Title: NOISE CONTROL DEVICE

Abstract

An apparatus for noise cancellation of ambient noise impinging upon the front surface of a pressure differential microphone. The apparatus utilizes curved reflectors (24, 25) to cause ambient noise which impinges on the front surface of the microphone to also impinge on the back surface of the microphone. In addition, the curved reflectors deflect (68) a speaker’s voice which is directed toward the front surface of the microphone to be deflected away from the back surface of the microphone.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slovenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td>SK</td>
<td>Slovakia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
<td>SZ</td>
<td>Swaziland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Chad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
<td>TJ</td>
<td>Tajikistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
<td>TR</td>
<td>Turkey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
<td>UA</td>
<td>Ukraine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td>UG</td>
<td>Uganda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
<td>UZ</td>
<td>Uzbekistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KG</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
<td>SG</td>
<td>Singapore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOISE CONTROL DEVICE

BACKGROUND OF THE INVENTION

This invention relates generally to noise-cancelling microphones and related devices. More particularly, this invention relates to a bi-directional noise control device for use in environments having random noise.

Microphone units typically operate in environments where unwanted noise is present. For example, a person listening to someone talking on the telephone may be distracted from the speaker’s voice by sounds emanating from machinery, traffic, appliances, or other ambient sounds, if the person is talking into a phone without a noise-cancelling microphone.

Many noise-cancelling microphone element designs employ front and rear sound ports which allow sound to enter both and impinge upon the diaphragm simultaneously in opposite directions resulting in little or no signal being generated by the microphone. This technique is applied in a wide variety of cardioid microphones as well as telephone handset transmitters and headsets. Some employ acoustic tuning to the rear port to make it more frequency responsive.

Noise-cancelling microphones depend upon two factors for their operation. The first factor is the polar pattern of the microphone (usually bi-directional) and the assumption that the noise to be reduced is not on the maximum sensitivity axis of the microphone. The second factor is the different responses of the bi-directional microphone for a sound source close to the microphone (i.e., entering the front sound port) and a sound source at a distance to the microphone (i.e., entering the front and rear sound port).
When the sound source is close to the front sound port of the microphone, the sound pressure will be several times greater at the front than at the rear. Since the microphone responds to the difference of sound pressure at the two entries, close talking will provide a substantially higher sensitivity than a remote sound, where the sound pressure is equal in magnitude at the two entries.

Because of construction restraints inherent in front and rear sound port microphone design, one port of the microphone is always more sensitive. This results from the need to provide a supporting structure for the diaphragm and the resulting impedance that structure presents to sound entering the rear sound port microphone element. In common practice, the more sensitive port is faced forward to capture the desired sound while the less sensitive port is utilized for capturing and nulling the undesired background noises.

If the front and back sensitivities of the element were equal, then theoretically 100% noise rejection would be possible whenever noise of equal pressure is subjected to both entrances to the microphone. In practice however, only 10-20 dB noise reduction is possible using the currently available microphone elements and this is only for frequencies below about 3 KHz.

Frequency response is another factor that differentiates noise-cancelling microphones. Frequency response is essentially flat in the near field (i.e., a sound source close to the front sound port) over the audio band. In the far field (i.e., a remote sound source), the frequency response increases with frequency until the pressures at the front and rear ports of the unit are 180 degrees out of phase at which point resonance occurs. At some frequency, the microphone becomes more sensitive to axial far field sounds than axial near
field sounds. This crossover frequency will occur at a higher frequency for a microphone with a shorter port separation than a microphone with a longer port separation.

Several devices, both electrical and mechanical, used for noise-cancellation exist but have potential drawbacks such as the need for preprocessing, effects of reflections, calibration difficulties, cost, and operating environment. For example, in environments in which human speech is the ambient noise, signal processing techniques such as filtering can not effectively be used because the ambient human speech is at the same frequency as the desired speaker’s voice and because the ambient noise is non-constant or non-periodic.

BRIEF SUMMARY OF THE INVENTION

The apparatus of the present invention enhances the performance of pressure differential microphones used to cancel or reject background noise. When the pressure differential microphone and the apparatus of the present invention are used together they form an electroacoustic noise rejection system exceeding the performance of commercially available technologies.

The present invention effects a high degree of cancellation of the impingement of ambient noise upon the front surface of a pressure differential microphone by directing the same ambient noise upon the back side of the microphone. The present invention causes ambient noise (including voice, non-constant noise, non-periodic noise, and random noise) to enter the microphone on both sides simultaneously and with the strength of the sound on the back side relatively higher slightly to overcome the relatively higher impedance of the back side of the microphone, thus nullifying the effect of the noise sound
waves. Furthermore, the present invention deflects the talker's voice (i.e., the desired sound to be transmitted) away from the back side of the microphone.

The present invention utilizes curved reflectors to direct ambient noise into the back side of the microphone even when the rear port of the microphone is not aligned with the source of greatest ambient noise. In addition, the sound pressure of the ambient noise entering the back side of the microphone is increased by the curved reflectors being larger than the opening leading to the back side of the microphone. By such an invention, ambient noise sound waves entering the front of the microphone are cancelled at the microphone by the same ambient noise converging upon the back surface of the microphone. The curved reflectors also act to deflect the speaking voice away from the back side of the microphone so that the speaker's voice enters the front side of the microphone only. This is essentially to prevent self-cancellation.

In one aspect, the present invention provides a noise-controlling apparatus for use with a directional microphone having a housing having a first sound opening located in a front side of a barrier element and a second sound opening located in a back side of the barrier element. The housing having a curved reflector extending from the back side of the barrier element which deflects a user's voice away from the second sound opening and deflects ambient noise toward the second sound opening.

In another aspect, the present invention provides a noise-controlling apparatus having a microphone having both a sound-receiving front side and a sound-receiving back side. The housing having a centrally located barrier element with a first sound opening in a front side of the barrier element and a second sound opening in a back side of the barrier element communicating with
the sound-receiving front and back side, respectively, of the microphone. The housing having a first curved reflector and a second curved reflector each extending from the back side of the barrier element and which deflect a user’s voice away from the second sound opening and ambient noise toward the second sound opening.

In yet another aspect, the present invention provides a noise-controlling apparatus having a microphone having a sound-receiving front side and a sound-receiving back side. The housing having a centrally located barrier element with a first sound opening in a front side of the barrier element and a second sound opening in a back side of the barrier element communicating with the sound-receiving front and back side, respectively, of the microphone and portions for deflecting a user’s voice away from the second sound opening and deflecting ambient noise toward the second sound opening.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

FIG. 1 is a perspective view of the apparatus of the present invention.

FIG. 2 is a plan view of the apparatus on a telephone handset.

FIG. 2A is a top plan view of the apparatus.

FIG. 2B is an enlarged top plan view of the portion 2A of FIG. 2 with the microphone removed from the opening in the top of the apparatus.

FIG. 3 is a rear elevational view of the apparatus.

FIG. 4 is a front elevational view of the apparatus.
FIG. 5 is a right side view of the apparatus.

FIG. 6 is a left side view of the apparatus.

FIG. 7 is a bottom plan view of the apparatus.

FIG. 8A is a cross-sectional view taken along line 8A-8A of FIG. 2A.

FIG. 8B is a cross-sectional view taken along line 8B-8B of FIG. 2A.

FIG. 9 is a diagrammatic representation of the speaker's voice interacting with the apparatus.

FIG. 10 is a diagrammatic representation of ambient noise interacting with the apparatus.

FIG. 11 is a graph of the near field response and far field response of a prior art noise cancelling headset.

FIG. 12 is a graph of the near field response and far field response of the apparatus of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The apparatus 20 of the present invention improves the noise cancellation effects of pressure differential microphones (i.e., bi-directional microphones) 22 for voice recognition and speech transmission when used in ambient noise environments. The present invention can be used with telephone handsets, as is used as the example herein, in voice recognition systems as well
as in any number of a variety of environments and devices, such as but not limited to airplane telephones, cellular telephones, car phones, headsets, and stage microphones. The present invention works particularly well in environments having random ambient human speech noise (e.g., stock exchange floors and trading rooms), non-periodic noise, or non-constant noise but is also applicable to environments in which the ambient noise is constant or periodic and not speech noise. The present invention improves voice recognition and speech transmission clarity by enhancing the signal to noise ratio over a frequency range up to 8 KHz, as opposed to conventional devices that generally range up to 4 KHz or less.

The illustrated embodiment of the apparatus 20 screws onto a standard telephone handset 30 in place of the original transmitter. Housing adapter 32 (FIGS. 7 and 8A) having electrical contacts 34 and 36 is attached to housing 38 to make the proper contacts with the handset 30. As will be recognized by one of ordinary skill in the art, housing adapter 32 can be any of a variety of configurations to fit whatever device in which the present invention is used. In some devices in which the present invention will be used no housing adapter is needed.

The apparatus 20 of the present invention concentrates ambient noise on the rear port (not shown) of a pressure differential microphone 22 as described above while deflecting the speaker’s voice away from the rear port using a pair of curved reflectors 24 and 25 and a sound barrier element 26. The barrier element 26 extends across the width (i.e., the x-direction) of the apparatus 20 and forms a pair of open sound concentration zones 28, 29 (FIG. 5) with the curved reflectors 24 and 25. These features are illustrated in cross-section in FIGS. 8A, 9 and 10.
Apparatus 20 has a base 40 which in the illustrated embodiment is designed to screw onto a standard telephone handset in place of the original transmitter. For purposes of description herein, the x, y, and z directions are defined in FIG. 1. The x-direction is defined as being across the housing 38 in the general direction of the length of the barrier element 26. This direction is described as being in the "general" direction because the barrier element 26 is tapered from its first end 42 to its second end 44. The x-direction therefore is in the direction of a centerline running along the length of the barrier element. The barrier element 26 is wider at first end 42 so that a user speaking into the handset can rest their cheek against the wider end, however, the barrier element does not have to be wider at one end. The barrier element 26 is supported at first end 42 by flanges 46 and 47 and at second end 44 by flanges 48 and 49. Opening 50, as best seen in FIGS. 2B, 8A and 8B, through the barrier element 26 houses the microphone 22. Wires 52 extend through holes 54 and 55 down through apparatus 20 to make contact with the electrical contacts 34 and 36.

Curved reflectors 24 and 25 curve in the y and z directions (i.e., in the depth and height directions) until reaching an apex 56 (FIGS. 2B, 8A-10) along the centerline of the barrier element 26. The curved reflectors 24 and 25 rise slowly from the base 40 initially, then increase in steepness as they approach the apex 56, thus forming a continuously variable curved surface. A continuously variable curved surface, as opposed to a semi-circular curved surface, is preferred so that the reflectors reflect sound over a broad range of frequencies with minimal resonance. The continuously variable curved surfaces do not have to conform to a simple mathematical equation and can be semi-parabolic, quasi-parabolic, or any of a large variety of continuously variable curved surfaces. In furtherance of eliminating or minimizing resonance, the back side or underside 60 of the barrier element 26 and the intersection of the
curved reflector form non-tubular sound concentration zones 28 and 29 around the slots 58 and 59. In other words, the space bounded by the underside of the barrier element and the curved reflector does not form a column of air as the tubular structures of the prior art often do which can produce resonance at certain frequencies. Rather the sound concentration zones 28 and 29 are "open" reflector systems similar to the human ear so as to eliminate or at least minimize resonance around the slots 58 and 59.

One purpose of the curved reflectors 24 and 25 is to reflect and concentrate ambient noise through slots 58 and 59 onto the back side of the microphone 22. Slots 58 and 59 (FIG. 8A) are formed where the opening 50 exits through the barrier element 26 onto the apex 56. Therefore, slots 58 and 59 each have a length equal to the length of the opening 50 in the x-direction and a width equal to one-half the width of the opening 50 in the y-direction. The continuously variable curved surfaces of the reflectors 24 and 25 help to ensure for each angle of incidence of ambient noise 70 there is some angle of reflection for directing the ambient noise 70 to the back side of the barrier element 26, the slots 58 and 59, and the back side of the microphone 22 (FIG. 10). In addition, because the curved reflectors 24 and 25 are much larger relative to the slots 58 and 59, the reflectors increase the sound pressure of the ambient noise on the sound-receiving back side of the microphone 22 to overcome the inherent acoustical impedance of the internal support structure of the microphone so that the ambient noise impinges on the sound-receiving front side and sound-receiving back side of the microphone at substantially equal sound pressures for better noise-cancellation.

Another purpose of the curved reflectors 24 and 25 is to deflect the talker's voice away from the back side of the microphone 22 so as to reduce or
eliminate self-cancellation of the speaker's voice which is caused by the speaker's voice entering the front and back side of the microphone. The voice 64 (solid wavefront lines) of the talker 66 is directed toward the top of the barrier element 26 generally along the main axis 62 of the apparatus 20 into the front entrance of the microphone as shown in FIG. 9. After the voice sound 64 passes the barrier element, it is deflected away from the rear entrance of the microphone by reflectors 24 and 25 (dashed wavefront lines 68). Reflecting the voice 64 of the talker 66 away from the back side of the microphone can produce a 10 dB gain over prior art handsets because prior art handsets typically have some self-cancellation of the talker's voice. To decrease the amount of the speaker's voice that might pass around the edges of the barrier element 26, the shape of the edges can be optimized to reduce refraction around the edges or to reflect the speaker's voice away. The reflectors 24 and 25 can be any of a large variety of materials such as but not limited to plastics, foams and rubbers.

One way to cancel the effect of the noise pressure on the microphone is to ensure that the noise pressure felt by the front surface is equal to that felt by the rear surface. In FIG. 10, the noise 70 is modeled as a distributed spherical source having intensity I_0. The spherical noise source is assumed to be located at a radius R from the center of the microphone 22. The noise pressure felt on the front surface of the microphone is obtained by integrating the noise field over the upper hemisphere:

$$N_f = \frac{I_0 A \pi}{8 C}$$
where A is the surface area of the microphone, c is the speed of sound in air and N_f is the noise pressure impinging on the front surface of the microphone.

The noise pressure felt on the rear surface of the microphone depends on the reflector characteristics. For an isotropic, linearly elastic solid reflector, the acoustic reflectively α_r is given by:

$$\alpha_r = \frac{1 - 4 \rho_1 c_1 \rho c \cos\theta \sqrt{1 - \left(\frac{c}{c_1} \right)^2 \sin^2 \theta}}{\rho c \cos\theta + \rho_1 c_1 \sqrt{1 - \left(\frac{c}{c_1} \right)^2 \sin^2 \theta}}$$

where ρ is the density of air, c is the speed of sound in air, ρ_1 is the density of the reflector medium, c_1 is the speed of sound in the reflector medium, and θ is the angle of incidence. Careful study indicates that the acoustic reflectivity is nearly unity for most metallic solids. The material chosen for the reflector of the present invention can also be shown to have a reflectivity of unity.

Applying Snell’s law, the noise pressure due to reflection is:

$$N_b = \int_0^L \frac{2\pi I_0}{c} \sqrt{1 + \left(\frac{dy}{dx} \right)^2} 2\pi x \left(1 - \frac{f}{\sqrt{f^2 + y^2}} \right) dx$$

where $y = f(x)$ is the function that determines the shape of the reflector. This function is chosen such that $N_f = N_b$. Several families of functions satisfy the given noise-pressure-matching criterion. Of these families, functions are chosen that satisfy three criteria. The first criterion is the frequency range for
which noise cancellation is desired. For the current speech application, a frequency range of 0 to 8,000 KHz is desired. By comparing the unreflected wave impinging on the front surface with the reflected wave impinging on the rear surface it can easily be shown that the reflected wave lags behind the unreflected wave. Therefore, the shape function is chosen such that the phase lag is minimal. The second criterion is that the shape minimizes the amount of near field sound reflected back to the microphone and the third is that the surface is easily manufacturable.

Noise rejection or cancellation is measured by comparing the signals of a reference microphone to a test microphone under two conditions. The first condition subjects both microphones to a close speaking voice (i.e., near field) to simulate a person speaking into the microphone at close range. The second condition subjects both microphones to ambient room noise (i.e., far field). The difference between the responses of each microphone to the two conditions is a measure of the microphone’s noise rejection or cancellation effectiveness. The present invention was tested against a prior art noise-cancelling headset. The present invention and the prior art headset each utilized identical microphone elements (i.e., electrets). The response of the prior art device is plotted in FIG. 11 and the response of the present invention is plotted in FIG. 12.

Both microphones were tested for noise rejection by comparing each response to that of a Peavey ERO 10 reference microphone which has no noise rejection characteristics but exhibits a well defined flat response from 20 Hz to 20 KHz. The reference microphone and the test microphone were placed in very close proximity to each other equidistant from a noise source. A near field voice source was provided by an acoustic dummy of human dimensions
with a JBL Control Micro loudspeaker mounted inside the head. The
loudspeaker generated sound which exited through the mouth opening. The
reference microphone and the test microphone were placed 2 centimeters from
the mouth opening. A far field ambient noise source was provided by another
JBL Control Micro loudspeaker mounted on a movable stand about 10 feet
away from the dummy.

A Hewlett-Packard 3566 two channel dynamic spectrum analyzer was
used for source noise and measurement. A white noise signal of 300 millivolts
was amplified (McGowen 354SL) and connected to the dummy loudspeaker.
The noise signal was adjusted to 80 dB sound pressure at each of the test
microphone and reference microphones. The microphones were routed to the
analyzer through a Makie 1202 mixer with the reference microphone routed to
channel one and the test microphone routed to channel two. With the analyzer
in frequency response mode, the two signals were analyzed by the Hewlett-
Packard 3566 which automatically divided their power outputs.

After plotting the near field response, the amplifier was switched to the
far field loudspeaker and without moving the microphones, the sound pressure
was again adjusted to 80 dB at each of the test microphone and reference
microphone. This required turning up the amplifier volume because of the
added distance between the loudspeaker and the microphones. The far field
response was plotted to measure how much less responsive each microphone
was to distant sounds. The difference between the near field and the far field
response is a measure of the microphone’s noise rejection.

In FIG. 11, the upper trace 72 is the near field response of the prior art
headset. The prior art headset followed approximately the -10 dB magnitude

13
line throughout the frequency range of 50 Hz to 8 KHz indicating the prior art headset had a fairly flat response but 10 dB less gain than the reference microphone. The lower trace 74 is the far field response of the microphone which varied between about 10 and 20 dB up to about 3.5 KHz at which point it began to "poop out" because the headset became more sensitive to the far field sounds than the near field.

In FIG. 12, the same microphone element was tested in a telephone handset with the apparatus of the present invention following the same procedure. The near field response 76 followed the 0.0 dB line indicating that the handset with the present invention nearly had the same gain as the reference microphone. In addition, the noise rejection of the apparatus of the present invention was dramatically greater, ranging between 10 dB to 40 dB up to 6.45 KHz and beyond as shown by the lower trace 78.

It will be appreciated by those of ordinary skill in the art that the present invention can be embodied in other specific forms without departing from the spirit or essential character thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalents thereof are intended to be embraced therein.
CLAIMS:

1. A noise-controlling apparatus for use with a directional microphone comprising:
 a housing having a first sound opening located in a front side of a barrier element and a second sound opening located in a back side of the barrier element, the housing having a curved reflector extending from the back side of the barrier element which deflects a user’s voice away from the second sound opening and deflects ambient noise toward the second sound opening.

2. The apparatus of Claim 1 wherein the curved reflector comprises a continuously variable curved surface.

3. The apparatus of Claim 1 wherein the curved reflector comprises a semi-parabolic curved surface.

4. The apparatus of Claim 1 wherein the curved reflector comprises a quasi-parabolic curved surface.

5. The apparatus of Claim 1 wherein the back side of the barrier element and the curved reflector form a non-tubular sound concentration zone around the second sound opening.

6. The apparatus of Claim 1 wherein the curved reflector curves in the y and z directions only.

7. The apparatus of Claim 1 wherein the curved reflector curves in the depth and height directions only.
8. A noise-controlling apparatus comprising:
 a microphone having a sound-receiving front side and a sound-receiving
 back side;
 a housing having a centrally located barrier element with a first sound
 opening in a front side of the barrier element and a second sound opening in a
 back side of the barrier element communicating with the sound-receiving front
 and back side, respectively, of the microphone, the housing having a first
 curved reflector and a second curved reflector each extending from the back
 side of the barrier element and which deflect a user’s voice away from the
 second sound opening and ambient noise toward the second sound opening.

9. The apparatus of Claim 8 wherein each of the curved reflectors
 comprises a continuously variable curved surface.

10. The apparatus of Claim 8 wherein each of the curved reflectors
 comprises a semi-parabolic curved surface.

11. The apparatus of Claim 8 wherein each of the curved reflectors
 comprises a quasi-parabolic curved surface.

12. The apparatus of Claim 8 wherein the back side of the barrier
 element and the curved reflectors form a non-tubular sound concentration zone
 around the second sound opening.

13. The apparatus of Claim 8 wherein each of the curved reflectors
 curve in the y and z directions only.
14. The apparatus of Claim 8 wherein each of the curved reflectors curve in the depth and height directions only.

15. A noise-controlling apparatus comprising:
 a microphone having a sound-receiving front side and a sound-receiving back side;
 a housing having a centrally located barrier element with a first sound opening in a front side of the barrier element and a second sound opening in a back side of the barrier element communicating with the sound-receiving front and back side, respectively, of the microphone; and
 means for deflecting a user's voice away from the second sound opening and deflecting ambient noise toward the second sound opening.

16. The apparatus of Claim 15 having means forming a non-tubular sound concentration zone around the second sound opening.

17. The apparatus of Claim 15 having means for increasing the sound pressure from the ambient noise on the sound-receiving back side of the microphone.

18. The apparatus of Claim 15 having means for preventing or minimizing resonance at the second sound opening.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC(6) | :H04R 1/00 |
| US CL | :381/91,160,339,344,357 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| U.S. | 381/91,160,339,344,357 |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

NONE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4,773,091 A (BUSCHE ET AL) 20 September 1988, the Figure and column 1, line 1 to column 2, line 13.</td>
<td>1,2,5-9,12-18</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

30 MARCH 1998

Date of mailing of the international search report

12 MAY 1998

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks

Box PCT

Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

F. W. Isen

Telephone No. (703) 305-4386

Form PCT/ISA/210 (second sheet) (July 1992)