Title: THERAPEUTIC COMPOUNDS AND METHODS

![Chemical Structure](image)

(54) Title: THERAPEUTIC COMPOUNDS AND METHODS

(57) Abstract

The invention provides agents and compounds (see (I) and (II)) for use in the treatment or prophylaxis of disease conditions caused or exacerbated by mammalian papillomaviruses, such as human papillomaviruses, as well as methods for the treatment or prevention thereof. In said formulae, \(R^1 - R^4 \) and \(n \) are as defined herein.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>BE</th>
<th>Belgium</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>BG</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>BR</td>
<td>Brazil</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>BS</td>
<td>Spain</td>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>CI</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>CZ</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>KE</td>
<td>Democratic People’s Republic</td>
</tr>
<tr>
<td>KO</td>
<td>Republic of Korea</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>LC</td>
<td>Liechtenstein</td>
<td>LI</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LS</td>
<td>Lesotho</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
<td>MK</td>
<td>The former Yugoslav Republic</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>MX</td>
<td>Mexico</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THERAPEUTIC COMPOUNDS AND METHODS

FIELD OF INVENTION

5 The present invention relates generally to agents useful in the treatment or prophylaxis of viral mediated disease conditions. More particularly, the present invention provides therapeutic agents useful in the treatment of cervical cancer, genital warts or asymptomatic infections caused or otherwise exacerbated by a mammalian papillomavirus (MPV). The present invention is further directed to methods of treatment using said agents as well as methods of identifying same.

BACKGROUND OF THE INVENTION

Viral mediated disease conditions represent some of the most debilitating diseases affecting humans and animals and are responsible for significant mortality and morbidity. This is particularly the case for cancers associated with viral transformation of host cells. One particularly serious form of cancer is cervical cancer. Persistent infection of the transformation zone of the cervix uteri with MPVs such as human papillomavirus (HPV) is seen as a primary cause of cervical cancer. Approximately half a million women die of cervical cancer every year, while a much higher number of patients are exposed to preinvasive disease or genital warts, and one has to conclude that treatment of these virally caused neoplasias is still inadequate in spite of the long-term establishment of surgical techniques.

25 MPV genomes encode proteins with molecular properties required for cellular transformation in cell culture and in situ. Human papillomavirus-16 (HPV-16) is the most common HPV type in malignant neoplasia and is found in about 60% of all cervical carcinomas, while about twenty other HPV types account for another 30% of these malignancies. Other HPV types that infect genital mucosa or skin, like HPV-6 and HPV-11, are most often associated
with benign neoplasia, such as genital warts.

Current treatment for HPV-16 associated lesions is surgery, while limited success is achieved for HPV-6 and HPV-11 lesions with immune modulators like interferon. Prevention of infection by HPV by vaccination and challenge of established HPV infections by immune therapy are under intense investigation, but are presently not established clinical procedures.

A need exists, therefore, for further therapeutic agents useful in the treatment or prophylaxis of disease conditions caused or exacerbated by MPVs and for methods of identifying same.

SUMMARY OF INVENTION

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise" and variations such as "comprises" and "comprising" will be understood to imply the inclusion of a stated integer or step or group of integers but not the exclusion of any other integer or step or group of integers.

One aspect of the present invention provides an agent useful in the treatment or prophylaxis of a disease condition caused or exacerbated by an MPV, said agent comprising a compound capable of reducing, inhibiting or otherwise decreasing the activity of a protein encoded by an MPV gene where said agent facilitates disruption of a chelated metal cation domain present in said protein.

Still yet another aspect of the invention contemplates a composition comprising a compound capable of facilitating the disruption of a chelated metal cation domain of a protein encoded for by an MPV gene, together with a pharmaceutically acceptable carrier, diluent or excipient.

Yet a further aspect of the invention relates to a method of treating or preventing a disease condition caused or exacerbated by an MPV comprising the administration of an effective
amount of a compound capable of facilitating the disruption of a chelated metal cation domain of a protein encoded for by an MPV gene to a mammal in need thereof.

Another aspect of the invention provides the use of a compound capable of facilitating the disruption of a chelated metal cation domain of a protein encoded for by an MPV gene in the manufacture of a medicament for the treatment or prophylaxis of a disease condition caused or exacerbated by an MPV.

A further aspect of the invention relates to a composition comprising at least one compound according to Formula I or Formula II as herein described together with a pharmaceutically acceptable carrier, diluent or excipient.

In another aspect, the present invention provides a method of treating or preventing a disease condition caused or exacerbated by an MPV comprising the administration of at least one compound according to Formula I or Formula II as herein described to a mammal in need thereof.

Yet a further aspect of the invention provides a use of at least one compound of Formula I or II as herein described in the manufacture of a medicament for the treatment or prophylaxis of a disease condition exacerbated by an MPV.

Still another aspect of the invention provides an agent for the treatment or prophylaxis of a disease condition caused or exacerbated by a MPV comprising at least one compound of Formula I or II as herein described.

Preferably, the MPV is a human papilloma virus (HPV)
BRIEF DESCRIPTION OF THE FIGURES

Figure 1 diagrammatically depicts the E6 protein which consists of 158 amino acids, with two Cys-X2-Cys-X29-Cys-X2-Cys zinc fingers forming the most conspicuous secondary structure. Amino acid residues shown by encircled letters are conserved among HPV-6, HPV-11, HPV-16 and HPV-18. HPV-16 and HPV-18 are the most prevalent papillomaviruses in carcinomas of the cervix precursor lesions.

Figure 2 graphically depicts the effective concentration for C16 under the experimental IVT-assay conditions for E6BP and E6AP. 35S-Cys E6 was incubated with the indicated concentrations of C16 and assayed for complex formation with E6BP or E6AP. GST reflects the background binding of IVT E6 protein on GST-beads.

Figure 3 graphically depicts viability assays of HPV-infected cell lines incubated with C16 and azodicarbonamide (C4). All values were normalized to the values obtained in the presence of DMSO only.

Figure 4 photographically depicts viability of SiHa, HeLa, 444 and HaCat cells when treated with C16 compound.

Figure 5A depicts p53 protein expression for the cell lines HeLa, SiHa, MCF7 and HaCat when treated with C16.

Figure 5B depicts the cleavage of poly-ADP ribose polymerase (PARP) in HeLa cells incubated with C16 overnight but not C16 treated HaCat cells.
The following single and three letter abbreviations are used for amino acid residues:

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Three-letter Abbreviation</th>
<th>One-letter Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala</td>
<td>A</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>R</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn</td>
<td>N</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>Asp</td>
<td>D</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys</td>
<td>C</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln</td>
<td>Q</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>Glu</td>
<td>E</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>G</td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
<td>H</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile</td>
<td>I</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu</td>
<td>L</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys</td>
<td>K</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met</td>
<td>M</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe</td>
<td>F</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro</td>
<td>P</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser</td>
<td>S</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr</td>
<td>T</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp</td>
<td>W</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr</td>
<td>Y</td>
</tr>
<tr>
<td>Valine</td>
<td>Val</td>
<td>V</td>
</tr>
<tr>
<td>Any residue</td>
<td>Xaa</td>
<td>X</td>
</tr>
</tbody>
</table>
DESCRIPTION OF THE PREFERRED EMBODIMENTS

The agents of the present invention are especially useful in the treatment of disease conditions caused by an MPV such as HPVs. HPV infection is implicated in cervical carcinomas, genital warts, common warts, plantar warts and planar warts. Cancerous conditions which are due to HPV infection can be classified according to their state of malignancy, for example:

Malignant carcinoma of the cervix - (CaCx)
Carcinoma of the cervix *in situ* - CIS (also called CIN III)

Cervical intraepithelial neoplasia - CIN I and CIN II (also called SIL-squamous intraepithelial lesions)

ASCUS - atypical squamous cells of the undetermined significance, as lesions detected by Papanicolaou smears or latent HPV infection detected by DNA hybridization.

Warts can also be classified according to various types, e.g., genital, common, plantar and planar warts.

Disease conditions which may especially be treated in accordance with the present invention are cervical cancer or precursor lesions of this malignant neoplasia, which are called cervical intraepithelial neoplasia (CIN) or squamous intraepithelial lesions (SIL). The agent may also be useful in the treatment of asymptomatic infections of the cervix in patients identified by DNA diagnosis, or asymptomatic infections that are assumed to remain after surgical treatment of cervical cancer, CIN or SIL, or asymptomatic infections presumed to exist following epidemiological reasoning. The disease conditions to be treated also include genital warts, and common warts and plantar warts. All of these conditions are also caused by a large number of other HPV types, and the agents, compounds and methods of the invention may also be usefully directed against these viruses. All of these lesions presumably derive from asymptomatic infections, that are most often not diagnosed. The present invention may also be usefully targetted against all of these asymptomatic infections.

HPVs frequently associated with cervical carcinoma are HPV-16, HPV-18, HPV-31, HPV-
33, HPV-35 and HPV-45. Those frequently associated with genital warts are HPV-6 and HPV-11; those commonly associated with common warts are HPV-2, HPV-27 and HPV-57; those with plantar warts HPV-1 and those with planar warts are HPV-3 and HPV-4.

5 Other, types of known HPVs, infection by which may be treated in accordance with the invention, are depicted on Table 1 of page 37 of Human Papillomarviruses [Volume 64 (1995) IARC Monographs on the evolution of carcinogenic risks in Humans, The International Agency for Research on Cancer, World Health Organisation, IARC, Lyon, France], which Table is incorporated herein by reference.

10 All HPVs have circular double stranded DNA genomes with sizes close to 8kb. The genomes of different HPV types can be aligned, and there are eight genes that are homologous among all genital HPV types. These genes contain many sequence similarities, which suggest similar and conserved (although not necessarily identical) functions. The transforming properties of one HPV-16 originate from three oncoproteins that are the products of the genes E5, E6, and E7. These proteins have pleotropic effects with consequences for transmembrane signalling, regulation of cell cycle, transformation of established cell lines, immortalization of primary cell lines, and chromosomal stability (1,2). The E6 oncoprotein can form a ternary complex with the cell cycle regulator p53 and E6 associated protein, E6AP, with the result of degradation of p53 by the ubiquitination pathway (3,4). In another mechanism, the E6 protein can bind to E6BP (also called ERC-55), a calcium binding protein localized in the endoplasmic reticulum, with possible consequences for intracellular signalling (5). E6 changes cellular morphology, as it interacts with paxillin and thereby disrupts the actin cytoskeleton (6). E6 has also been described to activate (7,8) or, alternatively, repress transcription (9), to stimulate telomerase (10), to immortalize primary cell cultures (1, 2) and to interfere with the differentiation of human keratinocytes (4).

The E6 protein of HPV-16 (Fig. 1) has a size of 158 amino acids. Its most conspicuous sequence motifs are two Cys-X2-Cys-X29-Cys-X2-Cys zinc fingers (11-13). Analysis of Swiss-Prot database indicates that this sequence motif is unique for papillomavirus E6 and E7
proteins (14), and includes numerous specific amino acids residues, highly conserved among all carcinogenic HPVs as well as many animal and human papillomavirus associated with benign lesions. The homology between all papillomavirus E6 genes permits the alignment of their nucleotide sequences, forming a useful database to establish papillomavirus taxonomy (15-17). A similar zinc finger is found in the E7 protein. The extreme conservation of E6 and E7 zinc fingers among viruses with otherwise significant sequence diversity suggests that this zinc-binding motif is required for the structure and the function of HPV E6 and E7 oncoproteins, and it has been shown that mutations affecting the HPV-16 and the bovine papillomavirus type 1 (BPV-1) E6 zinc fingers interfere with cellular transformation as well as with complex formation between E6 and E6AP and E6BP.

The structure and function of the HPV-16 E6 oncoprotein depends on the integrity of the zinc fingers, in which the sulfhydryl-groups of four cysteines serving as metal-chelating residues.

The precise role of E6 in the etiology of cervical cancer is difficult to assess directly, but rather has to be inferred mostly from information on E6 function in cell culture or animals systems or molecular studies in vitro. The presently available knowledge suggests functions of E6 (and E7) in situ in three different pathological scenarios. (i) In stratified epithelia, uninfected epithelial cells differentiate without further mitoses after they left the basal and became part of the suprabasal layers. After infection by HPVs, E6 and E7 proteins interfere with this normal repression of mitosis. The consequence is a dedifferentiated and expanded cell population with HPV genomes and the progression from a clinically latent infection into a benign intraepithelial neoplasia. (ii) In these benign lesions, E6 and E7 maintain a high frequency of aberrant mitoses leading to chromosomal aberrations and aneuploidies, raising the chance for generation of increasingly tumorigenic cellular variants (32). (iii) Continuous expression of E6 and E7 may be required for continuous proliferation of malignant tumours and metastases (33, 34, 24). Anti-E6 and anti -E7 drugs should desirably be able to interfere with HPV lesions on all three levels of carcinogenesis. Accordingly, the compounds described herein may be useful in therapeutic or prophylactic applications where these pathological scenarios are implicated.
Accordingly, one aspect of the present invention provides an agent useful in the treatment or prophylaxis of a disease condition caused or exacerbated by an MPV, said agent comprising a compound capable of reducing, inhibiting or otherwise decreasing the activity of a protein encoded by an MPV gene where said agent facilitates disruption of a chelated metal cation domain present in said protein.

As used herein, the term "chelated metal cation domain" refers to the structure of a protein molecule formed by chelation or association of a metal cation with two or more non-adjacent amino-acid residues. The amino acid residues may reside on a single protein molecule to form a "finger" or, alternatively, reside on different protein molecules to form, for example, a dimer. In a preferred embodiment, the metal cation is selected from manganese, iron, cobalt, nickel, copper or zinc. Most preferably, the metal is zinc. In another embodiment, the metal cation is chelated to four amino acid residues. In yet another embodiment of the invention, the metal atom is chelated to at least one cysteine residue, preferably via the sulphhydryl group.

In yet a more preferred embodiment the chelated metal cation domain is a zinc domain in which the sulphhydryl groups of four cysteine residues are chelated to the zinc cation. In still yet a more preferred embodiment, the zinc domain comprises the Cys-X2-Cys-X29-Cys-X2-Cys sequence motif, wherein the zinc atom is chelated to the four Cys residues via the sulphhydryl groups (see Figure 1).

As used herein, a protein molecule encoded for by an MPV gene refers to a peptide, polypeptide or other amino acid sequence translated from a gene in an MPV genome, or derivative thereof. Preferably, the MPV is an HPV, more preferably HPV-16 or HPV-18. In a preferred embodiment the gene is HPV-16 E6, HPV-16 E7, HPV-18 E6 or HPV-18 E7. Most preferably the gene is HPV-16 E6. Preferably, the protein is the E6 or E7 oncoprotein.

Compounds which may be useful in the treatment of diseases and conditions caused by MPVs include compounds of the general Formula (I)
wherein

n is selected from 1-5

R¹ - R⁴ are independently selected from hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted acyl, optionally substituted heterocyclyl, haloalkyl, arylalkyl, carboxy, carboxy ester and carboxamido; or

R¹ and R² together, and/or R³ and R⁴ together, independently form a group of formula (a):

- (CH₂)₁ - Uₘ - (CH₂)ₙ -

wherein: U is selected from CH₂, O, NH or S;

l and n are independently selected from 0 to 6 and m is 0 or 1 when U is CH₂ and m is 1 when U is O, NH or S, such that

l+m+n is greater than or equal to 2;

and wherein any one or more (CH₂) or NH groups may be further optionally substituted;

or a pharmaceutically acceptable derivative thereof.

As used herein the term "alkyl", denotes straight chain, branched or cyclic fully saturated
hydrocarbon residues. Unless the number of carbon atoms is specified the term preferably refers to C$_{1-20}$ alkyl or cycloalkyl. Examples of straight chain and branched alkyl include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, amyl, isoamyl, sec-amyl, 1,2-dimethylpropyl, 1,1-dimethyl-propyl, hexyl, 4-methylpentyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 1,2,2-trimethylpropyl, 1,1,2-trimethylpropyl, heptyl, 5-methoxyhexyl, 1-methyloctyl, 2,2-dimethylpentyl, 3,3-dimethylpentyl, 4,4-dimethylpentyl, 1,2-dimethylpentyl, 1,3-dimethylpentyl, 1,4-dimethyl-pentyl, 1,2,3-trimethylbutyl, 1,1,2-trimethylbutyl, 1,1,3-trimethylbutyl, octyl, 6-methylheptyl, 1-methylheptyl, 1,1,3,3-tetramethylbutyl, nonyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-methyl-octyl, 1-, 2-, 3-, 4- or 5-ethylheptyl, 1-, 2- or 3-propylhexyl, decyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- and 8-methylene, nonyl, 1-, 2-, 3-, 4-, 5- or 6-ethyldecayl, 1-, 2-, 3- or 4-propylheptyl, undecyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-methyldecayl, 1-, 2-, 3-, 4-, 5-, 6- or 7-ethylheptyl, 1-, 2-, 3-, 4- or 5-propylencyclohexyl, 1-, 2- or 3-butylheptyl, 1-pentylhexyl, dodecyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- or 10-methylundecyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-ethyldecyl, 1-, 2-, 3-, 4-, 5- or 6-propylencyclohexyl, 1-, 2-, 3- or 4-butyldecyl, 1,2-pentylheptyl and the like. Examples of cyclic alkyl include mono- or polycyclic alkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl and the like.

As used herein the term "alkenyl" denotes groups formed from straight chain, branched or cyclic hydrocarbon residues containing at least one carbon-carbon double bond including ethylenically mono-, di- or poly-unsaturated alkyl or cycloalkyl groups as previously defined. Unless the number of carbon atoms is specified the term preferably refers to C$_{1-20}$ alkenyl. Examples of alkenyl include vinyl, allyl, 1-methylvinyl, butenyl, iso-butenyl, 3-methyl-2-butenyl, 1-pentenyl, cyclopentenyl, 1-methyl-cyclopentenyl, 1-hexenyl, 3-hexenyl, cyclohexenyl, 1-heptenyl, 3-heptenyl, 1-octenyl, cyclooctenyl, 1-nonenyln, 2-nonenyln, 3-nonenyln, 1-decenyln, 3-decenyln, 1,3-butenadienyln, 1,4-pentadienyln, 1,3-cyclopentadienyln, 1,3-hexadienyln, 1,4-hexadienyln, 1,3-cyclohexadienyln, 1,4-cyclohexadienyln, 1,3-cycloheptadienyln, 1,3,5-cycloheptatrienyln and 1,3,5,7-cyclooctatetraenyln.
As used herein the term “alkynyl” denotes groups formed from straight chain, branched or cyclic hydrocarbon residues containing at least one carbon-carbon triple bond including ethynically mono-, di- or poly- unsaturated alkyl or cycloalkyl groups as previously defined. Unless the number of carbon atoms is specified the term preferably refers to C₁₋₂₀ alkynyl. Examples include ethynyl, 1-propynyl, 2-propynyl, and butynyl isomers, and pentynyl isomers.

The term “heterocyclic” or "heterocyclyl" denotes mono- or polycarbocyclic groups wherein at least one carbon atom is replaced by a heteroatom, preferably selected from nitrogen, sulphur and oxygen. Suitable heterocyclic groups include N-containing heterocyclic groups, such as,

unsaturated 3 to 6 membered heteromonicyclic groups containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyln, imidazolinyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazolyl or tetrazyol;

saturated 3 to 6-membered heteromonicyclic groups containing 1 to 4 nitrogen atoms, such as, pyrrolidinyl, imidazolidinyl, piperidyl, pyrazolidinyl or piperazinyl;
condensed saturated or unsaturated heterocyclic groups containing 1 to 5 nitrogen atoms, such as, indolyl, isoindolyl, indolinyl, isoindolinyl, indolizinyl, isoindolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, purinyl, quinazolinyl, quinoxalinyl, phenanthradinyl, phenathrolinyl, phthalazinyl, naphthyridinyl, cinnolinyl, pteridinyl, perimidinyl or tetrazolopyridazinyl;
saturated 3 to 6-membered heteromonicyclic groups containing 1 to 3 oxygen atoms, such as tetrahydrofuranyl, tetrahydropryranyl, tetrahydrodioxinyl,
unsaturated 3 to 6-membered heteromonicyclic group containing an oxygen atom, such as, pyranyl, dioxinyl or furyl;
condensed saturated or unsaturated heterocyclic groups containing 1 to 3 oxygen atoms, such as benzofuranyl, chromenyl or xanthenyl;
unsaturated 3 to 6-membered heteromonicyclic group containing 1 to 2 sulphur atoms, such as, thienyl or dithiolyl;
unsaturated 3 to 6-membered heteromonicyclic group containing 1 to 2 oxygen atoms and 1
to 3 nitrogen atoms, such as, oxazolyl, oxazoliny1, isoxazolyl, furazanyl or oxadiazolyl; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, such as, morpholinyl; unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, such as, benzoaxazolyl or benzoaxadiazolyl; unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulphur atoms and 1 to 3 nitrogen atoms, such as, thiazolyl, thiazoliny1 or thiadiazoyl; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulphur atoms and 1 to 3 nitrogen atoms, such as, thiazolidiny1, thiomorphinyl; and unsaturated condensed heterocyclic group containing 1 to 2 sulphur atoms and 1 to 3 nitrogen atoms, such as, thiadiazolyl, thiophenolyl, or phenylthiazolyl; and

The term “acyl” denotes carbamoyl, aliphatic acyl group or acyl group containing an aromatic ring, which is referred to as aromatic acyl, or a heterocyclic ring, which is referred to as heterocyclic acyl, preferably C₁₋₂₀ acyl. Examples of suitable acyl include carbamoyl; straight chain or branched alkanoyl such as formyl, acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 2,2-dimethylpropanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, heptadecanoyl, octadecanoyl, nonadecanoyl and icosanoyl; alkoxy carbonyl such as methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, t-pentyloxy carbonyl and heptyloxy carbonyl; cycloalkylcarbonyl such as cyclopropylcarbonyl cyclobutylcarbonyl, cyclopentylcarbonyl and cyclohexylcarbonyl; alkylsulfonyl such as methylsulfonyl and ethylsulfonyl; alkoxy sulfonyl such as methoxysulfonyl and ethoxysulfonyl; aroyl such as benzoyl, toluoyl and naphthyoyl; aralkanoyl such as phenylalkanoyl (e.g. phenylacetoyl, phenylpropanoyl, phenylbutanoyl, phenylisobutyryl, phenylpentanoyl and phenylhexanoyl) and naphthylalkanoyl (e.g. naphthalacetyl, naphthylpropanoyl and naphthylbutanoyl); aralkenoyl such as phenylalkenoyl (e.g. phenylpropenoyl, phenylbutenoyl, phenylmethacryloyl, phenylpentenoyl and phenylhexenoyl and naphthylalkenoyl (e.g. naphthylpropenoyl, naphthylbutenoyl and naphthylpentenoyl); aralkoxycarbonyl such as phenylalkoxy carbonyl (e.g. benzoxycarbonyl); aryloxy carbonyl such as phenoxycarbonyl and naphthoxy carbonyl; aryloxyalkanoyl such as phenoxyacetoyl and phenoxypropionyl;
arylcarbamoyl such as phenylcarbamoyl; aryliothiocarbamoyl such as phenylthiocarbamoyl; arylglyoxyloyl such as phenylglyoxyloyl and naphthylglyoxyloyl; arylsulfonyl such as phenylsulfonyl and naphthylsulfonyl; heterocycliccarbonyl; heterocyclicalkanoyl such as thiencarboxylic and thienylpropanoyl, thienylbutanoyl, thienylpentanoyl, thienylhexanoyl, thiazolylacetoyl, thiadiazolylacetoyl and tetrazolylacetoyl; heterocyclicalkenoyl such as heterocyclicpropenoyl, heterocyclicbutenoyl, heterocyclicpentenoyl and heterocyclichexenoyl; and heterocyclicglyoxyloyl such as thiazolylglyoxyloyl and thienylglyoxyloyl.

The term "optionally substituted" is intended to denote that a group may or may not be further substituted or fused (so as to form a condensed polycyclic group) with one or more groups selected from alkyl, alkenyl, alkynyl, aryl, haloaryl, haloalkyl, haloalkenyl, haloalkynyl, halogen, hydroxy, alkoxy, alkenoxyloxy, acrlyoxy, benzylxyloxy, haloalkoxy, haloalkenxyloxy, haloalkynxyloxy, nitro, nitroalkyl, nitroalkenyl, nitroalkynyl, nitroaryl, nitroheterocycl, amino, alkylamino, dialkylamino, alkenylamino, alkynylamino, dialkynylamino, dibenzylamino, acyl, alkenylacyl, alkynylacyl, arylacyl, acylamino, diacrylamino, acrlyoxy, alyksulphonyloxy, arylsulphenoxy, heterocycl, heterocyclyloxy, heterocycloamin, haloheterocycl, alkylsulphenyl, arylsulphenyl, carboxy, carboxy ester, carboxamido, carboxyloxy mercapto, alkythio, benzythio, acylthio, cyano, nitro, sulfate and phosphate groups. As used herein, the term "optionally substituted" may also refer to the replacement of a -CH₂₂ group by a >C=O (carbonyl) group. Where valency constraints allow, one or more optional substituents may themselves be further optionally substituted.

Suitable optional substituents for NH include alkyl, such as methyl, ethyl, propyl and butyl; aryl, such as optionally substituted phenyl; arylalkyl, for example benzyl; heterocyclic, such as pyridyl, pyrazinyl, pyrimidinyl; and acyl, such as acetyl, carbamoyl (-C(O)-O-alkyl).

The terms "alkoxy, "alkenoxy and "alkynoxy respectively denote alkyl, alkenyl and alkynyl groups as hereinbefore defined when linked by oxygen.

Where appropriate, any one or more of groups R⁻¹-R⁻⁴ and/or their optional substituents may
be further protected by a protecting group. Suitable protecting groups are known to those skilled in the art and are described in *Protective Groups in Organic Synthesis*, T. W. Greene and P. Wutz, John Wiley and Son 2nd Edition (1991) the contents of which are incorporated herein by reference and include for example alkylated and acylated oxy and amino groups and the formation of methylenedioxy groups from two vicinal or ortho-proximated hydroxy substituents.

The term "halogen" denotes fluorine, chlorine, bromine or iodine.

The term "aryl" denotes single, polynuclear, conjugated and fused residues of aromatic hydrocarbon ring systems. Examples of aryl include phenyl, biphenyl, terphenyl, quaterphenyl, naphthyl, tetrahydronaphthyl, anthracenyl, dihydroanthracenyl, benzanthenracenyl, dibenzanthenracenyl, phenanthrenyl, fluorenyl, pyrenyl, idenyl, azulenyl, chrysene, each of which may be further optionally substituted.

The term "haloalkyl" refers to an alkyl group, as herein before defined, substituted by one or more halogen atoms, eg, CH$_2$F, CH$_2$Cl, CH$_2$Br, CF$_3$, CCl$_3$, CBr$_3$, CHFCH Br or CH$_2$CH$_2$Cl.

The term "arylalkyl" is intended to refer to an alkyl group, as herein before defined, substituted by an aryl group, as herein before defined, for example, benzyl, ethylphenyl.

In a preferred embodiment, R1 and R2 together and/or R3 and R4 together form a group of formula (a). Suitably, when R1 and R2 together, or R3 and R4 together, independently form a group of formula (a), U is CH$_2$ and m is 1. More preferably, the group of formula (a) is selected from one of -(CH$_2$)$_n$-, -(CH$_2$)$_5$-, -(CH$_2$)$_4$-, -(CH$_2$)$_3$-, -(CH$_2$)$_2$- or -(CH$_2$)$_7$. In yet another embodiment, the alkyliden chain formed by -(CH$_2$)$_m$-(CH$_2$)$_n$- is mono-or di- substituted at one or more -CH$_2$- groups by an optional substituent, as herein before defined, for example; methyl, ethyl, n-propyl, iso-propyl, hydroxy, halo, methoxy, ethoxy, iso-propoxy, acetoxy, and phenyl.
In another preferred embodiment of formula (a), U is NH, O, or S and m is 1. More preferably, R¹ and R², and/or R³ and R⁴, together with the nitrogen to which they are attached form a group, selected from:

which may be optionally substituted by one or more groups at one or more carbon atoms, and/or, where U is NH, at the nitrogen atom as hereinbefore described.

In a preferred embodiment of the invention, R¹ and R² and/or R³ and R⁴ together with the nitrogen to which they are attached, each may independently form an optionally substituted morpholino, thiomorpholino or piperizinino group.

Another group of compounds which may be suitable for use in the present invention are those
of Formula (II):

![Chemical Structure](image)

(II)

or a pharmaceutically acceptable derivative thereof, wherein R^1-R^4 are as defined for Formula I. In preferred embodiments of Formula (II), R^1 and R^2 and/or R^3 and R^4 together form a group of formula (a) as hereinbefore described.

The compounds for use in the present invention, suitably those of Formula (I) or (II), may be administered in a single dose or a series of doses. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a composition, preferably as a pharmaceutical composition.

Accordingly, yet another aspect of the invention contemplates a composition comprising a compound capable of facilitating the disruption of a chelated metal cation domain of a protein encoded for by an MPV gene, together with a pharmaceutically acceptable carrier, diluent or excipient.

The invention also provides a composition comprising a compound according to Formula (I) or (II) together with a pharmaceutically acceptable excipient, carrier or diluent.

The carrier must be pharmaceutically "acceptable" in the sense of being compatible with the other ingredients of the composition and not injurious to the subject. Compositions include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. The compositions may conveniently be presented in unit dosage form and
may be prepared by any methods well known in the art of pharmacy. Such methods include
the step of bringing into association the active ingredient with the carrier which constitutes
one or more accessory ingredients. In general, the compositions are prepared by uniformly
and intimately bringing into association the active ingredient with liquid carriers or finely
divided solid carriers or both, and then if necessary shaping the product.

Compositions of the present invention suitable for oral administration may be presented as
discrete units such as capsules, lozenges, sachets or tablets each containing a predetermined
amount of the active ingredient; as a powder or granules; as a solution or a suspension in an
aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid
emulsion. The active ingredient may also be presented as a bolus, electuary or paste.

A tablet may be made by compression or moulding, optionally with one or more accessory
ingredients. Compressed tablets may be prepared by compressing in a suitable machine the
active ingredient in a free-flowing form such as a powder or granules, optionally mixed with
a binder (e.g. inert diluent, preservative disintegrant (e.g. sodium starch glycolate, cross-
linked polyvinyl pyrrolidone, cross-linked sodium carboxymethyl cellulose) surface-active or
dispersing agent. Moulded tablets may be made by moulding in a suitable machine a mixture
of the powdered compound moistened with an inert liquid diluent. The tablets may optionally
be coated or scored and may be formulated so as to provide slow or controlled release of the
active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying
proportions to provide the desired release profile. Tablets may optionally be provided with
an enteric coating, to provide release in parts of the gut other than the stomach.

Compositions suitable for topical administration may be presented as solutions or suspensions,
creams, lotions, ointments, powders, plasters or bandages.

Compositions for rectal administration may be presented as a suppository with a suitable base
comprising, for example, cocoa butter.
Compositions suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

5 Compositions suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions which may contain anti-oxidants, buffers, bactericides and solutes which render the composition isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The compositions may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.

15 Preferred unit dosage compositions are those containing a daily dose or unit, daily sub-dose, as herein above described, or an appropriate fraction thereof, of the active ingredient.

It should be understood that in addition to the active ingredients particularly mentioned above, the compositions of this invention may include other agents conventional in the art having regard to the type of composition in question, for example, those suitable for oral administration may include such further agents as binders, sweeteners, thickeners, flavouring agents disintegrating agents, coating agents, preservatives, lubricants and/or time delay agents. Suitable sweeteners include sucrose, lactose, glucose, aspartame or saccharine. Suitable disintegrating agents include corn starch, methylcellulose, polyvinylpyrrolidone, xanthan gum, bentonite, alginic acid or agar. Suitable flavouring agents include peppermint oil, oil of wintergreen, cherry, orange or raspberry flavouring. Suitable coating agents include polymers or copolymers of acrylic acid and/or methacrylic acid and/or their esters, waxes, fatty alcohols, zein, shellac or gluten. Suitable preservatives include sodium benzoate, vitamin E, alpha-tocopherol, ascorbic acid, methyl paraben, propyl paraben or sodium bisulphite. Suitable lubricants include magnesium stearate, stearic acid, sodium
oleate, sodium chloride or talc. Suitable time delay agents include glyceryl monostearate or glyceryl distearate.

In yet another aspect of the invention, there is provided a method of treating or preventing a disease condition caused or exacerbated by an MPV comprising the administration of an effective amount of a compound capable of facilitating the disruption of a chelated metal cation domain of a protein encoded by an MPV gene to a mammal in need thereof.

The invention also relates to a method of treating or preventing a disease which is caused or exacerbated by an MPV comprising the administration of a compound according to Formula (I) or (II) to a mammal in need thereof.

The present invention also relates to the use of a compound capable of facilitating the disruption of a chelated metal cation domain of a protein encoded by an MPV gene in the manufacture of a medicament for the treatment or prophylaxis of a disease condition caused or exacerbated by an MPV.

As used herein, the term "effective amount" relates to an amount of compound which, when administered according to a desired dosing regimen, provides the desired therapeutic or prophylactic activity. The desired dosing regimen may depend on the weight, age and condition of the patient. It is within the skills and knowledge of the attending physician to determine suitable dosing regimens based thereon. Dosing may occur at intervals of minutes, hours, days, weeks, months or years or continuously over any of these periods. Suitable dosages may lie within the range of about 0.1 ng per kg of body weight to 1 g per kg of body weight per dosage. The dosage is preferably in the range of 1 μg to 1 g per kg of body weight per dosage such as 1 mg to 1 g per kg of body weight per dosage. Suitably, the dosage may be in the range of 1 μg to 500 mg per kg of body weight per dosage, for example in the range of 1 μg to 250 mg per kg of body weight per dosage, or 1 to 100 mg per kg of body weight per dosage, such as 1 μg to 50 mg.
Optionally, the compounds referred to herein may also be administered in the form of a pharmacologically acceptable derivative. The term "pharmacologically acceptable derivative" refers to any pharmacologically acceptable salt, ester, solvate, hydrate or any other compound which, upon administration to the recipient is capable of providing (directly or indirectly) a compound as described herein. Suitable pharmacologically acceptable salts include salts of pharmacologically acceptable inorganic acids such as hydrochloric, sulphuric, phosphoric nitric, carbonic, boric, sulfamic, and hydrobromic acids, or salts of pharmacologically acceptable organic acids such as acetic, propionic, butyric, tartaric, maleic, hydroxymaleic, fumaric, maleic, citric, lactic, mucic, gluconic, benzoic, succinic, oxalic, phenylacetic, methanesulphonic, toluenesulphonic, benezenesulphonic, salicylic sulphanilic, aspartic, glutamic, edetic, stearic, palmitic, oleic, lauric, pantothenic, tannic, ascorbic and valeric acids.

The search for anti-viral drugs is hampered when it requires assays that monitor the complete life cycle of a virus in context of the biology of the infected cell or animal. This is primarily because these in vivo assays are time consuming and expensive, and chemical compounds that alter the biology of the infected cells may lead to misinterpretations. In contrast, pure viral proteins expressed from cloned genes allow the development of low-cost and efficient assays specifically designed to measure the effects on the chemistry, structure and function of these proteins. These strategies have been successfully employed recently to identify drugs against several viral diseases, most notably against HIV-1. Similar efforts directed against papillomaviruses are in their infancy, even though these viruses affect several million patients a year worldwide.

Suitable compounds of the invention, such as compounds of Formula (I) and Formula (II) are those which facilitate the disruption of a chelated metal cation domain in a protein encoded for by an MPV gene. Thus, in order to provide an initial evaluation of the efficacy of the compounds useful in the treatment of diseases or conditions caused by MPVs, the ability of these compounds to disrupt the integrity of a chelated metal cation domain, thereby releasing the metal cation, offers a useful assay therefor.
This can be achieved by contacting a protein molecule, encoded by an MPV gene, containing a chelated metal cation domain, with an effective amount of said compound for a time and under conditions sufficient to facilitate disruption of the chelated metal cation domain and directly or indirectly determining the amount of chelated metal cation released wherein the amount of chelated metal cation released is indicative of the disruption of the chelated metal cation domain.

Where the chelated metal is zinc, zinc release can be measured as an increase in the fluorescence of the zinc-selective fluorophore TSQ (N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide) (18) in the presence of the protein and the active compound (TSQ assay).

In such an assay, the increase in fluorescence measured can be described as a percentage of the increase in fluorescence observed for a positive control compound which provides 100% zinc release. A suitable positive control compound is H$_2$O$_2$. Preferred compounds which may be useful in the present invention are those which release at least 30% of the chelated zinc as measured by the TSQ assay. Particularly preferred compounds for use in the present invention are those which release at least 40% of the chelated zinc, more preferably at least 50%.

Another method of identifying compounds useful in the treatment of a disease condition caused or exacerbated by an MPV comprises contacting a protein molecule, containing a chelated metal cation domain encoded by an MPV gene, with an effective amount of said compound for a time and under conditions sufficient to facilitate disruption of the chelated metal cation domain and directly or indirectly determining the absence or otherwise of binding of said protein to a ligand, wherein the absence of binding is indicative of disruption of the chelated metal cation domain.

Mutation analysis of the cysteines involved in coordinating zinc has demonstrated that zinc binding is a requirement for E6 interaction with E6AP and E6BP, two coactivators of E6 mediated cellular transformation (5, 19-22). Thus, another useful assay for determining
suitable compounds which may be used in the present invention measures the ability of the compound to inhibit the binding of the E6 protein to E6AP, E6BP, paxilin or similar or homologue motifs. Thus, suitable compounds which may be used in the present invention are those which are capable of reducing, inhibiting or otherwise decreasing the binding interaction between the E6 protein and E6AP or E6BP. The efficacy of compounds can be evaluated in BIACORE and GST pulldown experiments (binding assay). Preferred compounds are those which inhibit or decrease binding by at least 50%.

Zinc finger proteins are required for maintenance of cell viability. Preferably, the compounds for use in the present invention are specific in their ability to affect the viability of MPV containing cells, with little or no cytotoxic effects on the cellular functioning of healthy non-MPV containing cells. The viability of MPV-infected cells (and non infected cells) in the presence of compounds of Formulae (I) or (II) can be measured by incubating with the tetrazolium salt WST1 (Roche Molecular Biochemicals, Mannheim Germany) and measuring the absorption readings thereof (WST1 assay).

Preferred compounds for use in the present invention produce values of at least 30% zinc release in the TSQ assay and/or inhibit or reduce binding of the E6 protein to E6AP or E6BP and/or exhibit selective cytotoxicity towards MPV-infected cells.

Especially preferred compounds for use in the present invention are those which release at least 30% of chelated zinc from a protein having a chelated zinc domain as measured by the TSQ assay, and inhibit binding of the E6 protein to E6AP or E6BP as measured by the herein described BIACORE assay and selectively inhibit cell growth of MPV-infected cells whilst having little or no cytotoxic effect on non-MPV-infected cells (for example, as determined by the WST1 assay as herein described).

Other preferred compounds inhibit or reduce binding of the E6 protein to E6AP or E6BP by at least 50% and are specifically toxic to MPV-infected cells.
Yet other preferred compounds release at least 50% of chelated zinc and inhibit E6 binding to E6AP or E6BP by at least 50%.

Suitable examples, although by no means to be considered as limiting, are illustrated below, where $n = 1$ to 5:
GROUP 1 TSQ>50% AND BIACORE + AND WST1-SPECIFICITY +

GROUP 2 TSQ>40% AND BIACORE + AND WST1-SPECIFICITY +
GROUP 3 TSQ>30% AND BIACORE + AND WST1-SPECIFICITY +

C41

C75

C57

C77

GROUP 4 TSQ<30% AND BIACORE + AND WST1-SPECIFICITY +

C65

C70
GROUP 5 TSQ > 50% AND BIACORE+

5

R24

10

C42

15

C32

20

C49

25

C27
GROUP 6 TSQ > 50% OR BIACORE OR WST1-SPECIFICITY +

R25

\[
\begin{align*}
N & - S - S - N \\
\end{align*}
\]

C82

\[
\begin{align*}
N & - S - S - N \\
\end{align*}
\]

C69

\[
\begin{align*}
N & - S - S - N \\
\end{align*}
\]

C71

\[
\begin{align*}
N & - S - S - N \\
\end{align*}
\]

C35

\[
\begin{align*}
N & - S - N \\
\end{align*}
\]

C83
The invention will now be described with reference to the following non-limiting examples

MODES FOR CARRYING OUT THE INVENTION

5 General
Compounds C32 and C35 are available from Aldrich Rare Chemicals (cat # S5, 169-2) and Acros Organic (cat # 22758.60). Compound C16 is available from Tee Hai Chemicals (Singapore).

10 Role of GSH in drug-screens

GSH is, at concentrations of 1-10 mM in most cell types, the most abundant non-protein intracellular thiol, and it is involved in biochemical reactions that can inactivate pharmaceutical compounds. In the original TSQ assays, GSH was present at 5-10 mM. Under these conditions, only a few of the compounds, including C16, were capable of releasing zinc. Increased concentrations of C16 were also required in the GST-pulldown assay, possibly to overcome the endogenous levels of GSH in the reticulolysate extracts. Similarly, in cell viability assays, C16 was only effective at concentrations of 50 \(\mu \text{M} \), exceeding the amount used in TSQ assays five fold. To overcome the inactivating function of GSH, higher amounts of C16 were needed in vitro than in vivo. The TSQ assay is much easier when it comes to high-throughput capabilities to identify lead compounds, while in vivo assays and in vitro assays in the presence of GSH, are useful to select compounds that reach intracellular E6 in sufficiently high concentrations and in chemically unaltered form.

25 Expression of E6, E6AP as GST-fusion proteins
E6, E6AP and E6BP-Glutathione S-transferase (GST) fusion proteins were prepared by using pGEX system Amersham (Pharmacia Biotech AB, Uppsala Sweden). The full length HPV-16 E6 gene was amplified via polymerase chain reaction and cloned in the vector pGeX4T2 as a NotI-SalI insert. A clone encoding the C-terminal 210 amino acids of E6BP/ERC55 in pGEX3X was a kind gift of E.J. Androphy (5). E6AP (amino acids 213-
865), cloned in pGEX2T was a kind gift of P.M. Howley (28). These vectors were grown in the E.coli strain AB1899, induced for fusion protein expression for 4 hrs with 0.2 mM IPTG, harvested and lysed in GST-buffer (Phosphate buffered saline (PBS), 50 mM Tris pH 8.0, 0.1% Triton) with 5 mM dithiothreitol (DTT), 0.5 mM phenylmethylsulfonyl fluoride (PMSF) and 1 mg/ml lysozyme, followed by sonication. After ultracentrifugation, supernatants of bacterial lysates were incubated at 4°C on a column of glutathione-sepharose beads (Pharmacia). Unbound, non GST-fusion proteins were eliminated by several washes with GST-buffer. For direct use of GST-fusion proteins bound on glutathione-sepharose beads in the zinc-release assay, the glutathione-sepharose beads were resuspended in PBS, Tris pH 8.2. GST-fusion proteins for BIACORE analysis were eluted with elution-buffer (10 mM GSH, 50 mM Tris, PBS, pH 8.2)

Example 1

15 **General Synthesis of Compounds of Formula (I) and (II)**

Compounds of Formula (I) can be prepared by reacting appropriately substituted amines according to the general procedure below.

Alkylation of primary amine (R¹NH₂, 0.1 mmol) with alkyl halide (R²X, 0.1 mmol) in acetonitrile (0.5 ml) and diethylamine (0.15 mmol) at 80°C for 30 min gave the secondary amine (R¹R²NH) after purification on silica gel column.

A solution of the secondary amine (0.5 mmol) in petroleum-ether (10 ml) was pre-cooled to -78°C before disulfur dichloride (0.125 mmol) was added. The solution was vigorously stirred for 15 minutes at -78°C and another 30 min at room temperature. Water (20 ml) was added and the desired compound was extracted into the organic phase using diethyl ether (3 x10 ml). The combined organic layers were dried over magnesium sulfate, filtered and concentrated in vacuo. The desired compound was purified on preparative TLC plate. Mixtures of amines may be used to prepare unsymmetrical compounds of Formula (I).
Besides the desired disulfide compound, trisulfide, tetrasulfide or pentasulfide compounds may also be obtained. A dilute reaction solution (20 ml) generally results in higher yield of the disulfide compound.

![Chemical Reaction Diagram]

\[R^1NH_2 + \text{DIEA, } 80^\circ C \rightarrow R^1NH + R^2-Cl \text{ or } R^2-Br \]

\[\text{S}_2\text{Cl}_2, -78^\circ C \rightarrow N-S-N(S)_n-N^+ \]

\[R^1/R^2 = R^3/R^4 \]

\[n = 1-5 \]

SCHEME 1

Compounds of Formula (II) may be prepared by treatment of a secondary amine (or mixtures thereof) with carbon disulfide in the presence of sodium hydroxide followed by oxidation of the resulting sodium dithiocarbamate with sodium hypochlorite.

Spectroscopic data for a selected number of compounds from Groups 1-6 are presented below.

Group 1

C48 (C\(_{10}H_{20}N_2S_2\));

CAS: 10220-20-9

\(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta: 1.36-1.43\) (m, 4H), 1.63-1.70 (m, 8H), 2.77-2.79 (m, 8H).

\(^{13}\text{C NMR (100 MHz, CDCl}_3\) \(\delta: 22.8, 27.0, 57.4\).
C55 (C₁₈H₂₄N₆S₂):

1H NMR (400 MHz, CDCl₃) δ: 2.92-96 (m, 8H), 3.60-3.61 (m, 8H), 6.63-6.66 (m, 4H), 7.47-7.51 (m, 2H), 8.18-8.19 (m, 2H).

13C NMR (100 MHz, CDCl₃) δ: 45.8, 55.4, 107.1, 113.6, 137.5, 147.9, 159.0.

MS found 389 (M+1)$^+$.

C63 (C₆H₁₂N₂S₈ₙ+1):

1H NMR (400 MHz, CDCl₃) δ: 2.09-2.28 (m, 4H), 3.79-3.83 (m, 8H)

13C NMR (100 MHz, CDCL₃) δ: 17.6, 56.9, 57.5.

MS found for trisulfide 209(M+1)$^+$

Group 2

C37 (C₁₂H₂₄N₂O₂S₂):

C37 is a mixture of diastereoisomers.

1H and 13C NMR were the same as reported in SYNLETT p473, August 1990.

MS found 293(M+1)$^+$

C38 (C₈H₁₆N₂S₄):

1H NMR (400 MHz, CDCl₃) δ: 2.71-2.74 (m, 8H), 3.09-3.11 (m, 8H).

13C NMR (100 MHz, CDCl₃) δ: 28.8, 58.2.

MS found 269 (M+1)$^+$

C39 (C₁₀H₂₂N₄S₂):

1H NMR (400 MHz, CDCl₃) δ: 2.25 (s, 6H), 2.45 (broad s, 8H), 2.82-2.84 (m, 8H).

13C NMR (100 MHz, CDCl₃) δ: 45.78, 45.82, 55.57.
MS found 263 (M+1)⁺.

Group 3

5 **C41** (C₁₄H₂₆N₄O₄S₂):

¹H NMR (400 MHz, CDCl₃) δ: 1.27 (t, J=7.1 Hz, 6H), 2.78 (broad s, 8H), 3.53 (broad s, 8H), 4.14 (q, J=7.1 Hz, 4H).

¹³C NMR (100 MHz, CDCl₃) δ: 14.6, 44.1, 55.5, 61.6, 155.3.

10 MS found 379 (M+1)⁺

C57 (C₂₄H₃₀N₄O₄Sₙ₊₁):

A mixture of 2 compounds.

15 ¹H NMR (400 MHz, CDCl₃) δ: 2.50 (broad s,8H), 3.02-3.09 (m, 8H), 3.36-3.41 (m, 4H), 5.92-5.93 (m, 4H), 6.72-6.75 (m, 4H), 6.84-6.85 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ:53.1, 56.1, 56.3, 62.4, 100.90, 107.8, 107.9, 109.3, 109.4, 122.1, 122.2, 131.7, 131.8, 146.6, 146.7, 147.1.

MS found pentasulfide 599 (M+1)⁺ and hexasulfide 631 (M+1)⁺.

20 **C75** (C₁₆H₂₂N₆Sₙ₊₁)

¹H NMR (400 MHz, CDCl₃) δ: 3.08-3.10 (m, 8H), 3.90 (broad s, 8H) 6.50-6.54 (m,2H), 8.31-8.33 (m, 4H).

25 ¹³C NMR (100 MHz, CDCl₃) δ: 43.8, 55.1, 110.1, 157.7, 161.4.

MS found for trisulfide 423 (M+1)⁺

C77 (C₂₂H₃₀N₄Sₙ₊₁):

30 ¹H NMR (400 MHz, CDCl₃) δ: 2.53 (broad s, 8H), 3.06-3.11 (m, 8H), 3.47 (broad s, 4H),
7.26-7.36 (10H).

13C NMR (100 MHz, CDCl$_3$) δ: 53.2, 56.1, 62.7, 127.2, 128.3, 129.1, 137.8.

Multiple S observed.

5 Group 4

C65 (C$_{24}$H$_{30}$N$_4$O$_2$S$_2$):

1H NMR (400 MHz, CDCl$_3$) δ: 2.54 (s, 6H), 3.16 (broad s, 8H), 3.42 (broad s, 8H), 6.85-10 6.89 (m, 4H), 7.87-7.90 (m, 4H).

13C NMR (100 MHz, CDCl$_3$) δ: 26.1, 47.9, 55.6, 113.9, 130.4, 153.6, 196.7.

C70 (C$_{22}$H$_{30}$N$_4$O$_2$S$_{(n+1)}$):

CAS: 15575-30-1

1H NMR (400 MHz, CDCl$_3$) δ: 3.15 (broad s, 8H), 3.28 (broad s, 8H), 3.89 (s, 3H), 3.90 (s, 3H), 6.86-6.90 (m, 2H), 6.93-6.95 (m, 4H), 7.03-7.06 (m, 2H).

13C NMR (100 MHz, CDCl$_3$) δ: 50.9, 55.4, 55.5, 55.9, 56.2, 111.2, 118.3, 120.9, 123.2, 140.7, 152.2.

Multiple S observed.

20 Group 5

C42 (C$_8$H$_{16}$N$_2$S$_2$):

1H NMR (400 MHz, CDCl$_3$) δ: 1.83-1.89 (m, 8H), 2.88-2.91 (m, 8H)

13C NMR (100 MHz, CDCl$_3$) δ: 24.9, 55.5.

MS found 205 (M+1)$^+$

C49 (C$_8$H$_{20}$N$_2$S$_2$):

CAS: 15575-30-1
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 1.20-1.29 (m, 12 H), 2.94-3.07 (m, 8H).
\(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 13.2, 51.7, 51.9, 52.0, 52.1.
MS found 208 M\(^+\).

5 Group 6

C71 (C\(_{22}\)H\(_{30}\)N\(_4\)O\(_2\)S\(_2\)):

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 3.03 (broad s, 8H), 3.14 (broad s, 8H), 3.77 (s, 6H), 6.83-6.91 (m, 8H).
\(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 51.6, 55.5, 55.9, 114.4, 118.6, 145.2, 154.1.
MS found 447 (M+1)

C82 (C\(_{10}\)H\(_{20}\)N\(_2\)O\(_2\)S\(_2\)):

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 1.19 (s, 12H), 3.70 (s, 4H), 4.68 (s, 4H).
\(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 24.26, 24.28, 62.00, 79.04, 85.43.
MS found 265 (M+1)

20 Example 2

Zinc Release (TSQ Assay)

In earlier studies, reduced glutathione (GSH) was required to elute recombinant glutathione sulfhydryl transferase E6 (recombinant (GST-E6)) protein during the purification process. However, the reducing activity of the GSH sulfhydryl groups protected GST-E6 protein from the chemical attack by agents, such as the disulphide based organic compounds of Formula (I) and (II). This problem was overcome by using GST-E6 protein in the absence of free GSH but still bound to glutathione-sepharose beads. Individual assays were done in the presence of 9 \(\mu\)g GST-E6 protein, corresponding to a concentration of 1 \(\mu\)M GST-E6 protein
and 2 \(\mu \text{M} \) bound zinc, assuming the presence of two Zn ions per protein.

Release of zinc from HPV-16-E6 was monitored by the change in fluorescence of the zinc-selective fluorophore TSQ (N-6-methoxy-8-quinolyl)-p-toluenesulfonamide), (Molecular Probes, Eugene, Oregon) by modification of published procedures (25, 26, 27). In a total reaction volume of 200 \(\mu \text{l} \), 9 \(\mu \text{g} \) (1 \(\mu \text{M} \)) recombinant GST-E6 protein (corresponding to a concentration of 1\(\mu \text{M} \)), bound to glutathione-sepharose beads, were incubated with 10 \(\mu \text{M} \) of each compound or 0.6\% (170 mM) \(\text{H}_2\text{O}_2 \) in TSQ-assay buffer (10 mM sodium phosphate buffer pH7.0, 10\% glycerol) for 2 hours at room temperature (200 \(\mu \text{l} \) total volume in 96-well plates). Immediately after addition of 100 \(\mu \text{M} \) TSQ, the increase in fluorescence was measured on a SLT Fluostar (355 nm excitation filter and 460 nm emission filter, Tecan, Salzburg).

Table 1 shows the values of TSQ fluorescence obtained.
Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>TSQ %</th>
<th>Compound</th>
<th>TSQ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>6.1</td>
<td>C57</td>
<td>31.1</td>
</tr>
<tr>
<td>C16</td>
<td>63.2</td>
<td>C63</td>
<td>54.8</td>
</tr>
<tr>
<td>C27</td>
<td>103</td>
<td>C65</td>
<td>23.7</td>
</tr>
<tr>
<td>C32</td>
<td>80.9</td>
<td>C69</td>
<td>0</td>
</tr>
<tr>
<td>C35</td>
<td>106</td>
<td>C70</td>
<td>12.4</td>
</tr>
<tr>
<td>C37</td>
<td>40.3</td>
<td>C71</td>
<td>0</td>
</tr>
<tr>
<td>C38</td>
<td>41.8</td>
<td>C75</td>
<td>37</td>
</tr>
<tr>
<td>C39</td>
<td>45</td>
<td>C77</td>
<td>33.8</td>
</tr>
<tr>
<td>C41</td>
<td>36.8</td>
<td>C82</td>
<td>28.4</td>
</tr>
<tr>
<td>C42</td>
<td>50.5</td>
<td>C83</td>
<td>22</td>
</tr>
<tr>
<td>C48</td>
<td>54.3</td>
<td>R24</td>
<td>71.0</td>
</tr>
<tr>
<td>C49</td>
<td>57</td>
<td>R25</td>
<td>30.9</td>
</tr>
<tr>
<td>C55</td>
<td>50.6</td>
<td>R26</td>
<td>54.9</td>
</tr>
</tbody>
</table>

Values given are % values of Zinc release. The relative fluorescence units (RFU) were normalized to the amount of zinc released by H_2O_2 (regarded as 100%). The concentration of compound used was 10 μM for C27-C35, 13 μM for C37-C83, H202 was used at 0.3% for C27-C35 and 0.2% for C37-C83.

Note: C69 was strongly coloured (yellow / golden) at a concentration of 1 mM, all other compounds were without colour. Potentially this coloured compound interferes in TSQ-Zn fluorescence.

Values for DMSO and C16 are the average from 5 independent experiments.
Example 3

Binding Assays (BIACORE Assay)

5 BIACORE allows real time analysis of bimolecular interactions without the need for isotopic or enzymatic labelling. BIACORE technology is based on the optical surface plasmon resonance (SPR), a technique that allows for detecting small changes in the refractive index on the surface of a thin gold film coated with a dextran matrix. Typically, one of the binding partners (termed the ligand) is covalently linked to the dextran matrix, while the other partner (termed the analyte) is introduced in a flow passing over the surface. The change in refractive index resulting from the interaction of the molecules is expressed in resonance units (RU): a SPR response of 1000 RU corresponds to a change of the surface concentration of the analyte of 1 ng protein/mm². GST-E6AP and GST-E6BP were used as ligands and GST-E6 was used as the analyte. Controls gave the expected outcome, namely the oxidation of sulfhydryl groups by H₂O₂ of chelating of zinc ions by EDTA completely eliminated complex formation. Further controls included using the dextran matrix alone or GST as the ligand. GST-E6 did not bind significantly to the dextran matrix or to GST (background values 100 and 200 RU), respectively.

20 Binding of GST-E6 to GST-E6BP, GST-E6AP and GST was monitored by surface plasmon resonance (SPR) on a BIACORE 2000 machine (Biacore AB, Uppsala, Sweden). Purified ligand (GST, GST-E6AP and GST-E6BP) was covalently amine coupled to a CM-5 sensor chip by activation, binding and deactivation reactions suggested by Biacore AB. Typically 6000-10000 RU of GST, E6BP and E6AP were immobilized on three difference flowcells.

25 Aliquots of purified HPV-16 GST-E6 (7 uM in 10mM GSH, 50 mM Tris/PBS buffer, pH 8.2) were incubated with either 400μM compound, or 5 mM EDTA, or 0.6% (170 mM) H₂O₂ for 2 hrs at room temperature. Then 10 μl of sample was injected at 1 μl/min over the three immobilized ligands using the sequential flow mode. The interactions between GST-E6 and ligands were monitored by the change of resonance signal in arbitrary units (RU). In between each sample, the surfaces were regenerated with a short 1 minute pulse of 50 mM
NaOH that resulted in complete dissociation of all non-covalently bound analyte, leaving the immobilized GST-E6BP and GST-E6AP at approximately full activity. After 20 cycles of binding and regeneration, the amount of E6 binding capacity decreased approximately 18%-19% and therefore reduced the maximal amount of E6 binding. Typically complex formation without compound treatment led to signals of 1540-1900RU and 1150-1400 for GST-E6 with GST-E6BP and GST-E6AP, respectively. Absence of a resonance signal, or a reduced signal was scored as an active compound.

The results for the BIACORE binding assay are shown below in Table 2.
Table 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>BIACORE (E6BP/E6AP)</th>
<th>Compound</th>
<th>BIACORE (E6BP/E6AP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>-</td>
<td>C57</td>
<td>+</td>
</tr>
<tr>
<td>C16</td>
<td>+</td>
<td>C63</td>
<td>+</td>
</tr>
<tr>
<td>C27</td>
<td>+</td>
<td>C65</td>
<td>+</td>
</tr>
<tr>
<td>C32</td>
<td>+</td>
<td>C69</td>
<td>+</td>
</tr>
<tr>
<td>C35</td>
<td>-</td>
<td>C70</td>
<td>+</td>
</tr>
<tr>
<td>C37</td>
<td>+</td>
<td>C71</td>
<td>-</td>
</tr>
<tr>
<td>C38</td>
<td>+</td>
<td>C75</td>
<td>+</td>
</tr>
<tr>
<td>C39</td>
<td>+</td>
<td>C77</td>
<td>+</td>
</tr>
<tr>
<td>C41</td>
<td>+</td>
<td>C82</td>
<td>+</td>
</tr>
<tr>
<td>C42</td>
<td>+</td>
<td>C83</td>
<td>+</td>
</tr>
<tr>
<td>C48</td>
<td>+</td>
<td>R24</td>
<td>+</td>
</tr>
<tr>
<td>C49</td>
<td>+</td>
<td>R25</td>
<td>+</td>
</tr>
<tr>
<td>C55</td>
<td>+</td>
<td>R26</td>
<td>+</td>
</tr>
</tbody>
</table>

"+" = compound interferes in binding of E6 with E6AP and E6BP, binding is less than 50% of the corresponding E6-DMSO value.

Example 4

Binding of GST fusion proteins to *in vitro* translated E6 protein (GST-Pulldown Experiment)

25 In the BIACORE results, C16 was found to have inhibitory activity for E6 binding to both E6BP and E6AP. On this basis, it was examined whether C16 could also interfere with E6-E6BAP interaction in the GST-pulldown assay. Also, different concentrations of C16 were examined to determine the minimal concentration for inhibitory activity.
The open reading frame of HPV-16 E6, cloned into the Hind III and PstI site of the pSP64 plasmid (33), was in vitro translated with 35S-cysteine by using the TNT-SP6 Coupled Reticulocyte Lysate System as recommend by the manufacturer (Promega). All washing and binding reactions were performed with the E6BP-binding buffer described (5) but without DTT (100 mM NaCl, 100 mM Tris-HCl pH8.0, 1% NP40, 0.1% nonfat dry milk and 1 mM PMSF. 40 μl of in vitro translated E6 plus 360 μl of E6BP-binding buffer were incubated for 2hrs at room temperature with test compounds at different concentrations from 0-1 mM (dissolved in DMSO at 1%), 5 mM EDTA, and H_2O_2 at 0.3% (85 mM). The sample was then passed over columns containing glutathione-sepharose beads with bound GST, GST-E6, GST-E6BP or GST-E6AP proteins. The beads were heated to 95°C in 50 μl Laemmli sample buffer (BIO-RAD) with 2.5% 2-mercaptoethanol, subjected to electrophoresis on a 15% polyacrylamide gel, fixed, stained, and autoradiographed. Interference with complex formation identified reactive compounds. Desitometric quantification was performed with a BIO-RAD/GS700 imaging desitometer.

As shown in Fig.2, C16 inhibits E6 binding to both cellular proteins. Of the concentrations examined, concentrations from 10 μM to 100 μM provide greatest inhibitory activity.

Example 5

Determination of cell viability (WST1 assay)

All cell lines were obtained from the American Type Culture Collection (Manassas, VA) unless otherwise noted. SiHa (human cervical epithelial tumor line, HPV16-positive), CaSki (human cervical epithelial tumor line, HPV16-positive), HaCat (immortalized human skin epithelial cell line, HPV-negative), HeLa (human cervical epithelial tumor line, HPV18-positive), 444 (hybrid of HeLa and fibroblast, HPV18-positive) obtained from Eric Stanbridge (University of California, Irvine), MCF7 (human mammary epithelial tumor cell line, HPV-
negative), HT3 (human cervical epithelial tumor cell line, HPV-negative) was obtained from the German Cancer Research Institute/ DKFZ-Heidelberg, and HepG2, (human liver epithelial tumor cell line, HPV-negative), were grown in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal calf serum, 100U penicillin and 1000U streptomycin. Cells were allowed to attach to the surface of microwell dishes overnight and subsequently, incubated with medium containing the zinc ejecting compounds at the concentrations (10-100 uM). Viability of the cells was scored by measuring the absorption of the tetrazolium salt WST1 (Roche Molecular Biochemicals, Mannheim, Germany) in an Elisa-plate reader (Tecan, Salzburg, Austria) at a wavelength of 450 nm and a reference wavelength of 630 nm.

A total of 10 000 cells per well were plated on 24 well plates, after attachment overnight, they were treated 3 times in 3 days with C16 at 10 μM and 50 μM. The activity of C16 was also compared with that of C4 (azodicarbonamide) which causes ejection of zinc from HIV-1 NCp7 and is currently used in clinical trials for the treatment of AIDS. Figure 3 documents that C4 did not cause growth inhibition in any of these six cell lines while C16 at 50 μM demonstrated substantial and specific inhibition of cell viability in HPV-negative cell lines as cervical epithelial tumour cells (SiHa, Caski, HeLa). C16 had little or no effect on HPV-negative cells as cervical epithelial tumour cells (HT3), mammary epithelial cancer cells (MCF7) and the immortalized skin epithelial cells (HaCat) and on the nontumorigenic (23, 24) HeLa-fibroblast hybrid cell line 444.

Microscopic observation (Fig. 4) demonstrates in addition the differential effect of C16 on E6-dependent cells (SiHa and HeLa) and E6-independent cells (444 and HaCat). Cell viability and the cytotoxic specificity for a number of other compounds of Formula (I) and (II) were also determined. The results are depicted in Table 3.
Table 3

<table>
<thead>
<tr>
<th>Compound</th>
<th>WST1</th>
<th>WST1-spec</th>
<th>Compound</th>
<th>WST1</th>
<th>WST1-spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>-</td>
<td>-</td>
<td>C57</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C16</td>
<td>+</td>
<td>+</td>
<td>C63</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C27</td>
<td>+</td>
<td>-</td>
<td>C65</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C32</td>
<td>++</td>
<td></td>
<td>C69</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C35</td>
<td>+</td>
<td>-</td>
<td>C70</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C37</td>
<td>+</td>
<td>+</td>
<td>C71</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C38</td>
<td>+</td>
<td>+</td>
<td>C75</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C39</td>
<td>+</td>
<td>+</td>
<td>C77</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C41</td>
<td>+</td>
<td>+</td>
<td>C82</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>C42</td>
<td>+</td>
<td>-</td>
<td>C83</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>C48</td>
<td>+</td>
<td>+</td>
<td>R24</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C49</td>
<td>+</td>
<td>-</td>
<td>R25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C55</td>
<td>+</td>
<td>+</td>
<td>R26</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

WST1: +: cytotoxic effect in cell culture at 50 μM

WST1-spec: +: specific cytotoxic effects of compounds at 50μM in cell culture for HPV containing cell lines as HeLa, SiHa and Caski, compared to HPV-negative cell lines MCF7, HEPG2, (HaCat, HT3, 444).

Example 6

Western Blot Detection of p53 and poly-ADP ribose polymerase (PARP)

10^6 cells were plated on 10 cm petri-dishes with 10 ml medium and after attachment
overnight, treated with 100 μM C16 or 0.5% DMSO for one day. At the time of cell harvest most C16-treated cells were still attached to the plate. Cells were harvested using a rubber policeman and lysed in 10 mM Hepes buffer, pH 7.2, 150 mM NaCl, 0.2% Nonidet-P40 (NP40) and 1 mM PMSF, followed by centrifugation. 20μg of protein was loaded onto a 12% SDS-polyacrylamide gel, transferred to a nitrocellulose membrane and the membrane blocked with 5% nonfat dry milk in 20 mM Tris-Cl, pH 7.6, 150 mM NaCl, 0.05% Tween-20 overnight at 4 °C. The membrane was then probed with primary antibodies against p53 (Santa Cruz Biotechnology, Santa Cruz, CA), β-actin (Sigma, St. Louis, MO) or PARP (C2-10, Centre de Research du Chul, Quebec, Canada) and followed by incubation with horseradish peroxidase-conjugated secondary antibody (Pierce, Rockford, IL). Finally, the blot was treated with an enhanced chemiluminescent detection substrate (SuperSignal, Pierce) and autoradiographed. Results are given in Figure 5.

The E6 protein forms a heteromeric complex with E6AP and P53 thereby targeting P53 for degradation (30). To examine whether inhibition of E6-E6AP interaction with compounds might influence P53 levels and stability, the effect of C16 on the P53 expression was monitored (Fig.5A) and quantified with a densitometer.

Increases in P53 expression are known to be associated with programmed cell death (apoptosis) (29), therefore PARP cleavage, a hallmark of apoptosis was examined in C16 treated cells. PARP cleavage was observed in C16 treated HeLa cells but not in HPV-negative HaCat cells which carry a mutant p53 gene (31) (Fig. 5B).

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications which fall within the spirit and scope. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.
BIBLIOGRAPHY

THE CLAIMS:

1. An agent useful in the treatment or prophylaxis of a disease condition caused or exacerbated by an MPV, said agent comprising a compound capable of reducing, inhibiting or otherwise decreasing the activity of a protein encoded by an MPV gene where said agent facilitates disruption of a chelated metal cation domain present in said protein.

2. An agent according to claim 1 wherein the MPV is an HPV.

3. An agent according to claim 2 wherein the HPV is selected from the group consisting of: HPV-1, 2, 3, 4, 6, 11, 16, 18, 27, 31, 33, 35, 45 and 57.

4. An agent according to claim 3 wherein the HPV is HPV-16.

5. An agent according to claim 4 wherein the protein is the HPV-16, E6 or E7 oncoprotein.

6. An agent according to claim 3 wherein the HPV is HPV-18.

7. An agent according to claim 6 wherein the protein is the HPV-18, E6 or E7 oncoprotein.

8. An agent according to claim 1 where the chelated metal cation domain is a chelated zinc cation domain.

9. An agent according to claim 8 wherein the chelated zinc domain is the sequence motif cys-X2-cys-X29-cys-X2-cys.
10. An agent according to claim 1 wherein the compound is of general formula (I):

```
  R^1 S N (S)_n N R^3
  R^2
```

(I)

wherein

n is selected from 1-5
R^1 - R^4 are independently selected from hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted arylalkyl optionally substituted acyl, optionally substituted heterocyclyl, halo alkyl, arylalkyl, carboxy, carboxy ester and carboxamido; or

R^1 and R^2 together, and/or R^3 and R^4 together, independently form a group of formula (a):

```
- (CH_2)_l - U_m - (CH_2)_n -
```

(a)

wherein:
U is selected from CH_2, O, NH or S;
l and n are independently selected from 0 to 6 and m is 0 or 1 when U is CH_2 and m is 1 when U is O, NH or S, such that
l + m + n is greater than or equal to 2;
and wherein any one or more (CH_2) or NH groups may be further optionally substituted.
11. An agent according to claim 10 wherein n is selected from 1, 2 or 3, preferably 1 or 2.

12. An agent according to claim 10 wherein R¹ and R² together, or R³ and R⁴ together, independently form a group of formula (a):

\[-(\text{CH}_2)_1\#U_m\#(\text{CH}_2)_n\#\] \hspace{1cm} (a)

wherein:
- U is selected from CH₂, O, NH or S;
- 1 and n are independently selected from 0 to 6 and m is 0 or 1 when U is CH₂
- and m is 1 when U is O, NH or S, such that
- 1+m+n is greater than or equal to 2;
- and wherein any one or more (CH₂) or NH groups may be further optionally substituted.

13. An agent according to claim 12 wherein U is CH₂.

14. An agent according to claim 13 wherein formula (a) is selected from one of -(CH₂)₂⁻, -(CH₂)₃⁻, -(CH₂)₄⁻, -(CH₂)₅⁻, -(CH₂)₆⁻, or -(CH₂)₇.

15. An agent according to claim 12 wherein U is N, O, or S and m is 1.

16. An agent according to claim 15 wherein R¹ and R², and/or R³ and R⁴, together with the nitrogen to which they are attached independently form a group selected from:
which may be optionally substituted at a carbon atom, and/or, where U is NH, at the nitrogen atom.

17. An agent according to claim 16 wherein R\(^1\) and R\(^2\), and/or R\(^3\) and R\(^4\), together with the nitrogen to which they are attached each independently form an optionally substituted morpholino thiomorpholino or piperazino group.

18. An agent according to any one of claims 11 to 17 wherein any -CH\(_2\)- group or N atom, where U is NH, of formula (a) is optionally substituted by one or more of the groups selected from methyl, ethyl, n-propyl, iso-propyl, hydroxy, halo, methoxy, ethoxy, iso-propoxy, acetoxy, optionally substituted benzyl, optionally substituted pyridyl, optionally substituted pyrimidyl and optionally substituted phenyl.
19. An agent according to claim 10 wherein at least one of $R^1 - R^4$ is independently selected from: hydrogen, optionally substituted phenyl, optionally substituted cyclopropyl, optionally substituted cyclobutyl, optionally substituted cyclopentyl, optionally substituted cyclohexyl, formyl, acetyl.

20. An agent according to claim 10 or 18 wherein the optional substituent is selected from the groups methyl, ethyl, n-propyl, iso-propyl, hydroxy, halo, methoxy, ethoxy, iso-propoxy, acetoxy, and phenyl.

21. An agent according to claim 10 where $R^1 - R^4$ are as depicted in any compound Groups 1 to 6 as defined herein.

22. An agent according to claim 1 wherein the compound is general Formula (II)

\[
\begin{array}{c}
\text{II} \\
\end{array}
\]

wherein $R^1 - R^4$ are as defined in any one of claims 10-21.

23. An agent for the treatment or prevention of a disease or condition caused or exacerbated by an MPV comprising a compound as defined in claim 10 or claim 22.
24. An agent according to claim 1 or claim 23 wherein the compound is capable of effecting at least 30% zinc release in a TSQ assay, and/or inhibits or reduces the binding of an E6 protein to E6AP or E6BP and/or exhibits selective cytotoxicity towards MPV-infected cells.

25. A method of identifying compounds useful in the treatment of a disease condition caused or exacerbated by an MPV comprising contacting a protein molecule containing a chelated metal cation domain, encoded by an MPV gene, with an effective amount of said compound for a time and under conditions sufficient to facilitate disruption of the chelated metal cation domain and directly or indirectly determining the amount of chelated metal cation released wherein the amount of chelated metal cation released is indicative of the disruption of the chelated metal cation domain.

26. A method according to claim 25 wherein the metal is zinc.

27. A method according to claim 26 wherein the release of zinc is determined by a change in fluorescence of a zinc-selective fluorophore.

28. A method according to claim 27 wherein the fluorophore is TSQ.

29. A method of identifying compounds useful in the treatment of a disease condition caused or exacerbated by an MPV comprising contacting a protein molecule containing a chelated metal cation domain, encoded by an MPV gene, with an effective amount of said compound for a time and under conditions sufficient to facilitate disruption of the chelated metal cation domain and directly or indirectly determining the absence or otherwise of binding of said protein to a ligand, wherein the absence of binding is indicative of disruption of the chelated metal cation domain.

30. A method according to claim 29 wherein the ligand is E6AP, E6BP, paxilin or similar or homologue motifs.
31. A method according to claim 25 or 29 wherein the MPV is an HPV.

32. A method according to claim 31 wherein the HPV is selected from HPV-6, HPV-11, HPV-16, HPV-18.

33. A method according to claim 32 wherein the HPV is HPV-16.

34. A method according to claim 33 wherein the protein is the HPV-16, E6 or E7 oncoprotein.

35. A method according to claim 34 wherein the HPV is HPV-18.

36. A method according to claim 35 wherein the protein is the HPV-18 E6 or E7 oncoprotein.

37. A method of treating or preventing a disease condition caused or exacerbated by an MPV comprising the administration of an effective amount of a compound capable of facilitating the disruption of a chelated metal cation domain of a protein encoded for by an MPV gene to a mammal in need thereof.

38. A method according to claim 37 wherein the MPV is an HPV.

39. A method according to claim 38 wherein the HPV is selected from the group consisting of HPV-1, 2, 3, 4, 6, 11, 16, 18, 27, 31, 33, 35, 45 and 57.

40. A method according to claim 39 wherein the HPV is HPV-16.

41. A method according to claim 40 wherein the protein is the HPV-16, E6 or E7 oncoprotein.
42. A method according to claim 39 wherein the HPV is HPV-18.

43. A method according to claim 42 wherein the protein is the HPV-18 E6 or E7 oncoprotein.

44. A method according to claim 37 where the chelated metal cation domain is a chelated zinc cation domain.

45. A method according to claim 44 wherein the chelated zinc domain is the sequence motif cys-X2-cys-X-29-cys-X2-cys.

46. A method according to claim 37 wherein the compound is of general formula (I):

\[
\begin{align*}
\text{R}^1 & \quad \text{S} \\
\text{N} & \quad \	ext{(S)}_n \\
\text{R}^2 & \quad \text{N} \\
& \quad \text{R}^3 \\
& \quad \text{R}^4
\end{align*}
\]

(II)

wherein

n is selected from 1-5
R^1 - R^4 are independently selected from hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally
substituted arylalkyl optionally substituted acyl, optionally substituted heterocyclyl, halo alkyl, arylalkyl, carboxy, carboxy ester and carboxamido; or

R¹ and R² together, and/or R³ and R⁴ together, independently form a group of formula (a):

\[-(CH_2)_l\cdot U_m \cdot (CH_2)_n-\] \hspace{1cm} (a)

wherein: U is selected from CH₂, O, NH or S;
1 and n are independently selected from 0 to 6 and m is 0 or 1 when U is CH₂
and m is 1 when U is O, NH or S, such that
1+m+n is greater than or equal to 2;
and wherein any one or more (CH₂) or NH groups may be further optionally substituted.

47. A method according to claim 44 wherein R¹ and R² together, or R³ and R⁴ together, independently form a group of formula (a):

\[-(CH_2)_l\cdot U_m \cdot (CH_2)_n-\] \hspace{1cm} (a)

wherein: U is selected from CH₂, O, NH or S;
1 and n are independently selected from 0 to 6 and m is 0 or 1 when U is CH₂
and m is 1 when U is O, NH or S, such that
1+m+n is greater than or equal to 2;
and wherein any one or more (CH₂) or NH groups may be further optionally substituted.

48. A method according to claim 47 wherein U is CH₂.
49. A method according to claim 48 wherein formula (a) is selected from one of \(-(CH_2)_2^-\), \(-(CH_2)_3^-\), \(-(CH_2)_4^-\), \(-(CH_2)_5^-\), \(-(CH_2)_6^-\) or \(-(CH_2)_7^-\).

50. A method according to claim 47 wherein U is N, O, or S and m is 1.

51. A method according to claim 47 wherein R\(^1\) and R\(^2\), and/or R\(^3\) and R\(^4\), together with the nitrogen to which they are attached independently form a group selected from:

![Chemical structures](image)

which may be optionally substituted at a carbon atom, and/or where U is NH, at the nitrogen atom.

52. A method according to claim 51 wherein R\(^1\) and R\(^2\), and/or R\(^3\) and R\(^4\), together with
the nitrogen to which they are attached each independently form an optionally substituted morpholino, thiomorpholino, or piperazino group.

53. A method according to any one of claims 47 to 52 wherein any -CH₂- group of formula (a) is optionally substituted by one or more of the groups selected from methyl, ethyl, n-propyl, iso-propyl, hydroxy, halo, methoxy, ethoxy, iso-propoxy, acetoxy, optionally substituted benzyl, optionally substituted pyridyl, optionally substituted pyrimidyl and optionally substituted phenyl.

54. A method according to claim 46 wherein at least one of R¹ - R⁴ is independently selected from: hydrogen, optionally substituted phenyl, optionally substituted cyclopropyl, optionally substituted cyclobutyl, optionally substituted cyclopentyl, optionally substituted cyclohexyl, formyl, acetyl.

55. A method according to claim 54 wherein the optional substituent is selected from the groups methyl, ethyl, n-propyl, iso-propyl, hydroxy, halo, methoxy, ethoxy, iso-propoxy, acetoxy, and phenyl.

56. A method according to claim 46 wherein at least one of R¹-R⁴ is as depicted in any compound in Groups 1 to 6 as defined herein.

57. A method according to claim 46 wherein n is selected from 1, 2 or 3, preferably 1 or 2.

58. A method according to claim 37 wherein the compound is of general Formula (II):
wherein R^1-R^4 are as defined in any one of claims 46-57.

59. A method for preventing a disease condition caused or exacerbated by an MPV comprising the administration of an effective amount of a compound as defined in claim 46 or 58 to a mammal in need thereof.

60. A method according to claim 37 or 59 wherein the compound is capable of effecting at least 30% zinc release in a TSQ assay and/or inhibits or reduces the binding of an E6 protein to E6AP or E6BP and/or exhibits selective cytotoxicity towards MPV-infected cells.

61. An agent according to claim 1 or 23 wherein the disease or condition is cervical cancer or its HPV associated precursor lesions or any other HPV associated cancers and/or warts.

62. A method according to claim 37 or 59 wherein the disease or condition is cervical cancer or its HPV associated precursor lesions or any other HPV associated cancers and/or warts.

63. A composition comprising a compound capable of facilitating the disruption of a chelated metal cation domain of a protein encoded for by an MPV gene, together with a pharmaceutically acceptable carrier, diluent or excipient.
64. A composition according to claim 63 wherein the compound is of general formula (I):

\[
\begin{array}{c}
\begin{array}{c}
\text{R}^1 \\
\text{S} \\
\text{N} \\
\text{(S)}_n \\
\text{N} \\
\text{R}^4 \\
\text{R}^2 \\
\text{R}^3
\end{array}
\end{array}
\]

(I)

wherein

n is selected from 1-5
R^1 - R^4 are independently selected from hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted acyl, optionally substituted heterocyclic, halo alkyl, arylalkyl, carboxy, carboxy ester and carboxamido; or

R^1 and R^2 together, and/or R^3 and R^4 together, independently form a group of formula (a):

\[
- (\text{CH}_2)_l - \text{U}_m - (\text{CH}_2)_n -
\]

(a)

wherein: U is selected from CH₂, O, NH or S;
l and n are independently selected from 0 to 6 and m is 0 or 1 when U is CH₂ and m is 1 when U is O, NH or S, such that l+m+n is greater than or equal to 2;
and wherein any one or more (CH₂) or NH groups may be further optionally substituted.
65. A composition according to claim 64 wherein R^1 and R^2 together, or \hat{R} and \hat{R} together, independently form a group of formula (a):

$$\text{-} \ (CH_2)_1 \ U_{m} \ (CH_2)_n \ 	ext{-}$$

(a)

wherein: U is selected from CH$_2$, O, NH or S;

1 and n are independently selected from 0 to 6 and m is 0 or 1 when U is CH$_2$

and m is 1 when U is O, NH or S, such that

$1 + m + n$ is greater than or equal to 2;

and wherein any one or more (CH$_2$) or NH groups may be further optionally substituted.

66. A composition according to claim 65 wherein U is CH$_2$.

67. A composition according to claim 66 wherein formula (a) is selected from one of $- (CH_2)_2^-$, $-(CH_2)_3^-$, $-(CH_2)_4^-$, $-(CH_2)_5^-$, (CH$_2$)$_6^-$, or $-(CH_2)_7$.

68. A composition according to claim 64 wherein U is N, O, or S and m is 1.

69. A composition according to claim 68 wherein R^1 and R^2, and/or R^3 and R^4, together with the nitrogen to which they are attached independently form a group selected from:
which may be optionally substituted at a carbon atom, and/or, where U is NH, at the nitrogen atom.

70. A composition according to claim 69 wherein R1 and R2, and/or R3 and R4, together with the nitrogen to which they are attached each independently form an optionally substituted morpholino, thiomorpholino or piperazino group.

71. A composition according to any one of claims 64 to 70 wherein any -CH\textsubscript{2}- group, or N atom, where U is NH, of formula (a) is optionally substituted by one or more of the groups selected from methyl, ethyl, n-propyl, iso-propyl, hydroxy, halo, methoxy, ethoxy, iso-propoxy, acetoxy, optionally substituted benzyl, optionally substituted pyridyl, optionally substituted pyrimidyl and optionally substituted phenyl.
72. A composition according to claim 64 wherein \(R^1 - R^4 \) are independently selected from: hydrogen, optionally substituted phenyl, optionally substituted cyclopropyl, optionally substituted cyclobutyl, optionally substituted cyclopentyl, optionally substituted cyclohexyl, formyl, acetyl.

73. A composition according to claim 44 or 72 wherein the optional substituent is selected from the groups methyl, ethyl, n-propyl, iso-propyl, hydroxy, halo, methoxy, ethoxy, isopropoxy, acetoxy, and phenyl.

74. A composition according to claim 64 wherein \(R^1-R^4 \) are as depicted in any compound in Groups 1 to 6.

75. A composition according to claim 63 wherein the compound is of general Formula (II):

\[
\begin{align*}
\text{R}^1 \quad \text{N} \quad \text{S} \quad \text{S} \quad \text{N} \quad \text{R}^3 \\
\text{R}^2 \quad \text{S} \quad \text{S} \quad \text{N} \quad \text{R}^4
\end{align*}
\]

(II)

wherein \(R^1-R^4 \) are as defined in any one of claims 64-74.

76. A composition comprising a compound as defined in claim 64 or 75, together with a pharmaceutically acceptable carrier, diluent or excipient.

77. A composition according to claim 63 or 76 wherein the compound is capable of effecting at least 30% zinc release in a TSQ assay and/or inhibits or reduces the binding of
an E6 protein to E6AP or E6BP and/or exhibits selective cytotoxicity towards MPV-infected cells.

78. Use of a compound capable of facilitating the disruption of a chelated metal cation domain of a protein encoded for by an MPV gene in the manufacture of a medicament for the treatment or prophylaxis of a disease or condition caused or exacerbated by a MPV.

79. Use of at least one compound as defined in claim 63 or 76 in the manufacture of a medicament for the treatment or prophylaxis of a disease or conditions caused or exacerbated by a MPV.

80. Use according to claim 78 or 79 wherein the MPV is an HPV.

81. Use according to claim 80 wherein the HPV is selected from the group consisting of HPV-1, 2, 3, 4, 6, 11, 16, 18, 27, 31, 33, 35, 45 and 57.

82. Use according to claim 78 or 79 wherein the disease or condition is cervical cancer or its HPV associated precursor lesions or any other HPV associated cancers and/or warts.

83. Use according to claim 78 or 79 wherein the compound is capable of effecting at least 30% zinc release in a TSQ assay, and/or inhibits or reduces the binding of an E6 protein to E6AP or E6BP and/or exhibits selective cytotoxicity towards MPV-infected cells.
FIGURE 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

1. STN Substructure and Keyword Search: Substructure and papilloma? and (viral or virus)
2. WPIDS: Substructure, not polymer? zinc? pharmaceutic? or medic?

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Derwent Abstract Accession No: 92-303542/37, B05, JP 4-208223, 27 July 1992 (KAWAGUCHI KAGAKU KOGYO KK) Synlett, August 1990, pages 473-476 (KATRITZKY, Alan R et al) "The Synthesis of Bis(N,N-disubstituted amino) Trisulphides" see page 473 column 2</td>
<td>1-21,23,24,61,63-74,76,77</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>1-21,23,24,61,63-74,76,77</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C

[X] See patent family annex

* Special categories of cited documents:
 A Document defining the general state of the art which is not considered to be of particular relevance
 E Earlier application or patent but published on or after the international filing date
 L Document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O Document referring to an oral disclosure, use, exhibition or other means
 P Document published prior to the international filing date but later than the priority date claimed

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 October 1999</td>
<td>21 OCT 1999</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE

PO BOX 200

WODEN ACT 2606

AUSTRALIA

Facsimile No.: (02) 6285 3929

Authorized officer

CHRISTINE BREMERS

Telephone No.: (02) 6283 2313

Form PCT/ISA/210 (second sheet) (July 1998) COPBK0
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Derwent Abstract Accession No: 95-340184/44, B05 (B03) JP 7-233057 A (KINKI DAIGAKU GHI), 5 September 1995</td>
<td>1-9,22-24,61,63,75,77</td>
</tr>
<tr>
<td></td>
<td>Brain Research volume 44 No: 2 (1972), pages 603-613 (LYCKE, E et al) "The Monoamine Metabolism in Viral Encephalitides of the Mouse II, Turnover of Monoamines in Mice Infected with Herpes Simplex Virus" page 604, line 17</td>
<td>1-9,22-24,61,63,75,77</td>
</tr>
<tr>
<td>X</td>
<td>Derwent Abstract Accession No: 86-282535/43, B03, C02, JP 1207376 A (TOYO SODA MFG KK), 13 September 1986</td>
<td>1-9,22-24,61,63,75-77</td>
</tr>
<tr>
<td>X</td>
<td>Derwent Abstract Accession No: 88-245781/35 A12, JP 3-178148 A (NIPPON OIL SEAL IND) 22 July 1988</td>
<td>1-9,22-24,61,63,75-77</td>
</tr>
<tr>
<td>X</td>
<td>Derwent Abstract Accession No: 91-038784/05 S03, JP 2-304346 A (NIHON PARKERIZING) 18 December 1990</td>
<td>1-9,22-24,61,63,75-77</td>
</tr>
<tr>
<td>X</td>
<td>Derwent Abstract Accession No: 91-122584/17 B03, JP 3-063258 A (KURARAY KK) 19 March 1991</td>
<td>1-9,22-24,61,63,75-77</td>
</tr>
<tr>
<td>X</td>
<td>EP 562750 (BRIDGESTONE CORPORATION) 29 September 1993</td>
<td>1-9,22-24,61,63,75-77</td>
</tr>
<tr>
<td></td>
<td>page 3 lines 5-52, page 8 lines 12-14</td>
<td>1-9,22-24,61,63,75-77</td>
</tr>
<tr>
<td></td>
<td>Virology volume 243, pages 287-292 (1998) (OTT, David E et al) "Inhibition of Friend Virus Replication by a Compound that Reacts with the Nucleocapsid Zinc Finger: Anti-Retroviral Effect Demonstrated in Vivo" abstract: fourth, fifth, tenth and twelfth compounds of Table 1</td>
<td>1-9,22-24,37-45,58-60,62,63,75-83</td>
</tr>
<tr>
<td>X</td>
<td>Journal of Medicinal Chemistry, volume 40 No: 13 (1997) pages 1969-1976 (McDONNELL, Nazli, B et al) "Zinc Ejection as a New Rationale for the Use of Cystamine and Related Disulfide-Containing Antiviral Agents in the Treatment of AIDS" abstract, figures 1, 2; Table 1; page 1973 last paragraph to page 1974 first paragraph</td>
<td>1-9,22-24,37-45,58-60,62,63,75-83</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>X</td>
<td>WO 96/09406 (THE GOVERNMENT OF THE UNITED STATES OF AMERICA, REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES) 28 March 1996 abstract, pages 4-6, claims 1 and 7</td>
<td>1-9,22-24,37-45,58-60,62,63,75-83</td>
</tr>
<tr>
<td>X</td>
<td>Drug Metabolism and Disposition: The Biological Fate of Chemicals, volume 24 No: 12 (1996), pages 1395-1400 (HATHOUT, Yetrib et al) "Characterisation of Intermediates in the Oxidation of Zinc Fingers in Human Immunodeficiency Virus Type I Nucleocapsid Protein P7" abstract, figure 1, page 1397 column 1 second paragraph, page 1398 column 2 second paragraph</td>
<td>1-9,22-24,37-45,58-60,62,63,75-83</td>
</tr>
<tr>
<td>X</td>
<td>Journal of Virology, volume 70, No: 8 (1990) pages 4966-4972 (REIN, Alan et al) "Inactivation of Murine Leukemia Virus by Compounds that React with the Zinc Finger in the Viral Nucleocapsid Protein" abstract, page 4970 first paragraph</td>
<td>1-9,22-24,37-45,58-60,62,63,75-83</td>
</tr>
<tr>
<td>X</td>
<td>Carcinogenesis, volume 9, No: 9 (1988) pages 1547-1551 (ROTSTEIN, Joel B et al) "Effect of Exogenous Glutathione on Tumour Progression in the Murine Skin Multistage Carcinogenesis Model" abstract, page 1547 last paragraph to page 1548 first paragraph, page 1549 first paragraph, figure 2</td>
<td>1-9,22-24,37-45,58-60,62,63,75-83</td>
</tr>
<tr>
<td>X</td>
<td>RN 86796-75-0 86796-78-3 86796-79-4</td>
<td>1-21,23,24,63-74,76,77</td>
</tr>
<tr>
<td>X</td>
<td>Chemical Abstracts RN 95255-69-9</td>
<td>1-21,23,24,63-74,76,77</td>
</tr>
<tr>
<td>X</td>
<td>Chemical Abstracts RN 103-34-4</td>
<td>1-21,23,24,63-74,76,77</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.
 - □ Claims Nos.:
 - because they relate to subject matter not required to be searched by this Authority, namely:

2.
 - □ Claims Nos.:
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

The claims are broadly drafted such that a complete search was not economically feasible. The cited documents are only a representative sample of the citations which were found

3.
 - □ Claims Nos.:
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1.
 - □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims

2.
 - □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3.
 - □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4.
 - □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.
This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 4-208223</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 7-233057</td>
<td>US 5665770</td>
</tr>
<tr>
<td>JP 1-207376</td>
<td>JP 63-302533</td>
</tr>
<tr>
<td>JP 3-178148</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 2-304346</td>
<td>NONE</td>
</tr>
<tr>
<td>JP 3-63258</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 562750</td>
<td>DE 69314208</td>
</tr>
<tr>
<td></td>
<td>US 5391635</td>
</tr>
<tr>
<td>WO 96/09406</td>
<td>AU 35927/95</td>
</tr>
</tbody>
</table>