Title: A CONDENSATE HANDLING ASSEMBLY AND METHOD

Abstract: A condensate handling assembly comprises a collection container (12) for receiving and retaining condensate, a heating container (14) for receiving condensate from the collection container, and a heating device (16) for raising the temperature of condensate in the heating container to pressurize condensate in the heating container. A transfer conduit interconnects (18) the collection container and the heating container, and a one-way valve (20) is disposed in the transfer conduit for permitting flow of condensate from the collection container to the heating container. A level sensor (21) senses the level of condensate in the collection container and activates the heating device upon the condensate in the collection container reaching a selected level. A discharge conduit (26) extends from the heating container and is in communication with a selected water reservoir (R), and a one-way valve (28) is disposed in the discharge conduit for releasing condensate from the heating container for flow to the reservoir upon pressure of the condensate in the heating container exceeding pressure in the reservoir.
A CONDENSATE HANDLING ASSEMBLY AND METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to the handling of normally undesirable condensate and is directed more particularly to an assembly and method for disposing of condensate to a drain line or potable water system.

2. Description of the Prior Art

Many processes involve the cooling of air, either for the direct purpose of cooling and/or dehumidifying the air, such as in dehumidification, air conditioning, or refrigeration, or as an indirect result of heating using an air-source heat pump, as, for example, heating water using a heat pump water heater. Depending on the temperature and moisture content of the air, and the degree to which it is cooled, some of the moisture in the air being cooled condenses. The condensate formed must then be disposed of. Normally, this is accomplished using a drain line leading to a drain. Draining condensate can, however, be difficult in many applications. For example, there may be no drain conveniently located to which a condensate drain line can be plumbed, or the
drain may be situated such that condensate cannot drain by gravity.

In U.S. Patent Application serial No. 09/059,878, filed April 14, 1998 in the names of John T. Dieckmann et al, and U.S. Patent Application Serial No. 09/111,248, filed July 3, 1998 in the names of John T. Dieckmann et al, there are shown and described heat pump water heater and storage tank assemblies in which disposal of condensate is discussed. The aforesaid applications are incorporated herein by reference. As noted therein, one can design an air-cooling apparatus such that condensate is not formed. This is accomplished by limiting the cooling capacity of the cooling apparatus, either by limiting its maximum cooling capacity, or by shutting off, or lowering, its cooling capacity when conditions are conducive to condensate formation. Either alternative usually imposes unacceptable cooling-capacity limits for air conditioning and refrigeration, and eliminates one of the desired functions of air conditioning, i.e., dehumidification. It also restricts the capacity that can be achieved by a heat pump using practical air-flow rates through an air-cooling coil and completely defeats the purpose for dehumidification applications. Alternatively, one can re-evaporate the condensate that forms. This approach, however, imposes several disadvantages, including a) increased cost and complexity of the apparatus, b) reduced reliability of the apparatus associated with increased design complexity, such as the need for float switches and/or other
moving parts, and c) increased energy consumption required to
evaporate the condensate. For air-conditioning applications, this
counteracts the desired dehumidification function of the air
conditioner. For dehumidification applications, this completely
defeats the purpose.

Where the drain is located at a higher elevation relative to
the air-cooling coil, and gravity will not drain condensate, a
condensate pump can be used to pump the condensate to the drain.
However, a conventional condensate pump and the associated
apparatus tend to be costly and are subject to reliability
problems due to the use of moving parts such as a float switch,
motor, and mechanical pump.

There is thus a need for a condensate disposal device and
method for use with air-cooling coils, which device heats and
pressurizes the condensate and injects the pressurized condensate
to a drain line, potable water system or other water reservoir.

There is further a need for a condensate disposal device and
method for use with air-cooling coils, which device does not
require a conventional condensate pump.

SUMMARY OF THE INVENTION

An object of the invention is, therefore, to provide an
assembly and method for handling condensate emanating from an air-
cooling and/or dehumidifying, and/or heating apparatus, heating
and pressurizing the condensate, and disposing of the condensate
in a drain line, potable water system, or other water reservoir (hereinafter "water reservoir").

A further object of the invention is to provide an assembly and method for handling condensate as described immediately above, in which the heating apparatus sterilizes the condensate for disposing of the condensate in a potable water system.

A further object of the invention is to provide an assembly for handling condensate that cannot be directed through gravity to an appropriate drain, the assembly being adapted to pressurize the condensate and inject the condensate under pressure into an appropriate water reservoir.

With the above and other objects in view, as will hereinafter appear, a feature of the present invention is the provision of a condensate handling assembly comprising a collection container for receiving and retaining condensate, a heating container for receiving condensate from the collection container, and a heating device for raising the temperature of condensate in the heating container to pressurize the condensate in the heating container. A transfer conduit interconnects the collection container and the heating container, and a one-way valve is disposed in the transfer conduit for permitting flow of condensate from the collection container to the heating container. A level sensor, pressure sensor, or equivalent (hereinafter, "level sensor"), senses the level of condensate in the collection container and activates the heating device upon the condensate in the collection container
reaching a selected level. A discharge conduit extends from the heating container and is in communication with a selected water reservoir, and a one-way valve is disposed in the discharge conduit for releasing condensate from the heating container for flow to the water reservoir upon pressure of the condensate in the heating container exceeding pressure in the water reservoir.

In accordance with a further feature of the invention, there is provided a method for handling condensate, the method comprising the steps of collecting condensate in a collection container, transferring the condensate in the collection container to a heating container until the heating container is filled to a selected level, heating the condensate in the heating container to raise pressure in the heating container, continuing the collection of condensate in the collection container while heating condensate in the heating container, and flowing heated and pressurized condensate from the heating container to a water reservoir having a pressure lower than the pressure in the heating container.

The above and other features of the invention, including various novel details of construction and combinations of parts and method steps, will now be more particularly described with reference to the accompanying drawings and pointed out in the claims. It will be understood that the particular device and method embodying the invention are shown by way of illustration only and not as limitations of the invention. The principles and
features of this invention may be employed in various and numerous embodiments without departing from the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference is made to the accompanying drawings in which is shown an illustrative embodiment of the invention, from which its novel features and advantages will be apparent.

In the drawings:

- FIG. 1 is a diagrammatic illustration of one form of assembly illustrative of an embodiment of the invention; and
- FIG. 2 is a diagrammatic illustration of one example of an installation of the assembly of FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, it will be seen that an illustrative condensate handling assembly 10 includes a collection container 12 for receiving and retaining condensate W, such as condensate from a drain tube T in communication with a condensate pan P of an air-cooling coil E.

The assembly 10 further includes a heating container 14 for receiving condensate from the collection container 12. Associated with the heating container 14 is a heating device 16, such as an electrically resistive coil, for raising the temperature of the condensate in the heating container 14 to pressurize and, if desired, sterilize the condensate in the heating container.
Alternatively, the heating device 16 may be any appropriate heat-providing device other than an electrically resistive coil.

A transfer conduit 18 interconnects the collection container 12 and the heating container 14. A one-way valve 20 is disposed in the transfer conduit 18 and permits flow of condensate from the collection container 12 to the heating container 14, but prevents flow in the opposite direction.

The assembly 10 is provided with a level sensor 21, in electrical communication with a power line L1/L2, that senses the level of condensate W in the collection container 12 and, when the condensate in container 12 is at a selected level, level sensor 21 closes a switch 22 in communication with the power line L1/L2 that, in turn, activates the heating device 16.

A discharge conduit 26 extends from the heating container 14 and is in communication with a selected water reservoir R. A one-way valve 28 is disposed in the discharge conduit 26 for releasing condensate from the heating container 14 for flow to the reservoir R, upon pressure of the condensate in the heating container 14 exceeding the pressure in the reservoir R. The valve 28 prevents flow from the reservoir R to the heating container 14.

In operation of the assembly, condensate W passes through the drain tube T, or similar conduit, and drops into the collection container 12, from whence the condensate passes through the transfer conduit 18 and the one-way valve 20, into the heating
container 14. Inasmuch as there is no significant pressure in the heating container 14, the one-way valve 20 remains open.

In due course, the heating container 14 and collection container 12 fill with condensate. When the level of condensate in the collection container 12 reaches a selected level, the level sensor 21 closes switch 22 to activate the heating device 16 and heating of the condensate in the heating container 14 begins.

As the condensate in the heating container 14 becomes slightly superheated, or begins to vaporize, the condensate pressurizes the heating container, closing the valve 20. Collection container 12 continues to collect any condensate formed while valve 20 is closed. Once the pressure of the heating container 14 is greater than that of the water reservoir R, the one-way valve 28 opens, allowing the condensate to enter the water reservoir R. This process continues until substantially all of the water is injected into the water reservoir R and only a small amount of vapor remains in the heating container 14.

A temperature sensor 30 in communication with the heating container 14 senses when the condensate in the heating container is at a temperature indicating it is sufficiently pressurized and opens switch 24 to de-activate the heating device 16. When the reservoir R is a potable water system, the temperature required in the heating container is typically about 350°F, depending on the pressure of the potable water system. When the reservoir R is a drain line, the temperature required in the heating container is
typically about 250°F, depending on the pressure in the drain line. The residual vapor (typically less than 0.3 percent relative to the mass originally in the heating container) begins to condense and the pressure within the heating container 14 begins to drop. Once the pressure of the heating container 14 has dropped below the pressure in the collection container 12, the valve 20 opens, the condensate in the collection container 12 begins to fill the heating container 14, and the process is repeated.

In FIG. 2, there is illustrated diagrammatically the above-described assembly shown in conjunction with a water heater of the type shown and described in the aforementioned patent applications. In this instance, the reservoir R constitutes a tank for storage of potable hot water. An air-cooling coil E is provided with the condensate pan P, which drains into the drain tube T and, thence, into the assembly 10, which includes the containers 12 and 14, described above, and which injects sterilized condensate into the hot water tank.

As illustrated in FIG. 2, the assembly 10 may be embedded in insulation I on the side of the hot water tank R. A removable cover panel C may be provided for access to the assembly.

There is thus provided an assembly and method for handling condensate from a condensate-producing apparatus, including collecting the condensate, heating and pressurizing the
condensate, and injecting the condensate into a potable water tank, or into a drain line, or other water reservoir.

It will be understood that many additional changes in the details, materials, steps and arrangement of parts and steps, which have been herein described and illustrated in order to explain the nature of the invention, may be made by those skilled in the art within the principles and scope of the invention as expressed in the appended claims.
What is claimed is:

1. A condensate handling assembly comprising:

 a collection container for receiving and retaining condensate;

 a heating container for receiving condensate from said collection container;

 a heating device for raising the temperature of condensate in said heating container to pressurize the condensate in said heating container;

 a transfer conduit interconnecting said collection container and said heating container;

 a one-way valve disposed in said transfer conduit for permitting flow of condensate from said collection container to said heating container;

 a level sensor for sensing the level of condensate in said collection container and for activating said heating device upon the condensate in said collection container reaching a selected level;
a discharge conduit extending from said heating container and in communication with a selected water reservoir; and

a one-way valve disposed in said discharge conduit for releasing from said heating container for flow to said reservoir upon pressure of said condensate in said heating container exceeding pressure in said reservoir.

2. The assembly in accordance with claim 1, and further comprising a switch in electrical communication with said level sensor and said heating device, said level sensor being adapted to activate said switch, and said switch being adapted to activate said heating device.

3. The assembly in accordance with claim 2, and further comprising a temperature sensor mounted in said heating container and in communication with said switch to deactivate said heating device upon sensing a selected temperature.

4. The assembly in accordance with claim 1 wherein said heating device comprises an electrical resistance heating device.

5. The assembly in accordance with claim 4 wherein said heating device is wound around said heating container.
6. The assembly in accordance with claim 1 wherein said assembly further comprises a tube for flowing condensate into said collection container.

7. The assembly in accordance with claim 6 wherein said assembly is mounted proximate a hot water tank, and said tube is in communication with an evaporator condensate pan associated with said hot water tank.

8. The assembly in accordance with claim 3 wherein the selected temperature at which said switch deactivates said heating device is about 250°F.

9. The assembly in accordance with claim 1 wherein said heating device is adapted to raise the temperature of condensate in said heating container to sterilize the condensate in said heating container.

10. The assembly in accordance with claim 9 wherein the selected temperature at which said switch deactivates said heating device is about 350°F.
11. The assembly in accordance with claim 6 wherein said heating container is disposed below said collection container so as to receive flow through said transfer conduit by gravity.

12. The assembly in accordance with claim 11 wherein said collection container is disposed below said tube so as to receive condensate from said tube by gravity.

13. The assembly in accordance with claim 1 wherein said heating device is adapted to raise the temperature of condensate in said heating container to about 250°F.

14. A condensate handling assembly comprising:

 a collection container disposed at a lower level than a condensate conduit and adapted to receive condensate from the conduit by gravity;

 a heating container disposed at a lower level than said collection container and adapted to receive condensate from said collection container by gravity;

 a heating device for raising the temperature of condensate in said heating container to pressurize condensate in said heating container, to increase pressure in said heating container;
a transfer conduit interconnecting said collection container and said heating container;

a one-way valve disposed in said transfer conduit for permitting flow of condensate by gravity from said collection container to said heating container;

a level sensor for sensing the level of condensate in said collection container and for activating said heating device upon the condensate in the collection container reaching a selected level;

a discharge conduit extending from said heating container and in communication with a selected water reservoir; and

a one-way valve disposed in said discharge conduit for releasing condensate from said heating container for injecting into said reservoir upon pressure of the condensate in said heating container exceeding pressure in said reservoir.

15. A method for handling condensate, the method comprising the steps of:
collecting condensate in a collection container;

transferring the condensate in the collection container to a heating container until the heating container is filled to a selected level;

heating the condensate in the heating container to superheat or vaporize a portion of the condensate therein, and to raise pressure in the heating container to stop flow of condensate from the collection container; and

continuing the collection of condensate in the collection container while heating condensate on the heating container;

flowing condensate from the heating container to a selected water reservoir having a pressure lower than the pressure in said heating container.

16. The method in accordance with claim 15 wherein the collecting of condensate comprises providing for gravity flow of the condensate into the collection container.

17. The method in accordance with claim 16 wherein the transfer of condensate from the collection container to the heating
container comprises flowing the condensate through a transfer conduit having a one-way valve therein.

18. The method in accordance with claim 17 comprising the further step of providing means for determining when the collection container is filled to the selected level, and thereupon automatically activating the heating of the condensate in the heating container.

19. The method in accordance with claim 18 wherein the heating of the condensate in the heating container is effected by an electrical resistance heating element.

20. The method in accordance with claim 15 wherein said selected reservoir comprises a drain line and in heating of said condensate the temperature thereof in the heating container is raised to about 250°F.

21. The method in accordance with claim 15 wherein said selected reservoir comprises a potable water reservoir and in heating of said condensate the temperature thereof in the heating container is raised to about 350°F.

22. The method in accordance with claim 21 wherein flowing the condensate to a potable water reservoir comprises flowing the
condensate into a holding tank portion of a condensate-producing apparatus.

23. The method in accordance with claim 22 wherein flowing condensate from the condensate-producing apparatus comprises flowing condensate from an evaporator condensate pan associated with a heat pump type water heater and flowing the condensate heated to 350°F into a holding tank of the water heater.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(7) : F25B 47/00; F25D 21/00
 US Cl.: 62/85, 272, 275
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

 Electronic database consulted during the international search (name of database and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4,403,769 A (Ishizuka) 13 September 1983, cols. 1-4.</td>
<td>1,4,9,14,15</td>
</tr>
<tr>
<td>A</td>
<td>US 5,904,053 A (Polk et al) 18 May 1999, see entire document.</td>
<td>1,14,15</td>
</tr>
<tr>
<td>A</td>
<td>US 5,327,743 A (Coltrin) 12 July 1994, see entire document.</td>
<td>1,14,15</td>
</tr>
<tr>
<td>A</td>
<td>US 5,113,668 A (Wachs, III et al) 19 May 1992, see entire document.</td>
<td>1-3,6,14,15-17</td>
</tr>
<tr>
<td>A</td>
<td>US 5,932,073 A (Land) 03 August 1999, see entire document.</td>
<td>1,14,15</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 A document member of the same patent family

Date of the actual completion of the international search 25 SEPTEMBER 2000

Date of mailing of the international search report 17 OCT 2000

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
CHEN-WEN JIANG

Telephone No. (703) 308-0275

Form PCT/ISA/210 (second sheet) (July 1998)"