire portion. The means comprises four superimposed rows \(R_1 \ldots R_4 \) of turbulence pipes 14b\(_1\)\ldots 14b\(_4\). The expansion spots 16 of the turbulence pipes are in this instance stepped to grow in that the space \(l_4 \) between the expansion 16 and the slice opening 13 in the turbulence pipes 14b\(_4\) of the lowermost pipe row \(R_4 \) is greatest and in the topmost pipe row \(R_1 \), the respective distance \(l_1 \) is smallest. The lowest layer of the stock suspension flow sprayed onto the Fourdrinier wire is filtered first and the topmost layer, last. To have the turbulence maintained longer in the upper stock suspension layer being dewatered last, the locations of the expansion 16 of the flow cross-section area are in the present embodiment stepped so that the expansions 16 in the lowermost pipe row \(R_4 \) closest to the level of the Fourdrinier wire are earlier in the flow direction and the pipe expansions 16 in the topmost pipe row \(R_1 \) farthermost from the Fourdrinier wire are last in the flow direction.

Figure 3 shows a turbulence generator for a gap former according to another embodiment of the invention. In this instance, the stepped expansion 16 located between the narrow initial part 15 of the turbulence pipe 14c\(_1\)\ldots 14c\(_4\) and the wide latter part 17 thereof is in all four superimposed rows \(R_1 \ldots R_4 \) of turbulence pipes in the flow direction at one and same distance from the slice opening 13 of the headbox. Instead, the superimposed turbulence pipes 14c\(_1\)\ldots 14c\(_4\) have different cross-sections so that the cross-section areas of the topmost and the lowermost turbulence pipes 14c\(_1\) and 14c\(_3\) are smaller than the cross-section areas of the two centremost turbulence pipes 14c\(_2\) and 14c\(_3\). The greater the cross-section of the flow duct, the greater in dimension is the turbulence generated in the pipe. A turbulence of a greater dimension also slows down more slowly than a turbulence of a smaller dimension.
A turbulence generator as in Figure 3 comprises further three trailing elements 20a₁...20a₃ fastened as extensions to necks 18 separating the three superimposed pipe rows R₁...R₄ from each other, said elements extending to the slice cone 12 of the headbox. The purpose of the trailing elements 20a₁...20a₃ is to keep the stock suspension flows of turbulence of different magnitude, coming from turbulence pipes 14c₁...14c₄, apart from each other and in addition, to generate and/or to maintain the turbulence of the flow. In the design of the invention, said three trailing elements 20a₁...20a₃ are different in length so that the topmost and the lowermost trailing elements 20a₁ and 20a₃ extend to the same distance s₁ = s₃ from the slice opening 13 of the headbox, and the middlemost trailing element 20a₂ is shorter than the others, extending to distance s₂.

The turbulence generator in Figure 4 is intended for a Fourdrinier or hybriode former. As in Figure 3, also in the present embodiment the cross-section areas of the turbulence pipes 14d₁...14d₃ arranged in three superimposed rows R₁...R₃ are different so that the cross-section area in the lowermost pipe row 14d₃ is smallest and the cross-section area in the topmost pipe row 14d₁, and hence, also the dimension of the turbulence generated in the flow, is greatest. The lengths of two trailing elements 20b₁ and 20b₂ fastened as continuations to pipe rows R₁...R₃ are arranged so that the distance S₂ of the tip of the trailing element 20b₂ from the slice opening 13 separating the two lowermost stock flows from each other is greater than the respective distance s₁ of the trailing element 20b₁ separating the two topmost stock flows from each other.

Figure 5 presents a turbulence generator appropriate for a gap former, in which the technology of Figure 1 and Figure 3 is combined in an advantageous fashion. The expansion spots 16 in superimposed rows R₁...R₅ of turbulence pipes 14a₁...14a₅ are so stepped that the centremost turbulence pipe 14a₃ expands last in the flow direction and the two sidemost turbulence pipes 14a₁ and 14a₅ expand first in the flow direction. As extensions to the partitions 18 of the turbulence pipes 14a₁...14a₅, four trailing elements 20c₁...20c₄ are arranged, of which the
distance \(s_2 = s_3 \) of the tips of two centremost trailing elements 20c_2 and 20c_3 is smaller than the respective distance \(s_1 = s_4 \) of the two trailing elements 20c_1 and 20c_4 closer to the edge.

Also several other modifications of the invention are conceivable within the scope of the claims presented below. For instance, the trailing elements separating superimposed flows from each other can be mutually of identical dimensions when a layered turbulence has been generated in the stock suspension flow already in the preceding turbulence pipes.
Claims

1. A procedure for generating and maintaining turbulence in a stock suspension flow which is conducted through a turbulence generator (10) into a slice duct (12) of the headbox and therefrom, through a slice opening (13) to the web former, in which procedure the stock suspension flow is distributed into a number of superimposed layers with the aid of turbulence pipes (14nₙ), wherafter an impact of elements (16,20) generating and maintaining turbulence is directed thereto, characterized in that turbulence is generated in different layers of the flow in different phases of the flow by arranging the elements (16, 20) generating and maintaining turbulence at different distances from the slice opening (13) of the headbox, whereby, at the slice opening (13), a different turbulence prevails in different layers of the stock suspension flow.

2. Procedure according to claim 1, characterized in that for elements generating and maintaining turbulence, stepped expansions (16) of the flow cross-section area of the turbulence pipes (14) are used, being positioned in superimposed rows (Rₙ) of the turbulence pipes (14nₙ) at different distances (1ₙ) from the slice opening (13) of the headbox.

3. Procedure according to claim 1 or 2, characterized in that for elements generating and maintaining turbulence, trailing elements (20) on the outlet ends of the turbulence pipes (14nₙ) are used, extending to the slice duct (12) of the headbox, the distance (sₙ) of the tips whereof from the slice opening (13) of the headbox is arranged to be different between the superimposed flow layers.

4. Procedure according to any one of the preceding claims, characterized in that in the dimensioning of the elements (16,20) generating and maintaining turbulence, the structure of the web former subsequent to the headbox is taken into account in that in the layers of the stock suspension flow being dewatered last in the web former, said elements (16,20) are positioned closer to the slice opening...
5. A turbulence generator (10) for the headbox of a paper machine, comprising a number of superimposed turbulence pipes (14a, 14b, 14c, 14d) arranged in rows (R) extending across the entire width of the headbox, through which a stock suspension flow to be conducted from the headbox to the web former is arranged to flow and which turbulence pipes (14a) are provided with a stepped expansion (16) of the flow cross-section area in the space between the inlet end and the outlet end of the pipe, and to which turbulence generator (10), a plurality of trailing elements (20) may in addition be connected, starting from between the pipe rows (R) and extending to the slice duct (12) of the headbox, characterized in that in the superimposed pipe rows (R) the distance (l) of the expansion spot (16) of the turbulence pipes (14a, 14b, 14c, 14d) from the slice opening (13) of the headbox and/or the distance (s) of the tips of the trailing elements (20) from the slice opening (13) of the headbox, in association with the pipe rows (R), is different so that at the slice opening (13) a different turbulence prevails in different layers of the stock suspension flow.

6. Turbulence generator according to claim 5, characterized in that in the superimposed rows (R1...R3) of turbulence pipes, the expansions (16) are the closer to the slice opening (13) of the headbox, the closer said pipe row is to the centremost pipe row (R3) of the turbulence generator (10) (Figures 1 and 5).

7. Turbulence generator according to claim 5, characterized in that in the superimposed rows (R1...R3) of turbulence pipes, the expansions (16) are the closer to the slice opening (13) of the headbox, the farther said pipe row is from the lowermost pipe row (R4) of the turbulence generator (10) (Figure 2).

8. Turbulence generator (10) according to claim 5, characterized in that the turbulence pipes (14c, 14d) of superimposed pipe rows (R) have different flow
cross-section areas and the distance \(s_n \) of the tips of the trailing elements \((20a_n; 20b_n) \) from the slice opening \((13) \) of the headbox, in association with the pipe rows \((R_n) \), is different.

9. Turbulence generator according to claim 8, characterized in that the turbulence pipes \((14c_1...14c_4) \) of the superimposed pipe rows \((R_1...R_4) \) have the greater flow cross-section areas, the closer said pipe row \((R_1...R_4) \) is to the centremost pipe row \((R_2, R_3) \) of the turbulence generator \((10) \) (Figure 3).

10. Turbulence generator according to claim 8, characterized in that the turbulence pipes \((14c_1...14c_3) \) of the superimposed pipe rows \((R_1...R_3) \) have the greater flow cross-section areas, the farther said pipe row \((R_1...R_3) \) is from the lowermost pipe row \((R_3) \) of the turbulence generator \((10) \) (Figure 4).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: D21F 1/02
According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: D21F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5183537 A (RICHARD E. HERGERT ET AL), 2 February 1993 (02.02.93)</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 19 January 2001

Date of mailing of the international search report: 23-01-2001

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Olav Jensén/ELY
Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5183537 A</td>
<td>02/02/93</td>
<td>AU 657368 B</td>
<td>09/03/95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2751892 A</td>
<td>03/05/93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9206595 A</td>
<td>07/03/95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2120738 A,C</td>
<td>15/04/93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 607249 T</td>
<td>16/03/95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69217237 D,T</td>
<td>25/09/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0607249 A,B</td>
<td>27/07/94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 0607249 T3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 941560 A</td>
<td>06/04/94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2794057 B</td>
<td>03/09/98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6506274 T</td>
<td>14/07/94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 186065 B</td>
<td>15/05/99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 306868 B</td>
<td>03/01/00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 941243 A</td>
<td>06/04/94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 170262 B</td>
<td>29/11/96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9307335 A</td>
<td>15/04/93</td>
</tr>
</tbody>
</table>