Articulating workpiece transfer apparatus (1) comprises a pair of identical housings (2) each of which has a circular flange (20) projecting from one side of the housing and abutting one another. Each flange (20) has adjacent its periphery a beveled edge (21). A circular clamp (27) has a concave groove (30) in which the peripheral edges of the flanges (20) are accommodated, and such clamp (27) is operable to apply a clamping force on each flange (20) urging the latter into face-to-face engagement with one another. Each housing has a cylindrical opening (17) for the accommodation of an elongate transfer arm (3) which is linearly slideable and rotatable about the axis of the arm (3). Each housing (2) includes a clamp which enables and disables relative movement between the associated arm and the housing. The housings (2) are rotatable relative to each other about an axis which passes through both flanges (20) and which is normal to the axis of rotation of the respective transfer arms (3).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania ES Spain LS Lesotho SI Slovenia FL Finland LT Lithuania SK Slovakia FR France LU Luxembourg SN Senegal GB United Kingdom LV Latvia SZ Swaziland GE Georgia MC Monaco TD Chad MD Republic of Moldova TG Togo GG Ghana MG Madagascar TJ Tajikistan GN Guinea MK The former Yugoslav Republic of Macedonia TM Turkmenistan GR Greece ML Mali TR Turkey HU Hungary MN Mongolia TT Trinidad and Tobago IE Ireland MR Mauritania UA Ukraine BJ Benin MW Malawi UD United Arab Emirates BR Brazil MX Mexico UG Uganda BY Belarus NE Niger US United States of America CA Canada NL Netherlands VN Viet Nam CF Central African Republic NO Norway YU Yugoslavia CG Congo NZ New Zealand ZA South Africa CH Switzerland PL Poland ZW Zimbabwe CI Côte d’Ivoire PT Portugal

Czech Republic

CM Cameroon

CN China

CU Cuba

CZ Czech Republic

DE Germany

DK Denmark

EE Estonia

ES Spain

FI Finland

FR France

GA Gabon

GB United Kingdom

GE Georgia

GG Ghana

GN Guinea

GR Greece

HU Hungary

IE Ireland

IL Israel

IS Iceland

IT Italy

JP Japan

KE Kenya

KG Kyrgyzstan

KP Democratic People’s Republic of Korea

KR Republic of Korea

KZ Kazakhstan

LC Saint Lucia

LI Liechtenstein

LK Sri Lanka

LR Liberia

LS Lesotho

LT Lithuania

LU Luxembourg

LV Latvia

MD Republic of Moldova

MG Madagascar

MK The former Yugoslav Republic of Macedonia

ML Mali

MN Mongolia

MR Mauritania

MW Malawi

MX Mexico

NE Niger

NL Netherlands

NO Norway

NZ New Zealand

PL Poland

PT Portugal

RO Romania

RU Russian Federation

SD Sudan

SE Sweden

SG Singapore

SI Slovenia

SK Slovakia

SN Senegal

SZ Swaziland

TD Chad

TG Togo

TM Turkmenistan

TR Turkey

TT Trinidad and Tobago

UA Ukraine

UG Uganda

US United States of America

UZ Uzbekistan

VN Viet Nam

YU Yugoslavia

ZA South Africa

ZW Zimbabwe
ARTICULATING WORKPIECE TRANSFER APPARATUS

This invention relates to workpiece transfer apparatus capable of lifting, supporting, and transferring a workpiece from one workstation to another, and more particularly to a workpiece transfer arm that is substantially universally adjustable so as to enable it to accommodate workpieces of greatly different sizes and shapes.

BACKGROUND OF THE INVENTION

It is common in manufacturing operations to present a workpiece successively to a plurality of different workstations at each of which the workpiece is treated. It is conventional to lift the workpiece by transfer devices and transfer the workpiece from station to station. Since one group of workpieces that must be transferred to successive workstations may vary considerably in size and shape from a second group of workpieces, it is desirable that the transfer devices be capable of rapid adjustment to accommodate groups of workpieces of varying size and shape.

Some of the transfer devices proposed heretofore have arms that are capable of lengthwise adjustment, others have arms that are capable of rotary adjustment, and still others enable rotation of the workpiece engageable part of the transfer device. However, no known transfer device heretofore has included a supporting arm that is capable of all three kinds of
adjustment.

A primary object of the invention is to provide workpiece transfer apparatus which is substantially universally adjustable and which may be adjusted quickly and easily.

SUMMARY OF THE INVENTION

Workpiece transfer apparatus constructed in accordance with the invention has an assembly of components which enables practically any workpiece to be lifted, transferred, and lowered, thereby enabling such workpiece to be moved successively from station to station by conventional transfer equipment. In the preferred embodiment the transfer apparatus comprises a pair of identical housings each of which has a circular opening therein for the accommodation of a cylindrical arm in the form of a rod or tube, thereby enabling the arm to be rotatable about its own axis and linearly slideable longitudinally of its axis. Adjustable clamping means enable the arm to be secured in any selected one of a number of adjusted positions.

Each housing also includes a coupling flange which projects from one side of the housing. The flange of one of the housings confronts and abuts the flange of the other of the housings and the two housings are maintained in assembled relation by an adjustable clamp which encircles the peripheries of both of the coupling flanges. The peripheral edge of each flange is
beveled to form an outwardly convex joint between the two flanges. The adjustable clamp comprises an annular retainer having a concave groove in which the beveled edges of the flanges are accommodated. The annular clamp is adjustable radially of the flanges so as to enable and disable relative rotation between the flanges and, consequently, between the housings.

One end of the arm which extends through the opening in one of the housings may be fixed to a mounting bracket, whereas one end of the arm which extends through the opening in the other housing may be accommodated in an opening in a like housing which, in turn, is clamped to a companion housing in which is accommodated another tube to which is secured a support that is engageable with the workpiece that is to be transferred.

Each of the arms carried by each of the housings is axially slideable and rotatable about its own axis, and each of the housings is rotatable about an axis which is normal to the axes of rotation of the arms. Consequently, the workpiece support is rotatable about two mutually normal axes and is longitudinally adjustable between retracted and projected positions, thereby enabling the transfer apparatus to accommodate workpieces of greatly differing size and shape.

THE DRAWINGS

Transfer apparatus constructed in accordance with the presently preferred embodiment of the invention
is illustrated in the accompanying drawings, wherein:

Figure 1 is an isometric view of the transfer apparatus and illustrating fragmentarily a workpiece supported thereby;

Figure 2 is an isometric view of one of two identical housings;

Figure 3 is a top plan view, on an enlarged scale, of the housing shown in Figure 2;

Figure 4 is an elevational view of one side of the housing;

Figure 5 is an end elevational view of the housing;

Figure 6 is an isometric view of a clamp for use in coupling and uncoupling two housings;

Figure 7 is a top plan view of the clamp;

Figure 8 is an elevational view of the clamp;

and

Figure 9 is a sectional view, on an enlarged scale, taken on the line 9-9 of Figure 1.

THE PREFERRED EMBODIMENT

Transfer apparatus constructed in accordance with the presently preferred embodiment of the invention is designated generally by the reference character 1 and comprises two or more pairs of identical housings 2, a plurality of arms in the form of rods or tubes 3, a mounting bracket 4, and a workpiece support 5.

Each housing 2 comprises a body 6 formed of
material having some resiliency. Each body has a flat top 7, a flat bottom 8, and two flat ends 9. The housing 6 also has two opposite sides 10 and 11. The side 11 has upper and lower sloped surfaces 12 and 13, respectively which are traversed by openings 14 and 15 for the accommodation of clamping bolts 16 (Figure 1).

Each body 6 also includes a generally cylindrical opening 17 which extends completely through the body. The side 11 is provided with a slot 18 which extends the full length of the opening 17, thereby enabling manipulation of the associated clamping bolt 16 to vary the size of the opening 17 as permitted by the resiliency of the metal or other material from which the body 6 is formed.

Secured to and projecting from the side 10 of each housing 2 is a coupling flange 20 having a beveled surface 21 which terminates in a peripheral edge 22 which is laterally spaced from the side 10. The flange has a smooth face 23 having at its radially outer edge a flat surface 24 (Figure 9). The remainder of the face 23 is slightly concave or dished as is shown at 25 in Figure 9. The concavity assures secure seating of one flange upon the other.

An annular clamp 27 is provided for maintaining two adjacent housings 2 in assembled relation. The clamp 27 is composed of two halves 28 and 29 each of which has a semicircular groove 30 therein which, when the halves
28 and 29 are placed together, form a circular opening 31 having diameter less than that of each flange 20. The part 29 has a pair of threaded openings 32 which may be aligned with smooth bores 33 formed in the part 28, and the bores 33 communicate with counterbores 34. Bolts 35 extend through the bores 33 and into the threaded bores 32 so as to enable the clamp parts 28 and 29 to be adjusted toward and away from one another.

Between the opposite sides of each of the clamp parts 28 and 29 the groove 30 is radially inwardly concave to form V-shaped retaining surfaces 36 which are complementary to the surface 21 of each of the flanges 20.

Forming a part of each transfer arm assembly is the workpiece support 5 which comprises what is known as a shovel 37 having a base 38 and two upstanding side walls 39 and 40 so as to enable one corner of the workpiece W to be engaged and supported by the shovel. The shovel is secured to a bail 41 having a pair of arms 42 joined at corresponding ends by a crossbar 43. A housing 2a like the housing 2 except for the inclusion of a flange 20, has mounted thereon a support arm 44 at the free end of which the support 5 is pivoted by means of a pivot pin 45. The support arm 44 also mounts a suitable proximity sensor (not shown) which is connected by an electrical conductor 47 to control means (not shown) in the same manner as is disclosed in Bierlein Patent No.
To condition the apparatus for operation, the mounting bracket 4 may be fixed to a rail of workpiece transfer apparatus (not shown) associated with a progressive die stamping press such as is disclosed in U.S. Patent No. 4,887,446. An elongate arm or tube 3 of appropriate length and secured in any suitable manner to the bracket 4 will be assembled with the left hand housing 2 (as shown in Figure 1). One end of another tubular arm 3 then may be secured in the right hand housing 2 and have its opposite end secured to one of the two housings 2 associated with the workpiece support 5. The left hand housing adjacent the mounting bracket 4 may be slid along the longitudinal axis A of the tube 3 to a desired linear position and it may be rotated about the same axis to the desired angular position. The arm 3 associated with the right hand housing 2 may be slid and rotated about the longitudinal axis B of such arm 3 so as to locate the workpiece transfer 5 at the appropriate distance from the bracket 4. The two housings 2 then may be rotated relative to one another about the axis C so as to enable the workpiece transfer apparatus 5 to occupy an appropriate position relative to the height of the workpiece W.

The workpiece transfer apparatus 5 may be further adjusted by manipulation of the housings 2 that are adjacent the apparatus 5.
Following adjustment of the housings and support arms 3 relative to one another, the clamping bolts 16 and 35 may be adjusted to cause the housings to be clamped tightly to the respective arms 3 and to one another.

When two adjacent houses have been rotated about the axis C to the desired relative positions and the bolts 35 of the clamp 27 are turned in a direction to cause the clamp parts 28 and 29 to bear forcibly against the respective flanges 21, the complementary surfaces 21 and 36 of the flanges and the clamp, respectively, will urge the confronting flanges 20 toward one another and cause the annular surfaces 24 to bear snugly against one another at the joint between the two flanges. Because of the dishing of the major portion of the surface of the face of each flange, the clamping force will be concentrated on the engaged surfaces 24 thereby providing an extremely secure positioning of the two adjacent housings relative to one another.

Since the arms 3 not only are linearly slideable and rotatable about the axes of the respective transfer arms 3, and since each two adjacent housings are rotatable relatively to one another about an axis which is normal to the axis about which the arms 3 are slideable and rotatable, it is possible to locate the workpiece engaging shovel 37 in virtually any position that enables it to perform its workpiece supporting and
transferring function, almost without regard to the size or shape of the workpiece.

It will be understood that the particular workpiece supporting shovel 37 disclosed herein is only one of many that currently are in use. Other supports may be substituted for the disclosed shovel.

The disclosed embodiment is representative of a presently preferred form of the invention, but is intended to be illustrative rather than definitive thereof. The invention is defined in the claims.
We claim:

1. Transfer apparatus for transferring a workpiece from one position to another comprising a pair of housings from one side of each of which projects a flange; each of said housings having an opening therein through which an arm may extend; said housings being assembled in side-by-side relation with the flange of one of said housings confronting and abutting the flange of the other of said housings and forming a joint between said flanges; and releasable clamp means encircling said flanges for clamping said housings in said side-by-side relation.

2. The apparatus according to claim 1 wherein said flanges and said clamp means have cooperable surfaces shaped to urge said flanges toward one another in response to the application of clamping force on said flanges by said clamp means.

3. The apparatus according to claim 1 wherein the opening in each of said housings is adjustable in size and including adjusting means for varying the size of said opening.

4. The apparatus according to claim 1 wherein each of said flanges has a face which confronts the other of said flanges, each of said faces being so shaped as to enable relative rotation of said housings while said housings are retained in
assembled relation.

5. The apparatus according to claim 4 wherein each of the faces of said flanges is smooth.

6. The apparatus according to claim 1 wherein the opening in each of said housings is substantially circular thereby enabling a cylindrical arm extending through such opening to be rotated about its own axis relative to said housings.

7. The apparatus according to claim 6 wherein the opening in each of said housings is of such size as to enable an arm extending through said opening to be slid linearly relative to the associated housing.

8. The apparatus according to claim 1 wherein each of said flanges is of uniform size and terminates in a beveled peripheral edge, and wherein said clamp means is of such width as to span the joint between said flanges, said clamp means having a configuration complementary to that of the peripheral edges of said flanges.

9. The apparatus according to claim 1 including an arm slideably extending through the opening in one of said bodies, said arm having at one end thereof a workpiece support.

10. Transfer apparatus for use in transferring a workpiece from one position to another, said
apparatus comprising a pair of housings each of which has an opening extending therethrough; an elongate arm slideably accommodated in the opening of each of said housings; a flange carried by each of said housings and projecting from one side thereof, each of said flanges having a circular periphery spaced from said one side of the associated housing, the flanges of said housings confronting and abutting each other and forming a joint therebetween; clamp means encircling the joint between said flanges and maintaining said flanges in abutting relation, said clamp means being operable to enable and disable relative rotation of said housings; and support means at one end of one of said arms for supporting a workpiece.

11. The apparatus according to claim 10 wherein the opening in each of said housings is circular and the arm accommodated in such opening is circular in cross-section thereby enabling relative rotation of such arm relative to the associated housing.

12. The apparatus according to claim 11 including adjustable second clamp means carried by each of said housings for enabling and disabling relative movement between such housing and the associated arm.

13. Apparatus according to claim 10 wherein
each of said flanges has a beveled surface adjacent its periphery, and wherein said clamp is annular and has at its inner side a concave groove having tapered surfaces in which the periphery of each of said flanges is accommodated.

14. Apparatus according to claim 13 wherein the beveled surfaces of said flanges and the tapered surfaces of said groove are complementary thereby enabling the application of radially compressive clamping force on said flanges by said clamp means to urge said abutting flanges toward one another.

15. Apparatus according to claim 10 wherein each of said flanges has a dished face.

16. Apparatus for use in transferring a workpiece from one position to another comprising a housing having therein an opening of such size and shape as to accommodate a correspondingly shaped arm; clamp means carried by said housing for adjusting the size of said opening to enable and disable relative movement of said housing and said arm; and a circular flange joined to and projecting from one side of said housing, said flange having a peripheral edge spaced from said one side of said housing.

17. The apparatus according to claim 16 wherein said flange has adjacent its peripheral edge a beveled surface inclined in a direction radially
inward and toward said one side of said housing.

18. Substantially universally adjustable transfer apparatus for use in transferring a workpiece from one position to another, said apparatus comprising a pair of housings each of which has a substantially circular opening extending therethrough; a substantially cylindrical, elongate arm slideably accommodated in each of said openings for sliding movement along its longitudinal axis and for rotation about said axis; first adjustable clamp means carried by each of said housings for varying the size of the associated opening therein to enable and disable relative movement between each housing and its associated arm; mounting means carried by one of said arms for mounting such arm on a support; support means carried by the other of said arms for engaging and supporting a workpiece; a circular flange carried by each of said housings and projecting laterally therefrom in a direction normal to the axis of rotation of the associated arm, the flanges of said housings confronting and abutting one another and providing a joint between said flanges, each of said housings being rotatable about an axis normal to the axis of the associated arm; and second adjustable clamp means spanning the joint between said flanges and being operable to enable and disable relative movement between said housings.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : B 66 C 23/00
US CL : 414/680
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 414/680; 901/15, 26, 29; 269/45, 75, 77, 78; 405/240, 241, 373, 374.1, 374.2, 374.3, 374.4

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 3,937,451 A (DIPAOLA ET AL) 10 FEBRUARY 1976 (10.02.76) FIGURE 1</td>
<td>1-5,8,15-17</td>
</tr>
<tr>
<td>Y</td>
<td>US 4,392,645 A (WESPHAL) 12 JULY 1983 (12.07.83) THE FIGURE</td>
<td>6,7,9-14,18</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.
See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 & document member of the same patent family

Date of the actual completion of the international search

06 MAY 1999

Date of mailing of the international search report

25 MAY 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
D. Underwood

Telephone No. (703) 308-308-1113

Form PCT/ISA/210 (second sheet)(July 1992)*