METHOD FOR PASSIVATION OF A METALLIZATION LAYER

A semiconductor wafer subject to a metallization etching process includes postetching residue that is removed using a fluorine containing solution having a substantial amount of CO₂ dissolved therein. Alternatively, or in addition, a fluorine containing solution, or the like, that has been used to remove the residue is rinsed from the wafer using a solvent containing a substantial amount of O₂ dissolved therein. In each instance, pitting of the metallization layer is reduced.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LR</td>
<td>Liberia</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td></td>
<td></td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
<td></td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TITLE OF THE INVENTION

METHOD FOR PASSIVATION OF A METALLIZATION LAYER

CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

BACKGROUND OF THE INVENTION

Numerous sequential processes are used in the manufacture of semiconductor integrated circuit devices. One such process is the etching of the metallization that has been deposited on the semiconductor wafer from which the integrated circuit is formed.

Aluminum is the most commonly used metallization on silicon integrated circuits. It is often alloyed with silicon and/or copper to improve its properties, in particular to meet the process and reliability requirements imposed upon it by the device manufacturer. However, such alloying increases the metallization layer's susceptibility to corrosion. The most common corrodatants are the dissociation products of plasma etch containing chlorine and fluorine and wet etches containing HF. Since the dimensions of state-of-the-art metallizations are on the order of 0.9 microns or less, the smallest pits resulting from the corrosion can seriously affect the electrical properties of the device and can even cause complete failure of the circuit. Such conventional etching processes also leave behind organo-metallic residue that must be removed in a subsequent wafer processing step that
further contributes to the problem of pitting.

Removal of the organo-metallic residue has conventionally been achieved through application of one of two basic types of solutions. The first solution type is an ethylene glycol based solution including, for example, low concentration HF. The second solution type is a water-based solution including, for example, a concentration of NH₄F. With respect to the second solution type, the higher the aqueous concentration of the NH₄F, the more effective the solution is at removing the undesired organo-metallic residue from the wafer. However, higher concentrations of the NH₄F also increase the likelihood and degree of pitting of the metallization layer. Substantial pitting from the NH₄F has also been observed at low NH₄F concentrations.

The present inventor has recognized this problem and has developed a method and solution for effectively removing the undesired organo-metallic residue from the wafer surface while significantly decreasing the likelihood and degree of pitting.
BRIEF SUMMARY OF THE INVENTION

A semiconductor wafer subject to a metallization etching process includes post-etching residue that is removed using a fluorine containing solution having a substantial amount of CO₂ dissolved therein. Alternatively, or in addition, a fluorine containing solution that has been used to remove the residue is rinsed from the wafer using a solvent containing a substantial amount of O₃ dissolved therein. In each instance, pitting of the metallization layer is reduced.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1 is a flow diagram of a post-etching residue removing process in accordance with one embodiment of the present invention.

FIG. 2 is a flow diagram of a post-etching residue removing process in accordance with a further embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a flow diagram illustrating one embodiment of a process including effective removal of post-etching residue while concurrently reducing and/or eliminating pitting that would otherwise result therefrom. As shown, a semiconductor wafer with a metallization layer is provided at step 10. The metallization layer may, for example, be any one or combination of a number of metallization materials. Such materials include aluminum, aluminum alloys, etc. Commonly used aluminum alloys include an alloy of aluminum and copper.

At step 15, the metallization layer is etched to form the desired metallization pattern. The etching of the metallization layer results in a residue that must be removed from the semiconductor wafer. Such residues are typically organo-metallic residues.

Removal of the residues ensues at step 20. At step 20, a novel and effective solution is applied to the semiconductor wafer. More particularly, an aqueous solution of NH₄F is applied to the wafer. The aqueous solution has an NH₄F concentration of at least about 2 x 10⁻¹ or greater and contains an amount of CO₂ dissolved therein. The amount of dissolved CO₂ is sufficiently large so that pitting of the metallization layer is substantially reduced when compared to an aqueous NH₄F solution that does not contain dissolved CO₂. Preferably, the solution is substantially saturated with CO₂. The CO₂ may be dissolved in the aqueous solution through, for example, sparging. Such sparging may take place at room temperature, at a rate of 1 liter/minute at 20 psi for about 1 hr. The solution may be applied, for example, by a spray solvent system or a spray acid system.

After treatment with the foregoing solution, the solution is removed from the semiconductor wafer at step 25. For example, the wafer may be cleaned using a spray of
de-ionized water, or the like. Alternatively, the solution may be removed by an
intermediate rinse chemical such as IPA.

FIG. 2 is a flow diagram illustrating a further embodiment of a process including
effective removal of post-etching residue while concurrently reducing and/or eliminating
pitting that would otherwise result therefrom. In accordance with this embodiment, a
semiconductor wafer with a metallization layer is provided at step 30. As noted above, the
metallization layer may, for example, be any one or combination of a number of
metallization materials. Such materials include aluminum, aluminum alloys, etc.
Commonly used aluminum alloys include an alloy of aluminum and copper.

At step 35, the metallization layer is etched to form the desired metallization
pattern. The etching of the metallization layer results in a residue that must be removed
from the semiconductor wafer. Such residues, as previously noted, are typically organo-
metallic residues.

Removal of the residues ensues at step 40. At step 40, a fluorine containing
aqueous solution is applied to the semiconductor wafer. Other solutions suitable for such
use include: ethylene glycol and fluorine solutions, propylene glycol and fluorine solutions,
hydroxylamine solutions, dimethylsulfoxide solutions, monoethanolamine solutions, and the
like. In the particular embodiment illustrated here, an aqueous solution of NH₄F is applied
to the wafer. The aqueous solution has an NH₄F concentration of at least about 2 x 10⁻⁴ M
or greater and, may contain a concentration as large as 0.5 to 1.0 M. Solutions with
higher concentration levels assist in removing the post-etching residue more effectively than
those with lower concentration levels. Although not necessary, the solution may be one
such as the one described above in connection with FIG. 1 and contain an amount of CO₂
dissolved therein.

After treatment with the foregoing solution, the solution is removed from the semiconductor wafer at step 40 using a unique rinsing solution. More particularly, the rinsing solution comprises a solvent that is capable of removing the fluorine containing solution; the rinsing solution having an amount of O₃ dissolved therein. Preferably, the solvent is de-ionized water that is substantially saturated with O₃. The O₃ may, for example, be introduced into the solution through a sparging process. By using this rinsing solution, pitting of the metallization layer is substantially reduced when compared to the pitting that would otherwise occur if a solvent, such as de-ionized water, alone were used in the rinsing process.

Numerous modifications may be made to the foregoing process without departing from the basic teachings thereof. Although the present invention has been described in substantial detail with reference to one or more specific embodiments, those of skill in the art will recognize that changes may be made thereto without departing from the scope and spirit of the invention as set forth in the appended claims.
CLAIMS

1. A solution for removing residue from a semiconductor wafer having metallization, the solution comprising an aqueous solution of NH4F having an NH4F concentration of at least 2 \times 10^{-1} \text{ M} or greater, the NH4F having a substantial concentration of CO2 dissolved therein.

2. A solution as claimed in Claim 1 wherein the solution has been sparged with CO2.

3. A solution as claimed in Claim 1 wherein the solution is substantially saturated with CO2.

4. A solution for rinsing a semiconductor wafer that has been subject to a residue removing process after etching of a metallization layer of the semiconductor wafer, the solution comprising de-ionized water having a substantial concentration of O3 dissolved therein.

5. A solution as claimed in Claim 4 wherein the solution has been sparged with O3.

6. A solution as claimed in Claim 4 wherein the solution is substantially saturated with O3.

7. A process for removing post-etching residue resulting from the etching of a metallization layer of a semiconductor wafer, the process comprising:
applying to the wafer a solution comprising an aqueous solution of NH₄F having an
NH₄F concentration of at least 2 x 10⁻¹¹ M or greater, the solution containing
a substantial amount of CO₂ dissolved therein.

8. A process as claimed in Claim 7 and further comprising the step of removing the
solution from the surface of the wafer after application thereof.

9. A process as claimed in Claim 7 wherein the metallization layer comprises
aluminum.

10. A process as claimed in Claim 7 wherein the metallization layer comprises an
aluminum alloy.

11. A process as claimed in Claim 7 wherein the metallization layer comprises an alloy
of aluminum and copper.

12. A process as claimed in Claim 7 wherein the solution is saturated with CO₂.

13. A process for removing post-etching residue resulting from the etching of a
metallization layer of a semiconductor wafer, the process comprising:
applying to the wafer a solution comprising an aqueous solution of NH₄F; and
rinsing the solution off of the wafer using de-ionized water that contains a
substantial amount of O₃ dissolved therein.
14. A process for removing post-etching residue as claimed in Claim 14 wherein the de-ionized water is substantially saturated with the Os.

15. A process for removing post-etching residue as claimed in Claim 14 wherein the solution comprising an aqueous solution of NH₄F having an NH₄F concentration of at least 2 x 10⁻³ M or greater.

16. A process for removing post-etching residue as claimed in Claim 14 wherein the solution comprising an aqueous solution of NH₄F having an NH₄F concentration of at least 5 x 10⁻¹ M or greater.

17. A process for removing post-etching residue as claimed in Claim 14 wherein the metallization layer comprises aluminum.

18. A process for removing post-etching residue as claimed in Claim 14 wherein the metallization later comprises an aluminum alloy.

19. A process for removing post-etching residue as claimed in Claim 14 wherein the metallization layer comprises an alloy of aluminum and copper.

20. A process for removing post-etching residue resulting from the etching of a metallization layer of a semiconductor wafer, the process comprising:
applying to the wafer a fluorine containing solution; and
rinsing the solution off of the wafer using a solvent for the fluorine containing
solution, the solvent containing a substantial amount of O₃ dissolved therein.

21. A process for removing post-etching residue as claimed in Claim 20 wherein the
fluorine based solution comprises an aqueous solution of NH₄F having an NH₄F
concentration of at least 2 x 10⁻¹ M or greater.

22. A process for removing post-etching residue as claimed in Claim 20 wherein the
fluorine based solution comprises an aqueous solution of NH₄F having an NH₄F
concentration of at least 5 x 10⁻¹ M or greater.

23. A process for removing post-etching residue as claimed in Claim 21 wherein the
solvent is de-ionized water.

24. A process for removing post-etching residue as claimed in Claim 23 wherein the de-
onized water is substantially saturated with the O₃.

25. A process for removing post-etching residue as claimed in Claim 22 wherein the
solvent is de-ionized water.

26. A process for removing post-etching residue as claimed in Claim 25 wherein the de-
onized water is substantially saturated with the O₃.
27. A process for removing post-etching residue as claimed in Claim 20 wherein the solvent is de-ionized water.

28. A process for removing post-etching residue as claimed in Claim 27 wherein the de-ionized water is substantially saturated with the O₃.

29. A rinsing solution for rinsing a semiconductor wafer that has been subject to a residue removing process after etching of a metallization layer of the semiconductor wafer, the residue removing process using a fluorine containing solution, the rinsing solution comprising a solvent suitable for rinsing the fluorine containing solution from the wafer, the rinsing solution having a substantial concentration of O₃ dissolved therein.

30. A solution as claimed in Claim 29 wherein the rinsing solution comprises de-ionized water.

31. A solution as claimed in Claim 29 wherein the rinsing solution is substantially saturated with O₃.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) : B01B 6/00; B44C 1/22; C09K 13/08
US CL. : 134/1.3; 216/104; 438/750, 754; 252/79.3
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S. : 134/1.3; 216/100, 102, 104; 438/750, 754; 252/79.2, 79.3

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
STN: CAS; ORBIT: WPAT, Japio, Inspec; ASP: USPAT

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y,P</td>
<td>US 5,676,760 A (AOKI ET AL) 14 OCTOBER 1997, columns 21-22.</td>
<td>4-6, 20-31</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,175,124 A (WINEBARGER ET AL.) 29 December 1992, columns 3-4.</td>
<td>20-28</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 20 APRIL 1998

Date of mailing of the international search report: 26 MAY 1998

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer: George Gourbeau
Telephone No. (703) 308-1915

Form PCT/ISA/210 (second sheet) (July 1992)