Title: FERRULE HOLDING DEVICE

Abstract: The present invention relates generally to a ferrule locating tool (10) comprising a base (12) and a locating member (14). The tool (10) includes a magnetic element (16) set within a lower surface of the base (12) and a pair of other magnetic elements (18A and 18B) set in an upper surface of the base (12). The locating member (14) is in the form of a pin or dowel which is screw threaded via a fastener coaxial with the base (12) which is disc-shaped. The ferrule locating tool (10) is designed so that a ferrule of a tilt panel is slid over the dowel (14) of the tool (10). The lower magnet (16) of the tool (10) serves to temporarily secure the tool (10) to the formwork whilst the tilt panel is cast in concrete.
FERRULE HOLDING DEVICE

FIELD OF THE INVENTION
The present invention relates generally to a ferrule locating tool such as that used to locate a ferrule in a pre-cast concrete panel or a "tilt panel".

BACKGROUND TO THE INVENTION
Tilt panels are generally pre-cast in reinforced concrete using steel formwork. The tilt panels include a grid of ferrules cast within the panel to provide anchoring points at which the panel can be lifted, braced or fixed. Conventionally, the ferrules are each bolted to the formwork at their predetermined positions. The panels together with the ferrules and reinforcing steel are then cast within the formwork structure whilst the bolts hold the ferrules in position. Once the concrete has cured and the panel is to be released from the formwork the bolts are removed. This technique for locating the ferrules suffers from at least the following drawbacks:

(i) the steel formwork requires drilling for each of the ferrules which is both time consuming and labour intensive; and

(ii) each panel may have its own grid of ferrules which requires repeated drilling of the formwork for the specific ferrule locations.

SUMMARY OF THE INVENTION
According to one aspect of the present invention there is provided a ferrule locating tool for a concrete panel, said tool comprising:

a base including one or more magnetic elements designed to releasably locate the base at a predetermined position on formwork on which the concrete panel is to be formed; and
a locating member connected to the base and being adapted to removably receive a ferrule which is temporarily magnetically secured to the base.

According to another aspect of the invention there is provided a method of casting one or more ferrules in a concrete panel, said method comprising the steps of:

providing one or more ferrule locating tools each including a base connected to a locating member being adapted to removably received on of the ferrules;

locating the base at a predetermined position on formwork on which the concrete panel is to be formed;

magnetically securing the base to the formwork at the predetermined position; and

locating said one ferrule on the respective locating member and temporarily magnetically securing said ferrule to the base in preparation for casting the concrete panel.

Preferably the base further includes one or more other magnetic elements being configured to effect the temporary magnetic securing of the ferrule to the base. More preferably said other magnetic elements are disposed about a periphery of the locating member.

Typically the magnetic force exerted by said one or more magnetic elements is greater than that exerted by said one or more other magnetic elements. Thus, the ferrule locating tool is retained on the formwork when the cured concrete panel is lifted or otherwise released from the formwork.

Generally said one or more magnetic elements are in the form of a circular or ring-shaped magnetic element located in a lower surface of the base whilst said one or more other magnetic elements are separate magnets positioned in an upper surface of the base adjacent the locating member. Alternatively the base is at least partly constructed of a
magnetic material thereby forming said one or more magnetic elements and/or said one or more other magnetic elements.

Typically the base is generally disc-shaped and the locating member is in the form of a pin or dowel connected coaxial with the base. More typically the pin is screw threaded to the base.

Preferably the pin is adapted to be slidably received within a threaded bore of the ferrule. More preferably the disc-shaped base includes a tapered peripheral wall which allows retraction of the tool from the cast concrete panel.

Typically said magnetic elements are formed of a relatively strong magnetic material such as an alloy of Neodymium, Iron and Boron.

Generally the concrete panel is a pre-cast concrete panel otherwise known in Australia as a "tilt panel".

BRIEF DESCRIPTION OF THE DRAWING
In order to facilitate a better understanding of the nature of the present invention a preferred embodiment of a ferrule locating tool will now be described, by way of example only, with reference to the accompanying drawing in which:

Figure 1 is an elevational together with upper and lower views of a ferrule locating tool.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
As shown in figure 1 there is a ferrule locating tool depicted generally as 10 comprising a base 12 and a locating member 14. The tool 10 of this embodiment includes a magnetic element 16 set within a lower surface
of the base 12 and a pair of other magnetic elements 18A and 18B set in an upper surface of the base 12.

In this example the base 12 is disc-shaped having a tapered peripheral wall 20. The locating member 14 is in the form of a pin or dowel which is screw threaded via a fastener (not shown) coaxial with the disc-shaped base 12. The diameter of the dowel 14 is such that it slidably receives a ferrule (not shown). However, it should be appreciated that the dowel 14 can be interchanged depending on the particular ferrule which it is to engage. The dowel 14 may include a ring-shaped or circular magnet (not shown) located adjacent its screw connection to the base 12. This may assist in magnetic retention of the ferrule to the locating tool 10. The dowel 14 at its upper end may also be shaped to receive a spanner or the like which facilitates unscrewing or tightening of the dowel 14 to the base 20.

In this embodiment the disc-shaped base 20 and dowel 14 are machined from steel. The lower and upper magnets 16 and 18A/B are formed of a relatively strong magnetic material which in this example is an alloy of neodymium, iron and boron. The tool 10 is designed so that the magnetic force exerted by the lower magnet 16 is greater than that exerted by the upper magnets 18A/B. Furthermore, the disc-shaped base 12 is designed so that the magnetic field generated by the lower and upper magnets 16 and 18A/B is concentrated in close proximity to the base 12.

In order to assist in further understanding of the invention, the general steps involved in locating a ferrule in a concrete panel such as a pre-cast tilt panel, using the described ferrule locating tool 10 will now be outlined:
1. The disc-shaped base 20 is located on formwork, such as a steel sheet, at its required position;

2. The lower magnet 16 temporarily secures the tool 10 to the formwork;

3. The ferrule is slid over the dowel 14 of the tool 10; and

4. The upper magnets 18A/B temporarily magnetically secure the ferrule to the base 12 of the tool 10.

This procedure is repeated for each ferrule which is to be cast within the tilt panel of this example. In a conventional manner concrete is then poured onto the formwork to form the tilt panel in which the ferrules are embedded. The magnetic force exerted on the formwork by the lower magnet 16 is sufficient to securely hold the ferrule in position whilst the panel is poured and thereafter cures.

The relative strengths of the lower and upper magnets 16 and 18A/B are such that upon lifting of the pre-cast tilt panel from the formwork, the various ferrules are released from the respective tool 10 whilst the tool 10 is securely retained on the formwork. The tapered peripheral wall 20 of the base 12 of the tool 10 assists in release of the pre-cast tilt wall from the tool 10 without damaging the tilt panel. Advantageously, each of the ferrules are "automatically" released from the respective locating tool such as 10 upon lifting of the tilt panel. The threaded bore of the respective ferrule merely slides clear of the dowel 14 of the tool 10.

Now that a preferred embodiment of the invention has been described in some detail it will be apparent to those skilled in the art that the ferrule locating tool has at
least the following advantages over the admitted art:

1. The locating tools can be located on the formwork panel relying on the magnetic attraction of the tool without the necessity for drilling holes for fixing of the tool;

2. The position of the locating tool can be adjusted merely by releasing the magnetic "clamp" between the base and the formwork without the need to drill additional holes;

3. The ferrule locating tool is relatively quick to locate and remains in position whilst the concrete panel is poured; and

4. The ferrule locating tool allows for "automatic" release of the ferrule whilst the tool is retained on the formwork.

It would be apparent to those skilled in the art that the invention described may include variations and modifications. For example, a portion of the base and/or locating member itself may be fabricated from a magnetic material which is effective in retaining the tool on the formwork and/or releasably holding the ferrule. Furthermore, the base and locating member may be formed integral with one another rather than in two components as described. The specific configuration of the locating tool may vary provided it can be magnetically secured to formwork and provide a locating member for the ferrule.

All such variations and modifications are to be considered within the scope of the present invention and nature of which to be determined from the foregoing description.
The claims defining the Invention are as follows:

1. A ferrule locating tool for a concrete panel, said tool comprising:
 a base including one or more magnetic elements
designed to releasably locate the base at a predetermined
position on formwork on which the concrete panel is to be
formed; and
 a locating member connected to the base and being
adapted to removably receive a ferrule which is
temporarily magnetically secured to the base.

2. A ferrule locating tool as defined in claim 1 wherein
the base further includes one or more other magnetic
elements being configured to effect the temporary magnetic
securing of the ferrule to the base.

3. A ferrule locating tool as defined in claim 2 wherein
said other magnetic elements are disposed about a
periphery of the locating member.

4. A ferrule locating tool as defined in claim 2 or 3
wherein the magnetic force exerted by said one or more
magnetic elements is greater than that exerted by said one
or more other magnetic elements.

5. A ferrule locating tool as defined in any one of
claims 2 to 4 wherein said one or more magnetic elements
are in the form of a circular or ring-shaped magnetic
element located in a lower surface of the base whilst said
one or more other magnetic elements are separate magnets
positioned in an upper surface of the base adjacent the
locating member.

6. A ferrule locating tool as defined in any one of
claims 2 to 4 wherein the base is at least partly
constructed of a magnetic material thereby forming said
one or more magnetic elements and/or said one or more other magnetic elements.

7. A ferrule locating tool as defined in any one of the preceding claims wherein the base is generally disc-shaped and the locating member is in the form of a pin or dowel connected coaxial with the base.

8. A ferrule locating tool as defined in claim 7 wherein the pin is screw threaded to the base.

9. A ferrule locating tool as defined in claim 7 or 8 wherein the pin is adapted to be slidably received within a threaded bore of the ferrule.

10. A ferrule locating tool as defined in any one of claims 7 to 9 wherein the disc-shaped base includes a tapered peripheral wall which allows retraction of the tool from the cast concrete panel.

11. A ferrule locating tool as defined in any one of the preceding claims wherein said magnetic elements are formed of a relatively strong magnetic material such as an alloy of Neodymium, Iron and Boron.

12. A method of casting one or more ferrules in a concrete panel, said method comprising the steps of:
 providing one or more ferrule locating tools each including a base connected to a locating member being adapted to removably received on of the ferrules;
 locating the base at a predetermined position on formwork on which the concrete panel is to be formed;
 magnetically securing the base to the formwork at the predetermined position; and
 locating said one ferrule on the respective locating member and temporarily magnetically securing said ferrule to the base in preparation for casting the concrete panel.
INTERNATIONAL SEARCH REPORT

International application No. PCT/AU00/01114

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl. E04G 17/16, 21/16, E04C 5/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
E04G, E04C, E04B, B66C, B66F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
AU: IPC E04G 15/-, 17/-

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPAT

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5,155,954 A (ROIRE) 20 October 1992</td>
<td></td>
</tr>
<tr>
<td>A, P</td>
<td>EP 945 238 A (ADDTEK RESEARCH & DEVELOPMENT OY AB) 29 September 1999.</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C X See patent family annex

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search 27 October 2000

Date of mailing of the international search report - 7 NOV 2000

Authorized officer

BRENDAN BOURKE
Telephone No: (02) 6283 2148

Form PCT/ISA/210 (second sheet) (July 1998)
This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5155954</td>
<td>CA 2060841 EP 498742</td>
</tr>
<tr>
<td></td>
<td>JP 7001433 FR 2672648</td>
</tr>
<tr>
<td>EP 945238</td>
<td>NONE</td>
</tr>
</tbody>
</table>

END OF ANNEX