Title: PROCESS FOR THE PREPARATION OF AQUEOUS SOLUTION OF ESSENTIAL OIL, AND ANTIMICROBIAL AGENTS, MICROBICIDES AND ANTIMICROBIAL FINISHES FOR WASHING CONTAINING THE SAME AS ACTIVE INGREDIENT

Abstract
A process for the preparation of an aqueous hinokitiol solution, characterized by mixing hinokitiol or a hinokitiol-containing oil with water, boiling the obtained liquid mixture by heating, rapidly cooling the resulting liquid mixture, blowing oxygen into the liquid mixture under stirring, and storing the resulting mixture at 0.5 to 5°C. The process can give an aqueous solution of the water-insoluble essential oil having a concentration of up to about 40%. This aqueous solution of the oil is easily handleable by virtue of its liquidness, and does not contain any organic solvent harmful to the human body, thus being highly safe. Further, the solution has antibacterial and/or microbicidal effect, thus being extremely useful as antibacterial agent, microbicide, and so on.
（57）要約

本発明は、ヒノキチオール又はヒノキチオール含有油と水を混合し、得られた混合液を加熱沸騰させた後急冷し、次いで攪拌して混合液中に酸素を供給し、その後0.5〜5℃で保存することを特徴とする、ヒノキチオール水溶液の製造方法を提供する。

本発明により、不溶性の植物精油と水を40%程度まで混合した水溶液として得ることができる。この植物精油含有水溶液は、液状であることから取り扱いが容易であり、人体に有害な有機溶媒等を含まないため、安全性が高い。また、この植物精油含有水溶液は抗菌効果およびまたは殺菌効果を有することから、抗菌剤、殺菌剤等としてきわめて有用である。
明細書

植物精油含有水溶液の製造方法、それを有効成分とする抗菌剤、殺菌剤および洗濯用抗菌仕上剤

発明の技術分野

本発明は、植物精油含有水溶液およびその製造方法に関する。また、本発明は、植物精油含有水溶液を有効成分とする抗菌剤、殺菌剤および洗濯用抗菌仕上剤に関する。

発明の背景

各種の樹木には種々の芳香成分が含まれており、これらの葉、花、つぼみ、樹皮、枝、幹、根などからこれらの芳香成分を含有する精油を得ることができる。精油を含む植物の中には、古くから芳香性健胃薬などの生薬として使用されてきたものもある。このような生薬の主成分でもある精油は、テルベノイド、ポリテルベノイド、フェノール類など数十種～二百種に及ぶ精油の混合物であり、テルペン類の占める割合が高い。

上述のように精油は様々な植物から得ることができるが、エンピツビャクシン、セイヨウヒノキ、台湾ヒノキ、ネズミサシ、ヒノキ、ベニヒ、ヒバ、アスナロなどのヒノキ科の樹木から得られる精油の中には殺菌性または抗菌性を有するものがある。このような精油に含まれる成分のうち、台湾ヒノキおよびヒバから得られる精油に含まれるヒノキチオールが抗菌性があることが知られている。

ヒノキチオールは、7員環を有する結晶性酸性物質であり、台湾ヒノキの葉、根から得た精油、青森もしくは北海道で生育するヒバ（アスナロ）の材、枝葉から得た精油等に含まれている。

精油に含まれる成分として検出されている化合物は低分子化合物であり、油状のものが多く、水溶性のものは少ない。したがって、精油と水を界面活性剤などを使用することなく混合することは難しい。
一般的には、水と油とは均一に混合され得ないが、それらの比によっては混合され得る場合がある。身近な例を挙げると、ラーメンのスープ、かつおぶしかり取るだしなど、特定の素材を水で煮出す方法がある。このようにして得た抽出液では、少量の油が水の中に溶けこんでいる。工業的な方法の例としては、コントラボなどを使用して油を気化させ、酸素もしくは他の物質と接触させて、温度と圧力とをかけ、水と油とを混合させる方法がある。

しかし、上記のような方法には以下の点で問題がある。煮出し法の場合には、抽出液の製造コストが高く、また大量に製造することができない。コントラボを用いる場合には、大量に製造はできるものの製造コストが高く、また、温度と圧力とをかけるために目的成分の構造が変化してしまうことがあり、目的成分が水に溶け込んだ抽出液を得ることが難しいことがある。

このため、これらの抽出液は、食品、食品添加物、医薬品などの付加価値が大きいものにした使用することができず、また、構造の変化していない目的成分を含む抽出液を使用することができない場合もあった。

ヒノキチオールは7員環を有する化合物であり、優れた抗菌作用、特に、抗真菌活性を有するとともに、耐性菌の出現がほとんどない安全性の高い物質であることが知られており、ヒノキチオールを含むヒノキが寿司屋のカウンターなどに使用されている。また、ヒノキチオールのかかる抗菌性に着目し、ヒノキチオールを含有させた洗濯用抗菌剤が知られている。

一方で、ヒノキチオールは、即効性で効果の高い抗生物質と比べると効果も弱く、即効性も劣ることから、皮膚科、歯科の領域、または化粧品の分野を除いてあまり使用されて来なかった。

ところが、近年、抗生物質に対する耐性菌が増加し、特に多くの抗生物質に強い耐性を示す多重耐性メチシリン耐性黄色ブドウ球菌（MRSA）が出現し、MRSAによる院内感染などが大きな問題となっている。最近、小堀らがヒノキチオールのMRSAに対する抗菌性を検討し、耐性菌の出現率が低いことを報告（Katsuji Kobori ら、医学検査、42 巻、10 号、別冊、1639-(19)～1642(22)等参照）したことから、ヒノキチオールが注目されるようになった。
しかしながら、上記のとおりヒノキチオールは精油成分の1つであり、水に不溶性であり、界面活性剤などを使用することなく水とヒノキチールを含有する精油とを混合することはできなかった。一方で界面活性剤を使用すると、ヒノキチオールの構造が変化し抗菌性が低下する。このため、従来の洗濯用抗菌剤は液状とすることができず粉末状とせざるを得ず、その取り扱いが不便であった。また、天然物から抽出した精油は合成品とは異なってヒトに対する安全性も高いが、製造コストの高さから用途も限定されていた。

このため、水をベースとし、ヒノキチオールを含むが、界面活性剤などは含まない均一な水溶液を安価に製造することに対応することが求められていた。

発明の概要

本発明の目的は、少なくとも1種以上の精油と水とを混合して混合液を製造する混合液製造工程と、得られた混合液を加熱沸騰させた後急冷する加熱急冷工程と、加熱急冷した混合液を攪拌して混合液中に酸素を供給する酸素溶解工程と、0.5〜5℃で保存する保存工程とを備える植物精油含有水溶液の製造方法を提供することにある。

この方法においては、上記酸素溶解工程と保存工程とを少なくとも2回行うことを特徴とする。また、上記酸素溶解工程を、20℃、大気圧で水中の溶存酸素量が9ppm以上になるまで行うことを特徴とする。また、上記の植物精油は、ヒノキ油、ラベンダーユキ、ヒバ油、レモンバーミー、およびイチョウ油からなる群から選ばれるものであることが好ましい。

本発明の目的はまた、水と水に対して約40%以下の、少なくとも1種以上の植物精油と水とを攪拌混合する精油混合液製造工程と、得られた混合液に少なくとも約20%の酸素を含む気体を吹込む酸素溶解工程と、少なくとも2以上のニュールから精油含有水溶液を吹出しながら精油混合液と水とを混合する混合工程と、混合工程で得られた混合液を静置する混合液静置工程と、静置した混合液を希釈して所望の濃度の精油成分を含む水溶液を製造する精油含有水溶液希釈工程とを備える植物精油含有水溶液水溶液の製造方法を提供することにある。
ここで、上記の植物精油は、ヒノキ油、ラベンダー油、ヒバ油、レモンバーム油、およびイチョウ油からなる群から選ばれるものであることが好ましい。

本発明の目的は、少なくとも1種以上の植物精油と、水とからなる植物精油含有水溶液を提供することにある。ここで、上記植物精油は、ヒノキ油、ラベンダー油、ヒバ油、レモンバーム油、およびイチョウ油からなる群から選ばれることが好ましい。

さらに、本発明の目的は、少なくとも1種以上の精油と水を混合して混合液を製造する混合液製造工程と、得られた混合液を加熱沸騰させた後急冷する加熱急冷工程と、加熱急冷した混合液を攪拌して混合液中に酸素を供給する酸素溶解工程と、0.5～5℃で保存する保存工程とを備える製造工程によって製造される精油含有水溶液を提供することにある。

ここで、上記精油は、ヒノキ油、ラベンダー油、ヒバ油、レモンバーム油、およびイチョウ油からなる群から選ばれるものであることが好ましい。

本発明の目的はさらにまた、上記の製造方法によって製造された植物精油含有水溶液を提供することにある。ここで、本発明の植物精油含有水溶液は、上記の精油からなる群から選ばれる精油を含有することが好ましい。

本発明の植物精油含有水溶液は、抗菌作用を有する精油成分を一定量以上含むことが好ましい。

本発明の目的はさらにまた、上記の植物精油含有水溶液からなる抗菌剤および/または殺菌剤を提供することにある。ここで、上記抗菌剤および/または殺菌剤は、多剤耐性黄色ブドウ球菌（MRSA）、腸管出血性大腸菌O-157、サルモネラ菌、およびレジオネラ菌に対する抗菌効果を有するものであることを特徴とする。

本発明の目的は、上記の植物精油含有水溶液からなる洗濯用抗菌仕上げ剤を提供することにある。

図面の簡単な説明

図1は、本発明における天然素材から得た精油と水を混合する装置の一例を示す概念図である。図1中、攪拌槽2に水と精油とを一定の容積比で入れ、攪拌棒4
の保持部材6を上下させて、混合液Mを攪拌する。

図2は、本発明における攪拌方法を行うことのできる装置の一例を示す概念図である。図2中、攪拌槽12に精油と水を一定の割合で混合した溶液を入れ、攪拌槽12の底部に連通したパルプ発生装置から空気または少なくとも20％の酸素を含む気体を泡状にして液体中に吹き込む。攪拌槽12の側部を連通する配管62から混合液Mをポンプ61で吸引し、混合液循環装置16で混合する。

図3は、本発明における攪拌方法を行うことができる装置の他の例を示す概念図である。図3中、攪拌槽22に精油と水を一定の割合で混合した溶液を入れ、攪拌槽22の底部に連通した攪拌装置24で混合液Mを攪拌する。また、攪拌槽22の側部を連通する配管72から混合液Mをポンプ71で吸引し、混合液吸入排出装置26で混合する。

図4は、本発明における攪拌方法を行うことができる装置の他の例を示す概念図である。図4中、攪拌槽32に精油と水との混合液M'を入れ、保持部材34に上下運動を与えることにより、攪拌棒33を上下させて混合液M'を攪拌する。また、気体供給装置36および38から少なくとも20％の酸素を含む気体を混合液M'中に泡状にして供給し、混合液M'中の溶存酸素量を高める。

図5は、本発明における攪拌方法を行うことのできる装置の他の例を示す概念図である。ノズル54'を備える配管54は容器52の底面に対して鉛直であり、ノズル56'を備える配管56および58'を備える配管58は、それぞれ配管54に対して所定の角度とする。これら3本のノズルの内径はいずれも同じである。

発明の実施例様

本明細書において精油とは、各種の植物体または動物体に含まれる揮発性物質を、適当な方法によってそれらの植物体から得た油状から半固体までの物質（通常、これらは数十種の化合物部からなる成体物である）、およびこのような物質に含まれる個別の精油成分（化合物）をいう。

本発明で用いる精油は、上記のように各種の天然物を材料として、水蒸気蒸留や抽出などによって得た天然物由来のものであってもよく、または合成された化合物
であってもよい。

天然物由来の精油を得る場合には、各種の植物の葉、枝、根、果実、樹皮、花、つぼみなどを精油源として使用する。目的とする精油成分が熱に安定であり、かつ水溶性成分を含まない場合には水蒸気蒸留を行うことが好ましく、オレンジやレモンなどの柑橘類の果皮から精油を採取する場合には圧搾を採用すればよい。熱により成分が変質するような不安定な成分を含む場合、または水溶性成分を含む精油の場合には、なるべく低温で水を使用しない抽出によることが好ましい。

本発明に使用する精油としては、ヒノキ油、ラベンダー油、ヒバ油その他の精油を例示することができ、ヒノキ油、ラベンダー油、ヒバ油、レモンバーム油、およびイチョウ油を使用することが抗菌作用、殺菌作用を発揮させる上で好ましい。

ここで、ヒバ油とは、青森県および北海道で主に生産されるヒバ、ヒノキアスナロの材、枝葉の水蒸気蒸留で得られる精油をいい、青森産ヒバからのヒバ油（以下、ヒバオイルという）がヒノキチオール含量が多いことから、好適に使用することができる。

ヒノキ油とは、ヒノキの幹材、根株および枝葉の水蒸気蒸留によって得られる精油をいい、台湾産のヒノキ（以下、台湾ヒノキという）からのヒノキ油（以下、台湾ヒノキオイルという）がヒノキチオール含量が多いことから、好適に使用することができる。

ヒノキオイルまたはヒバオイルは、台湾ヒノキまたは青森産ヒバの根株をチップにし、水蒸気蒸留を行うことによって得ることができる。または、ヒノキオイルとして、例えば、吾昇貿易有限公司（台湾）から市販されているものを使用することができる。

本発明においては、フランス、イタリア、ハンガリー、イギリス、北アメリカ、オーストリア、及び北海道などで栽培されているラベンダーの花を水蒸気蒸留したラベンダー油もまた、好適に使用することができる。

さらに、レモンバームから得られる精油であるレモンバーム油は、イチョウの葉、果実などから得られるイチョウ油などもまた、好適に使用することができる。茶の実を水蒸気蒸留して得られる茶油もまた、殺菌作用、抗菌作用を発揮するために好
適に使用することができる。

また、本発明においては、上記のような数十種の化合物からなる組成物の他に、例えば、ヒノキチオールなどの個別の成分を使用することもできる。このような個別の成分は、ヒノキチールを含む有する精油から精製された天然物由来のものであってもよく、または合成されたものであってもよい。

ヒノキチールとしては、東京化成工業株式会社から市販されているヒノキチオール（精製品）を使用することもできる。

本発明において使用する水は、ミネラル分を多く含むものを使用すると、精油とが好適に混合される。

このような水としては、もっとも SiO₂、TiO₂、Al₂O₃、Fe₂O₃、FeO、MnO、MgO、CaO、Na₂O、K₂O、P₂O₅ 等のミネラル分を 5 ppm 以上含む水を使用することができ、また、これらのミネラル分を添加した水を使用してもよい。例えば、水に大広石（山形県朝日村にて採取、大広鉱業株式会社より販売）、麦飯石（岐阜県白川郷にて採取）等を加えることによりミネラル分を補給することができる。大広石及び麦飯石の成分組成を表 1 に示す。

<table>
<thead>
<tr>
<th>成分</th>
<th>大広石</th>
<th>麦飯石</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>68.26</td>
<td>69.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.80</td>
<td>14.0</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.84</td>
<td>1.3</td>
</tr>
<tr>
<td>CaO₂</td>
<td>2.98</td>
<td>2.0</td>
</tr>
<tr>
<td>MgO</td>
<td>1.85</td>
<td>3.6</td>
</tr>
<tr>
<td>SO₂</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.45</td>
<td>3.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.94</td>
<td>0.3</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.01</td>
<td>0.26</td>
</tr>
<tr>
<td>MnO</td>
<td>0.09</td>
<td>0.20</td>
</tr>
<tr>
<td>H₂O</td>
<td>1.60</td>
<td>1.06</td>
</tr>
</tbody>
</table>

これらの石に含まれるミネラル分が水中に溶け出し、ミネラル分に富む水を得ることができる。
上記の精油と水を以下に示す所定の工程によって混合すると、本発明の植物精油含有水溶液を得ることができる。

まず、混合液製造工程において、精油と水を混合する。この好適においては、精油を、水中に通常10〜70重量％、好ましくは20〜40重量％の濃度で混合する。また、この際、所望により、上述したミネラル成分を水に5 ppm以上となるように添加する。

次に、加熱急冷工程において、精油と水との混合液を加熱して沸騰させる。沸騰時間は、通常、5分間程度である。加熱沸騰させた後、混合液を急冷する。混合液の急冷は、冷蔵庫等に入れることにより行う。通常、加熱沸騰後約3時間くらいの間に、0.5〜5℃程度までに冷却することが、精油と水との混合を促進する上で好適である。

加熱急冷した混合液を、酸素溶解工程において摂拌し、混合液中に酸素を供給して溶存酸素量を増加させる。摂拌は、混合液中に酸素を十分供給することができる方法であればいかなる方法で行ってもよい。

摂拌方法の一例を図1に示す。本方法で使用することのできる装置10は、容器2と、複数の摂拌棒4と、各摂拌棒4を保持する保持部材6とを有し、容器2の中に上記混合液Mが入る。本実施例による摂拌棒4は、ジグザグ状の棒からなるものであるが、上下に動かした際に混合液に対して大きな抵抗を生ずるような形状のものであれば特に限定されることなく、例えば、複数の円板部材に直線状の棒を貫通させたようなものであってもよいし、らせん状の棒からなるものであってもよい。

この装置1を使用して混合液Mを摂拌するには、保持部材6を上下させ、各摂拌棒4に上下運動を与える。この摂拌棒4の上下運動により、空気中の酸素を混合液Mに供給し、混合液Mの溶存酸素量を増大させることができる。溶存酸素量を増大させるためには、摂拌棒4を回転運動等させるよりも上下運動させるのが好ましい。

本発明における摂拌方法の他の例を図2に示す。本方法で使用することのできる装置20は、混合液Mの入る容器12と、容器12の底部に連通したバブル発生装置14と、混合液循環装置16とを有する。バブル発生装置14は、空気又は酸素を泡状にして液体中に放出し得る機能を有する。混合液循環装置16は、ポンプ61により、容器
12 の側部に連通した配管 62 から混合液 M を吸引し、容器 12 の上方に設置されたノズル 64 からその混合液 M をシャワー状に吐出することができるような構造を有する。

この装置 20 を使用して混合液 M を攪拌するには、ノズル 64 から混合液 M をシャワーするとともに、バブル発生装置 14 から空気又は酸素をバブリングさせればよい。混合液 M のノズル 64 からのシャワーは高圧で行い、混合液 M を激しい勢いで吐出させるのが好ましい。また、バブリングはジェット流で行うのが好ましい。このような方法により混合液 M に酸素を供給し、混合液 M の溶存酸素量を増大させることができるが、場合によっては混合液 M のシャワーだけを行ってもよいし、空気又は酸素のバブリングだけを行ってもよい。

この酸素溶解工程の終了後、得られた 0.5～5℃で保存する。保存は、通常 12～24 時間程度行う。

上記攪拌及び保存の操作は、少なくとも 2 回行うのが好ましい。これにより、水中の溶存酸素量が増大し、精油が溶解しやすくなる。具体的には、水中の溶存酸素量が 20℃、大気圧で 9 ppm 以上になるまで行うのが好ましい。上記攪拌及び保存の操作の後、得られた精油含有水溶液に水を加えてフィルター濾過するのが好ましい。フィルターとしては、例えば、20～50 メッシュのナイロン、ステンレス等のフィルターを用いる。この場合、水が通過しやすいものを使用する。

本発明によれば、例えばヒノキオイルを用いた場合には、ヒノキチオール濃度が、通常、10～70 重量％の水溶液を製造することができる。

また、本発明においては、水と、水に対して約 40 重量％以下の 1 種以上の精油を攪拌混合する。混合する精油の量を 20 重量％以下とすると、沸騰や急冷することなく混合することができるという効果がある。精油と混合する水は、上述のようにミネラル分を含むものであることが好ましく、またその温度は約 20～約 40℃程度であることが好ましく、より好ましくは 25～30℃である。

精油と水とは一気に混合してもよいが、本発明の混合液製造工程では、約 10 重量％の精油と水とを混合して攪拌し、これら 2 相が混合されたところでさらに 5 重量％の精油を加えて同様の操作を繰り返すことが好ましい。最終的に約 40 重量％の精油と水との混合液が得られる。
ついて、この混合液に、少なくとも20％（v/v）の酸素を含む気体を吹き込むながら攪拌し、上記の混合液に酸素を溶解させる。混合液中の用換酸素量が高くなると、水に対する臭気の溶解度が高くなるため、上記のような気体を吹き込むことが好ましい。ここでは吹き込む気体は、少なくとも20％の酸素を含有するものであれば特に制限されず、空気、酸素ガス、および窒素ガス、ネオンガス、アルゴンガスなどの不活性な気体と酸素ガスとの混合気体などを例として挙げることができる。コストの面から、空気を使用することが好ましい。

攪拌方法の一例を、図3に示す。本発明の方法で使用することができる装置30は、精油と水が入る混合槽22と、混合槽22の底部を貫通する攪拌棒28を備える攪拌装置24と、混合液循環装置26とを備える。攪拌装置24は、精油と水を攪拌して混合するものであり、攪拌棒28は全体が棒状部材で形成されていてもよく、棒状部材の先に羽を有するものであってもよい。混合液循環装置26は、ポンプ71により、混合槽22の側部に連通した配管72から混合液Mを吸引し、混合槽22の情報に設置されたノズル74からその混合液をシャワー状に吐出させることができるような構造を有する。

この装置30を使用して混合液Mを攪拌混合するには、ノズル74から混合液Mをシャワーするとともに、攪拌装置24で混合液Mを攪拌すればよい。混合液Mをノズル74からシャワーする場合には高圧で行い、混合液Mを激しい勢いで吐出させることが好ましい。

この工程の終了後、この混合液を図4に示す装置40に移す。この装置40は、攪拌槽32、気体供給装置36および38、複数の攪拌棒33、および保持部材34とを備える。

気体供給装置36および38は、少なくとも20％の酸素を含む気体を混合液M中に吹き込むという役割を有する。混合槽の大きさに対応して使用する気体供給装置の数を選択することにより、水と精油との混合を十分に行うことができる。すなわち、混合槽の大きさが小さい場合には1つを使用すればよく、大きい場合には、例えば、4つ使用すればよい。

上記の混合工程で得た混合液を攪拌槽32に入れ、保持部材34を上下させて攪拌棒33に上下運動を与える。保持部材34に上下運動を与えると同時に気体供給装置のポ
ンプ38から、少なくとも約20%の酸素を含む気体を混合液中に吹き込む。攪拌棒33は中空の管状部材をエンドレースに曲げて作製したジグザグ形状の棒である。このジグザグ形状部分に適当な大きさの孔を適宜開けておくと、精油と水との混合が促進されるという利点がある。この混合は、上記の気体を吹き込みながら约20℃で長時間、具体的には24時間程度をかけて行う。

図4には、ジグザグ状の棒からなる攪拌棒33を示したが、図1の攪拌棒4について述べたように、種々の形状のものを使用することができる。

ついで、酸素溶解工程で出られた混合液を配管を通じてポンプ混合工程へ送る。混合工程では、上記の配管ラインから送られてきた混合液を複数のノズル54’、56’、および58’から吐出させる。このとき、各ノズルから吐出された混合液は、霧状となって互いにぶつかりあうように、各ノズルを配置する。具体的には、ノズル54’を水平に置いた容器52の底面に垂直となるように配置し、ノズル54’を備える配管54はノズル56’を備える配管56と約30°～40°をなすように配置し、ノズル58’を備えるラインはノズル58’を備える配管58と約40°～50°をなすように配置する。配管54と配管56とがなす角度は約35°であり、配管54と配管58とがなす角度は約45°とすることが好ましい。

各ノズルからの混合液の吹き出しはコンプレッサーを用いて行い、このときの圧力は約10気圧とすると混合効率および製造コストの面から好適である。

この混合を行い際の混合液の温度は約20°～40℃であることが好ましく、約25°〜約35℃であることがさらに好ましい。各ノズルから吐出された混合液Mは霧状となって互いにぶつかり合い、容器52内に精油含有水溶液として溜まる。

以上のようにして得られた混合液を24時間程度静置して、ミネラル分を含む上記のような水で適宜希釈し、本発明の精油含有量が20重量％の植物精油含有水溶液を得る。この植物精油含有水溶液をさらに水で希釈して、さらに精油含有量の低い溶液とすることもできる。

後述する抗菌剤などとして使用する場合には、植物精油含有水溶液中の抗菌作用を有する成分の濃度が抗菌効果を示す濃度以上であるように希釈する。例えば、精油として上述したヒバオイルおよび／または台湾ヒノキオイルを用いる場合には、
これらのオイル中に含まれる抗菌作用を示す成分であるヒノキチオールの量が、少なくとも0.05～0.5重量%以上となるようにすることが好ましい。

本発明の抗菌剤および/または殺菌剤は、上記の植物精油含有水溶液からなる。本発明の抗菌剤または殺菌剤は、多くの菌に対して抗菌性を有し、また耐性菌の出現もほとんどないことからきわめて有用である。例えば、ふきん、まな板、包丁などの台所用品、エアコン、空気清浄機、電気掃除機等のフィルター、吸入器等の医療器具、加湿器などの抗菌性付与や、殺菌に用いることができ、病院、食品工場等で広範囲に用いることができる。本発明の抗菌剤または殺菌剤による処理は、例えば、台湾ヒノキオイルおよび/またはヒバオイル含有水溶液を使用する場合には、抗菌性を付与したい器具等をヒノキチオール濃度が0.05～0.5重量％程度の台湾ヒノキオイル含有水溶液またはヒバオイル含有水溶液に浸すことにより行うことができる。また、本発明の抗菌剤または殺菌剤は手洗いなどにも用いることができる。本発明の抗菌剤は、黄色ブドウ球菌、腸管出血性大腸菌、サルモネラ菌、およびレジオネラ菌に対して抗菌スペクトルを示し、特に、MRSAや病原性大腸菌0-157などに対しても抗菌性を有する。このため、これらの菌による重篤な感染症の予防のための抗菌剤または殺菌剤としてもきわめて有用である。

上記の台湾ヒノキオイル含有水溶液を手洗い用の抗菌剤として用いる場合、例えば、この水溶液中のヒノキチオール濃度が0.5重量％程度のものを用いると高い抗菌効果、殺菌効果が発揮される。

さらに、本発明の植物精油含有水溶液は、揮発性の精油と水のみからなり界面活性剤を一切使用しないため、安全性が高い。このため、室内に大量に散布しても人体への悪影響はきわめて小さく、また、室内にいやな臭いが残ることももない。

本発明の洗濯用抗菌仕上げ剤は上記の植物精油含有水溶液からなり、液状であることから取り扱いが容易である。例えば、本発明の洗濯用抗菌仕上げ剤は、衣服を洗剤により洗濯してすすいだ後、脱水前に添加すればよい。また、液状であることから、柔軟剤とともに又は柔軟剤とは別個に、洗濯機の柔軟剤投入口から添加することもできる。本発明の洗濯用抗菌仕上げ剤を使用すると、衣服に付着した菌を死滅させることができるとともに衣服に抗菌性を付与することができる。また、本発
明の洗濯用抗菌仕上げ剤は、防臭効果、防ダニ効果、アロマ効果等があるなどの利点がある。さらに、植物精油含有水溶液中の精油は優れた浸透性を有することから、本発明の洗濯用抗菌仕上げ剤によれば、衣服に付着した界面活性剤、香料その他の成分を分解することができる。このように、抗菌性、防ダニ性を有し、界面活性剤等の分解が可能であることから、本発明の洗濯用抗菌仕上げ剤を使用すると、アレルギー、アトピー、ぜんそく等を予防することができる。さらに、本発明の洗濯用抗菌仕上げ剤を添加しても、衣服の収縮率及び染色堅牢度にはほとんど影響を及ぼさない。

上記の台湾ヒノキオイル含有水溶液を洗濯用抗菌仕上げ剤として用いる場合、例えば、洗濯水30リットルに対して0.05重量％濃度のヒノキチオールを含む上記水溶液を10ml程度添加すればよい。

本発明の製造法によれば、水不溶性のヒノキチオールを含有する水溶液として得ることができる。このヒノキチオール含有水溶液は、液状であることから取り扱いが容易であり、人体に有害な有機溶媒等を含まない。また、このヒノキチオール水溶液は抗菌性を有することから、抗菌剤や洗濯用抗菌仕上げ剤等としてきわめて有用である。

また、本発明の植物精油含有水溶液は、エアコンディショナーのフィルターなどに吹き付けて使用してもよく、また、空気清浄器のフィルターの代わりや、加湿器の水タンクに入れて使用することもできる。このような用途で用いると、空気中の雑菌の増殖を抑える抗菌効果が発揮されるばかりでなく、殺菌効果をも発揮することができ、アトピー患者、アレルギー患者、喘息患者の症状の発生が予防、緩和されるなどといった様々な効果をもたらす。

さらに、肌水などとして直接皮膚に噴霧することもでき、これによって皮膚上の黄色プドウ球菌などを減少させたり、除去することも可能である。特に、抵抗力の落ちている人に使用すると、皮膚からの感染症を予防する上でも効果的である。

実施例

以下、実施例にしたがって本発明を詳細に説明するが、本発明はこれらの実施例
に何ら限定するものではない。

【実施例1】ヒノキチオール含有水溶液の製造方法

水60重量部とヒノキチオール（東京化成工業製）40重量部とを混合した。得られた混合液を、加熱して5分間沸騰させた。加熱沸騰後、冷蔵施設に入れて約3時間かけて0.5〜5℃まで急速に冷たい。次いで、図1に示す装置1を使用して攪拌を行った。まず、冷却された混合液を容器2に入れ、保持部材4を上下させ攪拌棒3に上下運動を与えることにより該混合液を1時間攪拌した。その後、0.5〜5℃程度で約24時間保存した。保存後、混合液を更に図1に示す装置1で1時間攪拌した後0.5〜5℃程度で約24時間保存した。保存後の水中の溶存酸素量は9ppmであった。

続いて、混合液をフィルター通過した。フィルターとしては、300メッシュのナイロン製のフィルターを使用した。濾液を三つに分けて、それぞれヒノキチオール濃度が0.5重量％、0.05重量％、0.005重量％になるように水を加えて0.5〜5℃で3日間保存した。このようにして、各種濃度のヒノキチオールを含有するヒノキチオール含有水溶液が得られた。

【実施例2】台湾ヒノキオイル含有水溶液の製造方法-1

実施例1で使用したヒノキチオール（東京化成）の代わりに台湾ヒノキオイル（吾昇貿易有限公司（台湾）製、ヒノキチオール含有量約1％）を40重量部使用した以外は実施例1と同様にして、ヒノキチオール濃度0.5重量％のヒノキチオール含有水溶液を得た。

【実施例3】台湾ヒノキオイル含有水溶液の製造方法-2

図3に示す装置30の混合槽22に、ミネラルを含む水にヒノキチールを含む精油を水の容積の10％（v/v）加えた。混合槽内の水とヒノキチオールを含む精油とを攪拌機24で攪拌しつつ、ポンプ71で吸い上げ、ノズル74から吹き出され、この循環を行うことによって混合液が乳白色になったところで、再びヒノキチオールを含む精油を5％加え、同様に攪拌しつつ、吸い上げてノズルからの吹き出しを行った。ヒノ
キチオールを含む精油の添加を再度行い、最終的に20%の精油を含む混合液を得た。

ついてこの混合液を図4に示す装置40の混合槽32に移し、攪拌を行った。気体
供給装置のポンプ81および91によって空気を混合液中に吹き込みつつ、保持部材
34を上下に動かすことにより攪拌棒33を上下させ、約24時間かけて攪拌、混合し
た。

次に、この工程の終了後、攪拌した混合液をコンプレッサーを用いて約10気圧で、
3本のノズル54'、56'、および58'からそれぞれ噴射させて霧状にした。噴射され
た混合液は互いに衝突するようにノズルを配置した。図5に、これら3本のノズル
の位置関係およびこれらのノズルから吐出される混合液の衝突具合を示す。混合液
はノズル54'から容器52の底面に対して鉛直に吐出され、ノズル56'から吐出される
混合液の中心部での方向と58'のそれとは、それぞれ、ノズル54'から吐出される混
合液の中心での方向に対して35℃と45℃とした。

互いに衝突した霧状の液体はより大きな液滴を形成して混合槽52の中に溜まり、
約20%の台湾ヒノキオイルを含む水溶液が得られた。

以上のようにして得られた混合液を約24時間、約20℃で空気との接触をできる限
り防ぐように容器一杯に植物精油含有水溶液を入れて静置した。この後、ミネラル
を含んだ水で25〜300倍に希釈して、台湾ヒノキ油含有水溶液を得た。

ガラス電極法でpHを測定したところ、6.7であった。

【実施例4】ラベンダー油含有水溶液の製造

ラベンダーの花約3kgを蒸気蒸留してラベンダー油約300gを得た。こうして得
られたラベンダー油を使用する以外は実施例3と同様にして、ラベンダー油含有水
溶液を得た。

【実施例5】黄色ブドウ球菌に対するヒノキチオール含有水溶液の殺菌効果 - 1

実施例1で製造した濃度0.5重量%、0.05重量%、0.005重量%のヒノキチオー
ル水溶液を試料として用いて、下記のようにして抗菌性を試験した。

黄色ブドウ球菌（Staphylococcus aureus IFO 12732）をNA培地（普通寒天培地、
栄研化学株式会社製）中で35℃、16〜24時間培養した。培養後、得られた菌体を精製水1ml当たり菌数が約1×10^6となるように浮遊させ、これを菌液として用いた。

0.5重量％（A）、0.05重量％（B）のピノキチオール含有水溶液はそのまま試料として用いた。また、0.005重量％のピノキチオール含有水溶液（C）は60℃で20分間加熱処理後試料とした。また、対照として、49.5％エタノール溶液についても試験を行った。

各試料50mlに菌液0.5mlを加えて混合し、20℃で15分間保持した後、SCDLP培地（日本製薬株式会社製）でそれぞれ10倍に希釈した。これらの希釈液について、SCPLPA培地を用いた混釈平板培養法（35℃、48時間培養）により生菌数を測定し、試料1ml当たりの生菌数に換算した。試験結果を表2に示す。表 2 黄色ブドウ球菌に対するピノキチオール含有水溶液の殺菌効果

<table>
<thead>
<tr>
<th>試料</th>
<th>生菌数（／mL）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>試験開始時</td>
</tr>
<tr>
<td>対照</td>
<td>2.8×10^6</td>
</tr>
<tr>
<td>A</td>
<td>2.8×10^6</td>
</tr>
<tr>
<td>B</td>
<td>2.8×10^6</td>
</tr>
<tr>
<td>C</td>
<td>2.8×10^6</td>
</tr>
</tbody>
</table>

[実施例6] MRSAに対するピノキチオール含有水溶液の殺菌効果－2

実施例1で製造した濃度0.5重量％（A）、0.05重量％（B）、0.005重量％（C）％のピノキチオール含有水溶液9mlに、菌の最終濃度が10^4〜10^6CFU/mLとなるようにMRSA（Staphylococcus aureus ATCC 43300）を添加した。3分〜3時間の間の所定の時間、室温に放置した後、この液中の細菌数を定量した。対照としては、生理食塩水9mlを使用した。

生理食塩水中の生菌数を定量して、これを不活性化率0％とし、ピノキチオール水溶液のMRSAの不活性化率を求めた。結果を表3に示す。
<table>
<thead>
<tr>
<th>処理時間（分）</th>
<th>対照</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.0×10^5</td>
<td>2.2×10^3</td>
<td>8.4×10^4</td>
<td>5.2×10^4</td>
</tr>
<tr>
<td></td>
<td>(97.80)</td>
<td>(84.00)</td>
<td>(52.00)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>8.9×10^4</td>
<td><10</td>
<td>1.6×10^4</td>
<td>3.2×10^4</td>
</tr>
<tr>
<td></td>
<td>(>99.99)</td>
<td>(82.02)</td>
<td>(96.40)</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.0×10^5</td>
<td><10</td>
<td>4.3×10^4</td>
<td>1.4×10^3</td>
</tr>
<tr>
<td></td>
<td>(>99.99)</td>
<td>(85.67)</td>
<td>(99.53)</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>2.4×10^5</td>
<td><10</td>
<td>4.0×10^4</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>(>99.99)</td>
<td>(99.98)</td>
<td>(>99.99)</td>
<td></td>
</tr>
</tbody>
</table>

以上より、いずれのヒノキテオール含有水溶液で処理した場合にも、処理時間30分でMRSAを80％以上不活性化し、60分では85％以上不活性化した。

【実施例7】サルモネラ菌に対するヒノキテオール含有水溶液の殺菌効果試験

実施例1で製造した濃度 0.5重量％（A）、0.05重量％（B）、0.005重量％（C）のヒノキテオール水溶液を試料として用いて、下記のようにして抗菌性を試験した。

サルモネラ菌（Salmonella typhimurium IFO 12529）を消毒液検定用ブイヨン培地中で、35℃にて24時間培養した。培養液の遠心沈渣後、滅菌生理食塩水に約1×10⁷cfu/mLとなるように懸濁させ、これを菌液として用いた。

各ヒノキテオール水溶液は、滅菌精製水で500倍に希釈して試料として用いた。また、対照には49.5％エタノール溶液を用いた。

共栓試験管に調製試料10mLを入れた。ここれに、上記の菌液を1mLずつ接種し、20℃で1分間作用させた後、ここから1白金耳を、消毒検定用ブイヨン培地に接種した。35℃で48時間培養し、培地の混濁の有無により抗菌性を判定した。

菌の発育は認められなかった。

【実施例8】大腸菌に対するヒノキテオール含有水溶液の殺菌効果
実施例5と同様にして、大腸菌（Escherichia coli ATCC 25922）に対する殺菌効果を試験した。結果を表4に示す。

<table>
<thead>
<tr>
<th>処理時間（分）</th>
<th>対照</th>
<th>生細菌数（cfu/mL）</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td><10</td>
<td>1.3×10⁴</td>
<td>1.2×10³</td>
</tr>
<tr>
<td>3</td>
<td>1.7×10⁴</td>
<td>(>99.99)</td>
<td>(23.53)</td>
<td>(29.41)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.5×10⁴</td>
<td><10</td>
<td>4.0×10³</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(>99.99)</td>
<td>(73.33)</td>
<td>(>99.99)</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>9.9×10⁴</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(>99.99)</td>
<td>(>99.99)</td>
<td>(>99.99)</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>1.3×10⁴</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
</tbody>
</table>

いずれのヒノキチオール含有水溶液も処理時間30分で、大腸菌を73％以上不活性化した。

[実施例10] 病原性大腸菌0-157に対するヒノキチオール水溶液の殺菌効果

実施例5と同様にして、病原性大腸菌0-157（Escherichia coli ATCC 35150）に対する殺菌効果を試験した。結果を表5に示す。
表5 病原性大腸菌0-157に対するヒノキチオール水溶液の殺菌効果

<table>
<thead>
<tr>
<th>処理時間（分）</th>
<th>対照</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.2×10⁵</td>
<td>3.0×10²</td>
<td>8.4×10⁴</td>
<td>7.2×10⁴</td>
</tr>
<tr>
<td></td>
<td>(>99.99)</td>
<td>(30.00)</td>
<td>(40.00)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.5×10⁴</td>
<td><10</td>
<td>2.6×10⁴</td>
<td>2.0×10⁴</td>
</tr>
<tr>
<td></td>
<td>(>99.99)</td>
<td>(74.00)</td>
<td>(80.00)</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1.2×10⁵</td>
<td><10</td>
<td>7.5×10⁴</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>(>99.99)</td>
<td>(>37.50)</td>
<td>(>99.99)</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>1.5×10⁵</td>
<td><10</td>
<td>3.5×10³</td>
<td>3.0×10⁴</td>
</tr>
<tr>
<td></td>
<td>(>99.99)</td>
<td>(97.67)</td>
<td>(99.98)</td>
<td></td>
</tr>
</tbody>
</table>

いずれのヒノキチオール含有水溶液を使用した場合でも、処理時間30分で病原性大腸菌0-157を70%以上不活性化した。

[実施例11] サルモネラ菌に対するヒノキチオール水溶液の殺菌効果

実施例1で製造した濃度0.5重量%（A）、0.05重量%（B）、0.005重量%（C）のヒノキチオール含有水溶液を試料として用いて、下記のようにして抗菌性を試験した。

サルモネラ菌（Salmonella typhimurium 1F0 12529）を消毒液検定用ブイヨン培地内で35℃にて24時間培養した。培養液の遠心沈渣後に、滅菌生理食塩水に約1×10⁷ cfu/mLとなるように懸濁させ、これを菌液として用いた。

各ヒノキチオール水溶液は、滅菌精製水で500倍に希釈して試料として用いた。また、対照には49.5%エタノール溶液を用いた。

共栓試験管に調製試料10mLを入れた。ここに、上記の菌液を1mLずつ接種し、20℃で1分間作用させた後、ここから1白金耳を、消毒検定用ブイヨン培地に接種した。35℃で48時間培養し、培地の混濁の有無により抗菌性を判定した。

菌の発育は認められなかった。
【実施例 12】レジオネラ菌（*Legionella pneumophila* ATCC 33154）に対するビノキチオール水溶液の殺菌効果

実施例 5 と同様にして、レジオネラ菌（ATCC 33154）に対する殺菌効果を試験した。結果を表 6 に示す。

<table>
<thead>
<tr>
<th>処理時間</th>
<th>対照</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>（時間）</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>2.6×10⁵</td>
<td>1.0×10²</td>
<td>8.2×10³</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>(99.96)</td>
<td>(96.85)</td>
<td>(<99.99)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.5×10⁵</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>(>99.99)</td>
<td>(>99.99)</td>
<td>(>99.99)</td>
<td></td>
</tr>
</tbody>
</table>

いずれのビノキチオール含有水溶液で処理した場合にも、処理時間 1 時間でレジオネラ菌を 96% 以上不活性化した。

【実施例 13】ビノキチオール含有水溶液の抗菌効果試験

抗菌効果試験を、抗菌防臭加工製品の加工効果評価試験マニュアル・菌数測定法（繊維製品衛生加工協議会編、昭和 63 年）にしたがって行った。

靴下を家庭用洗剤で洗濯した後、ビノキチオール含有水溶液で処理した。洗濯液 30 リットル当たり 0.05 重量%濃度のビノキチオールを含むビノキチオール含有水溶液（B）を 10mL 添加した。その靴下の一部（0.2g）を試験片とし、比較として、ビノキチオール水溶液で処理しなかった靴下の一部（0.2g）も試験片とした。また、無加工標準試料としてナイロン標準白布の一部（0.2g）も試験片とした。

滅菌処理した液体プイヨンに、黄色ブドウ球菌（*Staphylococcus aureus* ATCC 6538P）を懸濁させ、この液を各試験片上に 0.2mL（菌数は約 4×10⁶個）接種し、37℃で 18 時間培養した後取り出した。培養前後の試験片上の生菌数を測定し、下記の計
算式により菌数の増減比、増減値、及び増減値差を算出した。

菌数増減比 = (18 時間培養後の試験片上の生菌数)/(培養直前の生菌数（植え付け菌数）)

菌数増減値 = 10^[(18 時間培養後の試験片上の生菌数)/(培養直前の生菌数（植え付け菌数）] - 1

菌数増減値差 = (無加工試料の菌数増減値) - (加工試料の菌数増減値)

結果を表 7 に示す。

<table>
<thead>
<tr>
<th>試料</th>
<th>菌数増減比</th>
<th>菌数増減値</th>
<th>菌数増減値差</th>
</tr>
</thead>
<tbody>
<tr>
<td>家庭用洗剤</td>
<td>6.3×10^2</td>
<td>2.8</td>
<td>0.0</td>
</tr>
<tr>
<td>家庭用洗剤 + B</td>
<td>1.6×10^2</td>
<td>2.2</td>
<td>0.6</td>
</tr>
<tr>
<td>無加工標準試料</td>
<td>6.3×10^2</td>
<td>2.8</td>
<td>-</td>
</tr>
</tbody>
</table>

家庭用洗剤のみで洗浄処理した場合、および無加工標準試料の場合に比べて、ヒノキチオール含有水溶液で処理した試験片では、サルモネラ菌の数が約 1/4 に減少し、抗菌効果を有することが示された。

[実施例 14] ヒノキチオール含有水溶液処理による衣服の収縮率測定試験

ソックス、肌着（白色、黒色の 2 種類）、ノースリーブシャツ（黒色）、タンクトップ（紺色）及びブリーフを、JIS L-1042 G の洗い方 103 で洗濯し、その後実施例 1 で製造したヒノキチオール水溶液（B）で処理し、次いで吊り干し乾燥した。それぞれについて、縦方向及び横方向の収縮率（％）を測定した。また、比較として、ヒノキチオール含有水溶液で処理しなかったものについても同様の方法で洗濯処理して吊り干し乾燥し、収縮率（％）を測定した。その結果を表 8 に示す。
表8 ヒノキチオール含有水溶液処理による衣服の収縮率測定試験

<table>
<thead>
<tr>
<th>試料</th>
<th>処理方法</th>
<th>JIS103</th>
<th>JIS+B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ソックス</td>
<td>ロゴム幅</td>
<td>1.4</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>ロゴム丈</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>総丈</td>
<td>6.0</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>フットサイズ</td>
<td>8.0</td>
<td>9.2</td>
</tr>
<tr>
<td>肌着</td>
<td>たて</td>
<td>3.0/5.3</td>
<td>2.7/4.7</td>
</tr>
<tr>
<td></td>
<td>よこ</td>
<td>-3.5/-2.0</td>
<td>-4.0/-1.3</td>
</tr>
<tr>
<td>ノースリーブシャツ</td>
<td>たて</td>
<td>1.7</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>よこ</td>
<td>4.7</td>
<td>2.7</td>
</tr>
<tr>
<td>タンクトップ</td>
<td>たて</td>
<td>3.7</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>よこ</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>ブリーフ</td>
<td>たて</td>
<td>7.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>よこ</td>
<td>1.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>

表8に示すように、ヒノキチオール含有水溶液で処理した場合においても、特に大きな収縮は観察されなかった。

[実施例15] ヒノキチオール含有水溶液処理による衣服の染色堅牢度測定試験

ソックス、肌着（白色、黒色の2種類）、ノースリーブシャツ（黒色）、タンクトップ（紺色）及びブリーフをJIS L-1042 Gの洗い方103で洗濯し、その後実施例1で製造したヒノキチオール含有水溶液で処理し、次いで吊り干し乾燥した。グレースケール（変退色用）を用いて変退色を判定した。その結果、変退色は認められず、染色堅牢度には問題は生じなかった。

[実施例16] ヒノキチオール含有水溶液の界面活性剤の遊離促進試験

ソックス、肌着（白色、黒色の2種類）、ノースリーブシャツ（黒色）、タンク
トップ（紺色）及びブリーフをJIS L-1042 Gの洗い方103で洗濯した。すすぎは、ためすすぎで2回行った。また、ためすすぎの際、水30リットル当たり0.05重量％濃度のヒノキチオール含有水溶液（C）を10ml添加した。ためすすぎ1回目及び2回目における水1リットル当たりの界面活性剤量を表9に示す。また、比較として、ヒノキチオール含有水溶液を添加しなかった場合の界面活性剤量も表9に示す。

<table>
<thead>
<tr>
<th>処理方法</th>
<th>すすぎ水中の界面活性剤量（mL/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1回目</td>
</tr>
<tr>
<td>B添加</td>
<td>19.0</td>
</tr>
<tr>
<td>B無添加</td>
<td>4.6</td>
</tr>
</tbody>
</table>

表9に示すように、ヒノキチオール含有水溶液を加えて処理した場合の方が、すすぎ中に界面活性剤が多く含まれており、ヒノキチオール含有水溶液が繊維に付着した界面活性剤の遊離を促進する作用を有することが示された。

産業上の有用性

本発明の製造方法によれば、水に不溶な精油と水を界面活性剤などの添加物なしで混合して、植物精油含有水溶液を得ることができる。

この植物精油含有水溶液は広い抗菌スペクトルを有し、抗菌剤として有用である。また、抗菌効果を有する洗濯用仕上げ剤としても有用である。

さらに、本発明の植物精油含有水溶液は、高い安全性と殺菌効果を有するため、空気清浄器のフィルターの代わりや、加湿器用の水などとしても有用である。タンクに入れて使用することもできる。
請求の範囲

1. 水と少なくとも1種以上の精油を混合して混合液を製造する混合液製造工程と、得られた混合液を加熱沸騰させた後急冷する加熱急冷工程と、加熱急冷した混合液を攪拌して混合液中に酸素を供給する酸素溶解工程と、0.5〜5℃で保存する保存工程とを備える植物精油含有水溶液の製造方法。

2. 前記酸素溶解工程と保存工程を少なくとも2回行うことを特徴とする請求項1に記載の植物精油含有水溶液の製造方法。

3. 前記酸素溶解工程を、20℃、大気圧で水中の溶存酸素量が9ppm以上になるまで行うことを特徴とする請求項1または2に記載の植物精油含有水溶液の製造方法。

4. 水と、水に対して約40%以下の少なくとも1種以上の精油との混合液製造工程と、得られた混合液に少なくとも約20%の酸素を含む気体を吹込む酸素溶解工程と、少なくとも2以上のノズルから酸素含有含有混合液水を吹出し、混合液中に含まれる酸素含有含有混合液と水を混合する混合工程と、混合工程で得られた混合液を静置する混合液静置工程と、静置した混合液を希釈して所望の濃度の精油成分を含む水溶液を製造する酸素含有含有混合液希釈工程とを備える植物精油含有水溶液の製造方法。

5. 植物精油と水とからなる植物精油含有水溶液。

6. 請求項5に記載の植物精油含有水溶液を有効成分とする抗菌剤。

7. 黄色ブドウ球菌、腸管出血性大腸菌、サルモネラ菌およびレジオネラ菌からなる群から選ばれる菌に対する抗菌作用を有することを特徴とする請求項6に記載の抗菌剤。

8. 請求項5に記載の植物精油含有水溶液を有効成分とする殺菌剤。

9. 黄色ブドウ球菌、腸管出血性大腸菌、サルモネラ菌およびレジオネラ菌からなる群から選ばれる菌に対する抗菌作用を有することを特徴とする請求項8に記載の殺菌剤。

10. 請求項5に記載の精油含有水溶液からなる洗濯用抗菌仕上げ剤。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int. C16 C11B/99.00, 9/02, A01N65/00, B01F3/08, C11D3/48,
D06M13/00, 13/144

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. C16 C11B/99.00, 9/02, A01N65/00, B01F3/08, C11D3/48,
D06M13/00, 13/144

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP, 7-133214, A (Mitsuyoshi Nihei, Tatsuharu Watanabe), May 23, 1995 (23. 05. 95), Par. No. (0006), (Table 1), Par. No. (0010) (Family: none)</td>
<td>5 - 9</td>
</tr>
<tr>
<td>X</td>
<td>JP, 6-263631, A (Tatsuharu Watanabe, Mitsuyoshi Nihei), September 20, 1994 (20. 09. 94), Claims; Par. No. (0006), (Table 1) (Family: none)</td>
<td>5 - 9</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 5-345899, A (Jumoku Chushutsu Seibun Riyo Gijutsu Kenkyu Kumiai), December 27, 1993 (27. 12. 93), Claims 1, 2; page 2, column 1, lines 29 to 33; page 3, column 4, line 18 (Family: none)</td>
<td>5 - 9</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 8-49172, A (Tatsuharu Teraoka), February 20, 1996 (20. 02. 96), Claim 1; Par. No. (0019) (Family: none)</td>
<td>10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search
November 25, 1997 (25. 11. 97)

Date of mailing of the international search report
December 16, 1997 (16. 12. 97)

Name and mailing address of the ISA/
Japanese Patent Office

Facsimile No.

Authorized officer

Telephone No.
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 7-124197, A (Yoshitaka Kobayashi), May 16, 1995 (16. 05. 95), Claims; Par. No. (0014) (Family: none)</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>JP, 7-97600, A (J1 Products K.K.), April 11, 1995 (11. 04. 95), Par. Nos. (0001), (0005) (Family: none)</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>JP, 6-298619, A (Koki Bussan K.K.), October 25, 1994 (25. 10. 94), Claim 1 (Family: none)</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>JP, 51-135878, A (Kozo Nishiyama, Shinji Kobayashi), November 25, 1976 (25. 11. 76), Claims (Family: none)</td>
<td>1 - 4</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C1' C11B 9/00, 9/02, A01N 65/00, B01F 3/08, C11D 3/48,
D06M 13/00, 13/144

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C1' C11B 9/00, 9/02, A01N 65/00, B01F 3/08, C11D 3/48,
D06M 13/00, 13/144

最小限資料以外の資料で調査を行った分野に含まれるもの

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献の カテゴリー*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>J P, 7 - 133214, A（二瓶 晋吉, 渡辺 達治） 23. 5月. 1995（23. 05. 95） 段落 [0 006]（表1）, 段落 [0 010] （ファミリーなし）</td>
<td>5 - 9</td>
</tr>
<tr>
<td>X</td>
<td>J P, 6 - 263631, A（渡辺 達治, 二瓶 晋吉） 20. 9月. 1994（20. 09. 94）</td>
<td>5 - 9</td>
</tr>
<tr>
<td>Y</td>
<td>特許請求の範囲、段落 [0 006]（表1）（ファミリーなし）</td>
<td>10</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリ

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」先行文献であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日前で、かつ優先権の主張の基礎となる出願

X C欄の続きにも文献が掲載されている。

△ パテントファミリーに関する別紙を参照。

国際調査を完了した日
25. 11. 97

国際調査報告の発送日
16. 12. 97

国際調査機関の名称及び住所
日本国特許庁（ISA／JP）
郵便番号110
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
岩瀬 眞紀子

電話番号 03-3581-1101 内線 3444

様式PCT／ISA／210（第2ページ）（1992年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP. 5-345899, A（樹木抽出成分利用技術研究組合）, 27.12月, 1993 (27.12.93) 特許請求の範囲1項, 2項, 2頁1欄29-33行, 3頁4欄18行 (ファミリーなし)</td>
<td>5-9</td>
</tr>
<tr>
<td>Y</td>
<td>JP. 8-49172, A（寺岡 龍治） 20.2月, 1996 (20.02.96) 特許請求の範囲1項, 段落 [0019] (ファミリーなし)</td>
<td>10</td>
</tr>
<tr>
<td>Y</td>
<td>JP. 7-124197, A（小林 喜隆） 16.5月, 1995 (16.05.95) 特許請求の範囲, 段落 [0014] (ファミリーなし)</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>JP. 7-97600, A（ジェイ・ワン・プロダクツ株式会社） 11.4月, 1995 (11.04.95) 段落 [0001], [0005] (ファミリーなし)</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>JP. 6-298619, A（亀起物産株式会社） 25.10月, 1994 (25.10.94) 特許請求の範囲1項（ファミリーなし）</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>JP. 51-135878, A（西山 耕三、小林 進二） 25.11月, 1976 (25.11.76) 特許請求の範囲（ファミリーなし）</td>
<td>1-4</td>
</tr>
</tbody>
</table>

様式PCT／ISA／210（第2ページの続き）（1992年7月）