(54) Title: APPLICATOR HEAD AND METHOD FOR USING SAME

(57) Abstract

Heat sinks (10) and electrical components pre-coated with a layer of a material (100) such as thermal grease are disclosed. The coated areas may be covered with a release liner (110) that is removed prior to the assembly of the heat sink into a circuit board or other assembly. Methods for pre-coating either a heat sink or the release liner with thermal grease are also disclosed. In preferred embodiments, areas of the heat sink can be either fully coated or portions selectively coated, and the coating is most preferably accomplished by pushing grease through an applicator head (26) that has numerous small nozzles (40). A system and method for dispensing grease either onto a heat sink, onto an electrical component capable of mounting to the heat sink, or onto a release liner that is later applied to the heat sink or electrical component are also disclosed.
<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>ES</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Brain</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>LS</td>
<td>Lesotho</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>MX</td>
<td>Mexico</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UB</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPLICATOR HEAD AND METHOD FOR USING SAME

This application is a continuation-in-part of Application Serial Number 08/669,875, filed June 21, 1996, which is incorporated herein by reference in its entirety.

The present invention relates to electronic component assemblies, and more particularly relates to the application of a substance such as thermally conductive grease between two components.

Background of the Invention

The interface between a heat sink and the component to which it is attached includes small voids due to surface irregularities, roughness, and lack of flatness of the two surfaces. These voids reduce the thermal transmissivity to the heat sink, and thus ultimately reduce the ability of the heat sink to dissipate heat generated by the component. In the past, it has been found that applying a film of thermal grease can diminish or substantially eliminate this problem. Thermal grease is well known in the art and can be a composition of silicone and zinc oxide, available from Dow Corning of Midland, Michigan and other sources. Another thermal grease composition, THERMALCOTE™ is available from Thermalloy, Inc. of Dallas, Texas; another a product sold by the same company and known as THERMALCOTE II™ does not contain silicone. The THERMALCOTE™ products are available in forms that are applied by brush, squeezed out of a tube, applied by a paddle, or other techniques. Unfortunately, the application of thermal grease to individual components in a production environment is
laborious, and inexact. Nonetheless, despite numerous efforts to create another interface material to replace it, thermal grease remains the most effective product for ensuring good thermal conductivity.

Thermal grease can be applied directly to an insulator strip. The coated strip is supplied in a package that must be peeled away, and the insulator must then be applied to a component. This product is sold under the name INSUL-COTE by Thermalloy, Inc. of Dallas, Texas. Similarly, it is known to apply a thin layer of thermal grease to both sides of an aluminum carrier that is 0.1 mm (0.004") thick. The coated carrier is then disposed between a heat sink and a microprocessor. This product is sold under the name CONDUCTA-COTE(TM) by Thermalloy, Inc. of Dallas, Texas.

However, the use of such coated insulators or aluminum carriers does not eliminate the above-mentioned problems, since handling the grease-coated insulation or carrier is nearly as difficult as applying the grease from a tube or with a brush. The insulators and carriers can be obtained in strip form and applied by a machine, which alleviates some of these problems. However, this adds a production step and the capital cost of the application machine if the supplier of the pre-coated insulators or carriers does not provide one. The advantage of pre-coated insulators or carriers is that they apply a specific amount of grease, and a specific quantity of grease may be purchased by ordering coated insulators or carriers on a one-to-one basis with the heat sinks. However, a disadvantage of the above-described pre-coated insulators and aluminum carriers that are pre-coated with thermal grease is that they are difficult to manufacture.

As mentioned above, others in the art have attempted to create pads of material that serve as a replacement for thermal grease. Some of these products are insulating, while some more recent versions are not. Although such pads reduce the waste and inaccurate application related to the use of a thermal enhancement
product, they are often more expensive and do not offer the thermal performance of grease. Therefore, it would be desirable to provide a product in which the thermal properties of grease are advantageously available to create a better thermal connection between a heat sink and a heat-emitting component. Moreover, it would be further desirable to reduce or eliminate waste, spillage and over-application of thermal grease. It is therefore an object of the present invention to provide products and methods in which thermal grease is applied in a precise and controlled manner. It is a further object of the present invention to provide products and methods that readily adapt to production environments and that do not require significant alteration of existing production sequences or changes in production tooling.

It is yet a further object of the present invention to provide a system and method for applying a substantially precise amount of thermal grease in a predetermined pattern.

Summary of the Invention

It has now been found that these and other objects of the present invention are met by pre-applying coatings and substances such as thermal grease to components such as heat sinks. The relevant area is covered with a protective sheet, e.g., a thin film or paper, termed a release liner. The assembler removes the protective sheet, preferably using a pull-off tab provided for that purpose. After the release liner is removed, the heat sink is assembled to a microprocessor or other semiconductor device, or any source of heat. Alternatively, the electrical component can be coated, or the release liner can be pre-coated and applied to the heat sink or to the electrical component. As used in this specification and the appended claims, the terms thermal grease and thermal compound are interchangeable.

The present invention therefore discloses heat sinks, electrical components, and protective release liners
that are pre-coated with a layer of a material such as thermal grease that provide several advantages over the prior art. For one, contamination and migration of the thermal grease is substantially reduced by covering the coated areas with a release liner that is removed prior to the assembly of the heat sink into a circuit board or other assembly. By providing a pre-coated heat sink or electrical component, productivity is enhanced by increasing accuracy with which the thermal grease is applied, thus eliminating waste and clean up. The present invention is thus also directed to improved methods and systems for pre-coating the body of a heat sink or electrical component with thermal grease in which areas of the body can be either fully coated, or portions selectively coated; alternatively, the release liner can be pre-coated. The coating is most preferably accomplished by forcing grease through an applicator head having a plurality of small nozzles.

The grease application system includes a support base and an applicator. Both the base and applicator have a mechanism for vertically adjusting the position of an applicator head disposed on the applicator. The applicator head has a reservoir and an array of holes with nozzles for dispensing a precise amount of grease in a predetermined pattern.

The release liner is most preferably provided with a pull-off tab to facilitate the removal of the release liner. Finally, the present invention also discloses improved methods of installing a heat sink using heat sinks that have an area where thermal grease is pre-applied and covered by a release liner.

Brief Description of the Drawings

- Figure 1 is a perspective view of an embodiment of the present invention;
- Figure 2 is a perspective view of an alternate embodiment of the present invention;
- Figure 3 is a front view of a system for applying
thermal grease according to the present invention;

Figure 4 is a side view of the system of Figure 3;
Figure 5 is a view of the applicator head
according to an aspect of the present invention;
Figure 6 is a sectional view of the applicator
head shown in Figure 5;
Figure 7 is a detail of Figure 6 that shows the
nozzle; and
Figure 8 is a flow chart illustrating the method
according to the present invention.

Detailed Description of the Preferred Embodiments

Referring now to Figure 1, in a preferred
embodiment, a heat sink 10 comprises a body 18 that includes
a plurality of fins 11 extending from a heat dissipation
side 12 and a component facing side 14. The component
facing side 14 is covered with a layer of material 100 and a
protective release liner 110 overlies the layer of material
100. For purposes of illustration, Figure 1 shows one
corner of the release liner 110 upturned to expose the layer
of material 100. It will be understood, however, that the
heat sink 10 is normally delivered with a sheet of
protective material 110 overlying the layer of material 100.
Moreover, it is understood that the present invention is not
limited to the geometry of heat sink 10, shown in Figures 1
and 2, wherein heat dissipation side 12 and component facing
side 14 are opposed. Specifically, the present invention
encompasses heat sinks that have a body 18 of any shape and
a component facing side 12 disposed on the body 18.
Although the present invention may be also employed with
either a release liner or an electrical component that is
suitable for mounting to a heat sink, for clarity the
present invention is illustrated with reference to the heat
sink type shown in Figure 1.

The layer of material 100 most preferably
comprises a thermal grease or a thermal compound, the use of
which is well known in the art as discussed above. It will
be realized, however, that thermal grease is not the only type of material that can utilize the concepts disclosed herein. Numerous other property enhancing coatings, such as conductive powders, gels, dispersions, etc. can be used, as well as compliant coatings that absorb shock. In Figure 1, the layer of material 100 is shown in phantom except where the release liner 110 is again shown as being lifted up for purposes of illustration.

In certain embodiments, layer of material 100 is applied over substantially the entire component facing side 14 as shown in Figure 1. However, as seen in Figure 2, the layer of material 100 alternatively can be applied over predetermined portions 102 of the component facing side 14. In certain embodiments, release liner 110 is adhered to the layer of material at one or more edges of the component facing side 14. In the embodiment illustrated in Figure 2 the areas 102 that are coated with the material 100 are shown in phantom. In either the embodiment of Figure 1 or Figure 2, it is shown that the release liner 110 overlies the entire component facing side 14, although it will be understood that the present invention contemplates embodiments in which the release liner 110 is discontinuous, made of several sections, slit, perforated, or otherwise does not cover the entire component facing side 14. In certain embodiments, at least a portion of the release liner 110 extends beyond an edge of the heat sink 10. A portion of the release liner 110 extends beyond an edge of the heat sink 10 and forms a pull-off removal tab 112. Release liner 110 may also be smaller than the surface 14 of heat sink 10 such that removal tab 112 or a corner of release liner 110 lacks adhesive (as will be explained more fully below), thereby enabling grasping of release liner 110.

The present invention contemplates that the release liner 110 can be made from any suitable material. As will be readily appreciated by those of skill in the art, suitable materials include those that are easily released from the component, that resist deterioration due to
exposure with the thermal grease, and those that resist absorption of the thermal grease, in order to keep the external packaging free of contamination and to preserve the precise quantity of grease that has been applied.

5 Preferably, the release liner 110 comprises an opaque paper product or film, but may also comprise a transparent material, such as MYLAR. Co-pending U.S. Patent Application Serial No. ________, filed June 17, 1997, entitled "Heat Sink Packaging Methods and Devices for Same," (Attorney Docket No. THRM-0074) which is assigned to the assignee of the present invention and which is incorporated herein by reference in its entirety, provides packaging members (which include release liner 110) for protecting thermal grease 100.

In another aspect of the present invention, improved methods of applying thermal grease to a heat sink are provided. In a preferred embodiment, the method of the present invention comprises the steps of identifying or predetermining an area 102 to receive thermal grease 100 and applying thermal grease 100 to area 102 through an applicator head 26, as described more fully below. The thermal grease is then covered with a packaging member. An alternative method according to the present invention includes applying thermal grease 100 to predetermined areas 102 of the release liner 110, and then applying the coated liner 110 to the heat sink 10 (or similar component) such that the grease coated side of the liner 110 comes into contact with the heat sink 10. The method according to the present invention encompasses coating a surface of an electrical component (not shown) prior to mounting the component and heat sink 10 together. The method may be employed with any electrical component that is suitable for combining with a heat sink, including for example microprocessors, rectifiers, converters, power supplies, and the like.

According to another aspect of the present invention, release liner 110 or surface 14 may be coated
with an adhesive 19, as shown in Figures 1 and 2. On areas of contact between the release liner 110 and surface 14 that lacks grease 100, the adhesive will hold release liner 110 and heat sink 10 (or electrical device) together. Adhesive 19 may be formed of any suitable material, and may be applied in any manner, that enables release liner 110 to be removed from heat sink 10 when heat sink 10 is ready for installation.

In yet another aspect of the present invention, a system for dispensing a layer of thermal grease, shown in Figures 3 and 4, comprises an application system 18, a support base 50, and a component holder 60.

Base 50 supports application system 18, and includes an arm 56 and a vertical member 52 that has a vertical slot 54. Arm 56 has one end attached to application system 18 and another end coupled to vertical member 52 proximate vertical slot 54. Arm 56 may be positioned at various vertical positions along vertical member 52, thereby forming a vertical adjustment mechanism.

Arm 56 is coupled to slot 54 by conventional means, such as bolting and clamping.

Application system 18 includes an applicator 20, a grease supply line 28, an application system support structure 42, a manual grease control mechanism 44, and a pressurizing means 46 for pressurizing the thermal grease. Support structure 42 is coupled to arm 56 and supported therefrom. Applicator 20 is coupled to support structure 42. Grease control mechanism 44, which is also supported by structure 42, preferably has fine screw threads that enable precise adjusting of a cavity (not shown) volume disposed within pressurizing means 46, as will be described more fully below.

The applicator 20 according to the present invention preferably includes a first adapter 22, a second adapter 24, and an applicator head 26. The first adapter 22 and second adapter 24 are oppositely keyed together in an interlocking relationship. The adapter head 26 bolts to the
second adapter 24. The first adapter 22, second adapter 24, and applicator head 26 each have a passage that mutually align when the components are fully assembled to form grease supply line 28. For convenience, the entire grease pathway throughout system 18 will be referred to as supply line 28.

Referring particularly to Figures 5 and 6, the applicator head 26 according to the present invention includes a head inlet 31, a reservoir 32, a nozzle sheet 34, and a head outlet 36. As best shown in Figure 7, nozzle sheet 34 has an array of holes 38 disposed therethrough that enable grease to flow from reservoir 32 to outlet 36 in response to pressurization, which will be described hereinbelow. Preferably, nozzle sheet 34 includes an array of nozzles 40, which are disposed such that each nozzle 40 aligns with a hole 38. The outlet of nozzles 40 form head outlet 36. Employing the nozzles 40 is advantageous for uniformly transferring the grease to the component 10.

Preferably, each of the holes 38 and nozzles 40 have an inner diameter of approximately 0.040", and are spaced apart approximately 0.073" (measured center-to-center). Preferably, the nozzle outer diameter is approximately 0.060" and the nozzle length is approximately 0.075" measured from the outer surface of the nozzle sheet to the nozzle outlet. However, these diameters and spacings are for illustrative purposes and may vary according to grease viscosity, desired coating thickness, grease flow rate and pressure, and other process variables as will be understood by those familiar with the particular grease properties and use. Moreover, although Figure 5 shows a square array of 289 nozzles, this shape and quantity are also for illustrative purposes and may vary according to the size of the component area desired to be coated and other variables, as will be understood by those familiar with the particular component and use. Specifically, the applicator head 26 shape may correspond to any area desired to be coated.

Pressurizing means 46 preferably comprises at
least one positive displacement pneumatic pump, as shown in Figure 3. Grease control mechanism 44 adjusts the volume of a round, vertical cavity (not shown) within pressurizing means 46. A volume of grease equal to the cavity size is dispensed onto each heat sink surface 14 upon one actuation of the air-actuated, positive displacement pump of pressurizing means 46. Pressurizing means 46 will be easily understood by those familiar with such air pumps. The present invention, however, may encompass any conventional means for regulating the flow of the thermal grease, including for example intermittently opening a normally closed orifice valve, an adjustable pump cylinder that is capable of controlling the amount of grease that is moved with each pump actuation or by varying the pump stroke rate, as well as manually or automatically adjusting a control valve. Grease control mechanism 44 and pressurizing means 46 are preferably DISPENSIT Model 1052 as supplied by LCC/DISPENSIT of Indianapolis, Indiana.

The operation of the application system will now be described in conjunction with the description of the method according to the present invention, as illustrated in Figure 8. Because the method according to the present invention may be employed with a heat sink 10, a release liner 110, or an electrical component (not shown), the description of the method herein applies to all of these items. Likewise, surface 14 includes the corresponding surface capable of receiving grease 100 of either heat sink 10, liner 110, or an electrical component. Thermal grease is pressurized by the pressurizing means 46, which urges a desired amount of thermal grease through the supply line 28. The amount of grease applied to the heat sink is controlled by fine adjustments on the grease control mechanism, which adjusts the size of a cavity that is internal to pressurizing means 46. A rod (not shown) pushes grease from the cavity (not shown), upon actuation of one of the air cylinders of pressurizing means 46, into a lower cavity (not shown). One of the two air cylinders pushes the thermal
grease through first adapter 22 and second adapter 24 via supply line 32. The volume of the cavity is dispensed with each actuation of one of the air cylinders, which occurs once for each heat sink to be coated.

Thermal grease flows into reservoir 32, through nozzle sheet 34 via nozzles 40, and onto component surface 14. The grease substantially fills most of reservoir 32 before flowing through nozzles 40 because of pressure drop across nozzles 40. Reservoir 32, therefore, enhances uniformity of the grease flow rate through nozzles 40 and provides a substantially uniform thickness of grease layer 100 on surface 14. Alternatively, thermal grease may be applied to a surface of the release liner 110, which is later applied to the component surface 14.

Heat sink 10 (or release liner 110 or an electrical component -- not shown) may be positioned by hand on holder 60, or such positioning may be automated. Preferably, the desired gap between applicator head outlet 36 and surface 14 is between 0.008" and 0.010", and the surface 14 and head 36 should be parallel to within 0.002" across surface 14. To obtain the desired gap between component surface 14 and applicator head outlet 36, arm 56 may be adjusted on slot 54 to precisely position applicator 20 to a desired vertical location, and holder 60 may be aligned. Component 10 may pass beneath applicator 20 in a vertical plane or may be horizontally moved in place by component holder 60. The determination of the thickness of the coating can be easily determined by trial and error, and will not require undue amounts of experimentation.

Coating techniques include silk screening and pad printing. In pad printing, a rubber pad or other suitable carrier is coated with grease and applied to either the component or the release liner. When the pad is removed, a "printed" area of thermal grease will be deposited in the appropriate area. The applicator head 26 of the present invention is a novel form of such a pad, and the present inventive method is a novel form of pad printing.
Regardless of the method of application, the present invention contemplates methods wherein discrete areas are selectively coated, as well as methods in which an entire surface of a component is coated. After the grease has been applied, the step of covering the thermal grease is undertaken, and this preferably comprises applying a plastic film, coated paper or other film over the thermal grease.

Additionally, as explained above, although it is preferred that the component be coated with thermal grease, applications are envisioned wherein the release liner will be coated first, and then the coated liner applied to the component.

Another aspect of the present invention is the disclosure of improved methods for installing a heat sink. In accordance with this aspect of the present invention, a protective backing is removed from the heat sink, and the heat sink is installed. Preferably, the step of removing a protective backing comprises the step of grasping a pull-off tab, which, as discussed above, is supplied with preferred embodiments of the present invention.

It will be understood that although the foregoing description of the preferred embodiments of the present invention focused upon the application of a material such as thermal grease to a heat sink, and then applying a release liner over the thermal grease, the present invention is equally applicable to and is directed to embodiments wherein the release liner 110 is first coated, continuously or discontinuously, with a coating such as thermal grease, and then the release liner 110 or a portion of it is applied to the back of a component such as a heat sink.

Although certain embodiments of the present invention have been disclosed and described with particularity, these embodiments are provided for the purpose of illustrating the invention and are not meant to be limiting. Upon review of the foregoing specification, those of skill in the art will immediately realize that numerous variations, modifications and adaptations of the
invention are possible. Although differing in form and function, such alternate embodiments will employ the spirit of the present invention and are encompassed by the same. Accordingly, reference should be made to the appended claims in order to determine the full scope of the present invention.
WHAT IS CLAIMED IS:

1. A method of applying a layer of thermal grease to a surface of a body of one of a heat sink and an electrical component capable of mounting to the heat sink, comprising the steps of:
 providing said surface for receiving the thermal grease, said surface including at least one of a heat sink surface, a release liner surface, and an electrical component surface capable of mounting to the heat sink surface;
 predetermining an area on said surface for applying the thermal grease thereon; and
 dispensing a layer of thermal grease through an applicator head having a multiplicity of holes for dispensing thermal grease therethrough onto the predetermined area.

2. The method of claim 1 further comprising the step of applying the release liner to the heat sink surface, said grease being disposed therebetween.

3. The method of claim 2 further comprising the step applying an adhesive to said surface.

4. The method of claim 1 further comprising the step of regulating a flow rate of the thermal grease through a thermal grease supply line, said supply line directing the thermal grease to said applicator head.

5. The method of claim 4 wherein said regulating step comprises the step of providing a positive displacement pump for forcing the thermal grease through the supply line.

6. The method of claim 1 further comprising the step of directing the thermal grease into a reservoir for distributing the thermal grease substantially evenly to said
holes, said reservoir being disposed proximate said multiplicity of holes, thereby enhancing uniform grease flow through the holes.

7. An applicator head for dispensing a layer of thermal grease, said head comprising:
 a head inlet;
 a head outlet; and,
 a nozzle sheet disposed between the inlet and the outlet, the nozzle sheet having a multiplicity of holes formed therethrough, said multiplicity of holes enabling thermal grease flow communication between the head inlet and the head outlet.

8. The applicator head of claim 7 wherein each one of the multiplicity of holes has a nozzle disposed thereon, each one of said nozzles being coupled to the nozzle sheet.

9. The applicator head of claim 7 wherein each one of said multiplicity of holes has an approximate inner diameter of between 0.010 and 0.100 inches.

10. The applicator head of claim 7 wherein each one of said multiplicity of holes has an approximate inner diameter of 0.040 inch.

11. The applicator head of claim 7 wherein each one of the multiplicity of holes has a center that is spaced apart from a center of at least one neighboring hole by between approximately 0.023 inch and 0.123 inch.

12. The applicator head of claim 10 wherein each one of the multiplicity of holes has a center that is spaced apart from a center of at least one neighboring hole by approximately 0.073 inch.
13. The applicator head of claim 7 further comprising a reservoir for substantially evenly distributing thermal grease to the multiplicity of holes, said reservoir disposed between the head inlet and the nozzle sheet.

14. A system for applying a layer of thermal grease onto a surface of at least one of a heat sink, a release liner, and an electrical component, comprising:
 a pressuring means for pressurizing the thermal grease;
 a thermal grease supply line for directing the thermal grease, said supply line coupled with said pressurizing means; and,
 an applicator head for dispensing a layer of thermal grease; said applicator head coupled with said thermal grease supply line, and having an inlet coupled to the thermal grease supply line, an outlet disposed proximate a surface of at least one a heat sink, a release liner, and an electrical component capable of mounting to the heat sink, and having a nozzle sheet disposed between the inlet and the outlet, the nozzle sheet having a multiplicity of holes formed therethrough that enable thermal grease flow communication between the head inlet and the head outlet.

15. The system of claim 14 wherein each one of the multiplicity of holes has a nozzle disposed on the outlet side of the nozzle sheet.

16. The system of claim 14 wherein each one of said multiplicity of holes has an inner diameter of between approximately 0.010 and 0.100 inches.

17. The system of claim 14 wherein each one of said multiplicity of holes has an inner diameter of approximately 0.040 inch.

18. The system of claim 14 further comprising a
reservoir for substantially evenly distributing thermal grease to the multiplicity of holes, said reservoir disposed between the head inlet and the nozzle sheet.
FIG. 1

FIG. 2

SUBSTITUTE SHEET (RULE 26)
Providing a surface for coating

Predetermining an area on the surface

Pressuring, regulating and directing a thermal grease

Dispensing a layer of thermal grease through applicator head (26) onto the surface area

Covering the grease layer with a protective film

Fig. 8
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(6) :B05C 3/20
 US CL :156/289; 118/401; 427/256, 355
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 U.S. : 156/289; 118/300, 401; 427/256, 355

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 None

 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 APS
 search terms: heat sink, thermal grease, nozzle

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 B earlier document published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Z member of the same patent family

Date of the actual completion of the international search
24 AUGUST 1998

Date of mailing of the international search report
29 SEP 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer

Telephone No. (703) 308-0651

Form PCT/ISA/210 (second sheet)(July 1992)