INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification:
A61K 31/55, C07D 243/14

(11) International Publication Number:
WO 98/09629

(43) International Publication Date:
12 March 1998 (12.03.98)

(21) International Application Number:	PCT/US97/15292
(22) International Filing Date:	29 August 1997 (29.08.97)
(30) Priority Data:	60/025,369 3 September 1996 (03.09.96) US
(72) Inventor; and	
(75) Inventor/Applicant (for US only):	ROSS, Stephen, Torey [US/US]; 718 Old State Road, Berwyn, PA 19312 (US).
(74) Agents:	KINZIG, Charles, M. et al.; SmithKline Beecham Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

Title: CRYSTALLINE PHARMACEUTICAL PRODUCT

Abstract

This invention provides (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride, processes for its preparation and methods for its use.
<table>
<thead>
<tr>
<th>Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
</tr>
<tr>
<td>AM</td>
</tr>
<tr>
<td>AT</td>
</tr>
<tr>
<td>AU</td>
</tr>
<tr>
<td>AZ</td>
</tr>
<tr>
<td>BA</td>
</tr>
<tr>
<td>BB</td>
</tr>
<tr>
<td>BE</td>
</tr>
<tr>
<td>BF</td>
</tr>
<tr>
<td>BG</td>
</tr>
<tr>
<td>RJ</td>
</tr>
<tr>
<td>BR</td>
</tr>
<tr>
<td>BY</td>
</tr>
<tr>
<td>CA</td>
</tr>
<tr>
<td>CF</td>
</tr>
<tr>
<td>CG</td>
</tr>
<tr>
<td>CH</td>
</tr>
<tr>
<td>CI</td>
</tr>
<tr>
<td>CM</td>
</tr>
<tr>
<td>CN</td>
</tr>
<tr>
<td>CU</td>
</tr>
<tr>
<td>CZ</td>
</tr>
<tr>
<td>DE</td>
</tr>
<tr>
<td>DK</td>
</tr>
<tr>
<td>EE</td>
</tr>
<tr>
<td>SN</td>
</tr>
<tr>
<td>TG</td>
</tr>
<tr>
<td>TR</td>
</tr>
<tr>
<td>UA</td>
</tr>
<tr>
<td>VN</td>
</tr>
</tbody>
</table>
CRYSTALLINE PHARMACEUTICAL PRODUCT

FIELD OF THE INVENTION

This invention relates to a crystalline salt form of (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, its preparation and use as a therapeutic substance.

BACKGROUND

The compound (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, given by formula (I), and procedures for preparing such compound, its trifluoroacetic acid and sodium salts are disclosed in WO 95/18619 (PCT/US95/00248, SmithKline Beecham Corp.). Since this compound has both a basic and acidic center, it may exist as either an acid addition salt or basic addition salt. If neither an acid nor a basic addition salt is formed, it may exist as an
internal salt or zwitterion. This compound is an inhibitor of the GPIIbIIIa (fibrinogen) receptor on platelets and it acts to inhibit platelet aggregation. Thus, the compound is useful for treating such ailments as stroke, myocardial infarction, thrombosis, embolism, and restenosis following angioplasty. The zwitterion and trifluoroacetate salt prepared according to WO 95/18619 possess undesirable characteristics for preparing pharmaceutical formulations of this compound for commercial sale. The zwitterion is hygroscopic and tends to have a variable water content, equilibrating toward a species which takes up about six molar equivalents of water. This may cause difficulty in milling and mixing to create pharmaceutical compositions. The trifluoroacetate salt is not thermally stable for an extended period which impairs its shelf life.

Accordingly, a stable form of the compound which possesses desirable physical characteristics is needed.

SUMMARY OF THE INVENTION

This invention comprises a stable hydrochloride salt of (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid.

In another aspect, this invention comprises a stable pharmaceutical composition of (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride.

In yet another aspect, this invention comprises a method of antagonizing the fibrinogen receptor for preventing or treating diseases wherein platelet aggregation or the binding of ligand to the fibrinogen receptor is a factor.

DETAILED DESCRIPTION

It has now been found that (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid may be prepared as a hydrochloride salt which is crystalline, stable and possesses a consistent water content. Its preparation and physical properties appear to be consistent and reproducible, which make it particularly useful for use in a commercial product.

The present invention provides (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride, formula (I), as a novel material, and, in particular, as a pharmaceutically acceptable form. The material crystallizes preferably with one mole of HCl, and appears to exist in a generally anhydrous form. Although small amounts of water may be detected by Karl Fischer analysis, this is generally less than 1-2% w/w of the drug substance, and it appears to be
consistent irrespective of the storage conditions. The hydrochloride does not appear to
exist in polymorphic forms, but in a single microcrystalline aggregate form ranging from
10 to 250 microns. Accordingly, the hydrochloride salt form offers significant
advantages for bulk material consistency, handling, and formulation. In addition, the
hydrochloride salt form exhibits enhanced dissolution and solubility in water.

In a preferred aspect, this invention provides (S)-7-[(4,4'-bipiperidin-1-
yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid,
hydrochloride in substantially pure form.

The present invention also provides a process for preparing (S)-7-[(4,4'-
bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride which comprises forming a solution of (S)-7-[(4,4'-bipiperidin-
1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid,
hydrochloride and crystallizing the hydrochloride salt from solution by precipitation or
recrystallization. The solution may be prepared in any conventional manner, such as by
dissolving the (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-
1H-1,4-benzodiazepine-2-acetic acid, or a suitable salt, in a suitable solvent, and adding
hydrogen chloride as a gas, or dissolved in a second solvent to the solution. The second
solvent may be the same or different from that used in the original solution. Preferably
the second solvent will be miscible with the solvent for the benzodiazepine. Water is a useful
solvent. Alcohols, especially methanol, ethanol, and isopropanol, are particularly
preferred organic solvents for dissolving the hydrochloric acid and making the
hydrochloride salt.

The hydrochloride salt may be precipitated from the solution by adding a solvent
in which the salt if less soluble than the solvent in which the salt is prepared or by
inducing crystallization, for instance by chilling the solution, adding a co-solvent, adding
a seed crystal, or merely allowing the solution to stand. Alternatively, the hydrochloride
salt may be precipitated by concentrating the solution of the hydrochloride salt, e.g.,
removing the solvent(s), such as by evaporation. In another alternative, the solvent may
be removed, and the residue may be treated with another solvent, or mixture of solvents,
to induce crystallization.

Although the process is preferably carried out starting with a solution of the
zwitterionic form of (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-
3-oxo-1H-1,4-benzodiazepine-2-acetic acid, the hydrochloride may be prepared using
other salts, for instance an acid addition salt, such as the acetate or trifluoroacetate salt, or
a basic addition salt, such as an alkali metal (e.g., lithium, sodium or potassium) or
organic amine salt.
In one embodiment, the (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid is suspended in water, and titrated with an aqueous solution of hydrochloric acid to a pH of about 2-3. During the addition of acid, the solid dissolves to give a clear solution. It is important to avoid an excess of the acid, about one equivalent is desired, to produce a stable and readily crystallizable salt. Evaporation of the water yields a crude hydrochloride salt which may be recrystallized from an appropriate solvent, such as ethanol to yield a purified hydrochloride salt.

(S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid may be zwitterion may be prepared according to the procedures set forth in WO 95/18619 and WO 97/24336 (PCT/IB96/01502, SmithKline Beecham) which are incorporated herein by reference as though fully set forth.

This invention further provides a pharmaceutical composition which comprises (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride and a pharmaceutically acceptable carrier. Accordingly, (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride may be used in the manufacture of a medicament. Pharmaceutical compositions may be formulated as a solution or powder for parenteral administration. Powders may be reconstituted by addition of a suitable diluent or other pharmaceutically acceptable carrier prior to use. The liquid formulation may be a buffered, isotonic, aqueous solution. Examples of suitable diluents are normal pyrogen-free water, isotonic saline solution, standard 5% dextrose in water or buffered sodium or ammonium acetate solution. Such formulation is especially suitable for parenteral administration, but may also be used for oral administration or contained in a metered dose inhaler or nebulizer for insufflation. It may be desirable to add excipients such as polyvinylpyrrolidone, gelatin, hydroxy cellulose, acacia, polyethylene glycol, mannitol, sodium chloride or sodium citrate.

Preferably, the (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride may be encapsulated, tableted or prepared in an emulsion or syrup for oral administration. Pharmaceutically acceptable solid or liquid carriers may be added to enhance or stabilize the composition, or to facilitate preparation of the composition. Solid carriers include starch, lactose, calcium sulfate dihydrate, terra alba, magnesium stearate or stearic acid, talc, pectin, acacia, agar or gelatin. Liquid carriers include syrup, peanut oil, olive oil, saline and water. The carrier may also include a sustained release material such as glyceryl monostearate or glycercyl distearate, alone or with a wax. The amount of solid carrier varies, but, preferably, will be between about 20 mg to about 1 g per dosage unit. The
pharmaceutical preparations are made following the conventional techniques of pharmacy involving milling, mixing, granulating, and compressing, when necessary, for tablet forms; or milling, mixing and filling for hard gelatin capsule forms. When a liquid carrier is used, the preparation will be in the form of a syrup, elixir, emulsion or an aqueous or non-aqueous suspension. Such a liquid formulation may be administered directly p.o. or filled into a soft gelatin capsule. Capsules and tablets are preferred dosage forms.

For rectal administration, the compound may also be combined with excipients such as cocoa butter, glycerin, gelatin or polyethylene glycols and molded into a suppository.

This invention also provides a method of inhibiting platelet aggregation and clot formation in a mammal, especially a human, which comprises the internal administration of (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride and a pharmaceutically acceptable carrier. Indications for such therapy include acute myocardial infarction (AMI), deep vein thrombosis, pulmonary embolism, dissecting aneurysm, transient ischemia attack (TIA), stroke and other infarct-related disorders, and unstable angina. The compounds of this invention are also useful for preventing restenosis of an artery or vein in a mammal following angioplasty. Chronic or acute states of hyper-aggregability, such as disseminated intravascular coagulation (DIC), septicemia, surgical or infectious shock, post-operative and post-partum trauma, cardiopulmonary bypass surgery, incompatible blood transfusion, abruptio placenta, thrombotic thrombocytopenic purpura (TTP), snake venom and immune diseases, are likely to be responsive to such treatment. These compounds are also believed to be useful for adjunct therapy following angioplasty.

The compound of this invention may also be favorably administered with other agents which inhibit platelet aggregation. For instance, the (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride may be administered with compounds of the class of cyclooxygenase inhibitors, thromboxane antagonists, thromboxane synthetase inhibitors, heparins, thrombin inhibitors, ADP receptor inhibitors/antagonists and ticlopidine. Examples of such agents are aspirin, warfarin and clopidogrel.

The pharmaceutical composition is administered either orally or parenterally to the patient, in a manner such that the concentration of (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride in the plasma is sufficient to inhibit platelet aggregation, or other such indication. The pharmaceutical composition containing the drug is administered at a dose between about 0.2 to about 50 mg/kg of active compound in a manner consistent with the condition of the patient. For acute therapy, parenteral administration is preferred. For
persistent states of hyperaggregability, an intravenous infusion of the compound in 5% dextrose in water or normal saline is most effective, although an intramuscular bolus injection may be sufficient.

For chronic, but noncritical, states of platelet aggregability, oral administration of a capsule or tablet, or a bolus intramuscular injection is suitable. The compound is administered one to four times daily at a level of about 0.4 to about 50 mg/kg to achieve a total daily dose of about 0.4 to about 200 mg/kg/day. Preferably, it is administered about two times daily at a level of about 50 to 600 mg/dose.

This invention further provides a method for inhibiting the reocclusion or restenosis of an artery or vein following fibrinolytic therapy, which comprises internal administration of (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride and a fibrinolytic agent. Administration of the compound in fibrinolytic therapy either prevents reocclusion completely or prolongs the time to reocclusion.

Methods for assessing the ability of the compound of this invention to inhibit the fibrinogen receptor and inhibit platelet aggregation are common in the art and may be found for instance in WO 95/18619 (PCT/US95/00248, SmithKline Beecham Corp.) and WO 94/14776 (PCT/US93/12436, SmithKline Beecham Corp.).

The examples which follow are intended to in no way limit the scope of this invention, but are provided to illustrate how to make and use the compounds of this invention. Many other embodiments will be readily apparent and available to those skilled in the art.

EXAMPLES

In the Examples, all temperatures are in degrees Centigrade. Mass spectra were performed using fast atom bombardment (FAB) or electro-spray (ES) ionization. Melting points were taken on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Optical rotations were determined on a Perkin Elmer 241 polarimeter, using a 10 cm path length cell. The melting point and optical rotation of samples may vary upon repeated experiments, but they are reproducible within about 5%.

NMR were recorded at 250 MHz using a Bruker AM 250 spectrometer, unless otherwise indicated. Chemical shifts are reported in ppm (δ) downfield from tetramethylsilane. Multiplicities for NMR spectra are indicated as: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, dd=doublet of doublets, dt=doublet of triplets etc. and br indicates a broad signal. J indicates the NMR coupling constant in Hertz.
Example 1

Preparation of (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride

(S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, 1.5 hydrate (4.0 g, 9.3 mmol) was suspended in water (20 mL) and stirred. Concentrated (12 N) hydrochloric acid was added dropwise while monitoring the pH of the mixture. The solid material dissolved as the acid was added to yield a yellowish solution, and the pH was lowered to 2.4. The water was evaporated under reduced pressure to yield a glass (5.0 g). This material was stirred and triturated with absolute ethanol (10 mL) to yield a crystalline solid. The solid was filtered and air-dried to yield the title compound. Mp(ethanol) 292.5-293.5°C. [α]D 25° (c 0.5, MeOH) -176.2. Anal. (C 23 H 32 N 4 O 4 · HCl) calcd: C, 59.41; H, 7.15; N, 12.05. found: C, 59.1; H, 7.22; N, 11.67.

Comparison between (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid (zwitterion) and (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride (HCl Salt).

<table>
<thead>
<tr>
<th>Property</th>
<th>Zwitterion</th>
<th>HCl Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Stability</td>
<td>some degradation, increase in organic impurities by 1.3% (hplc, by area)</td>
<td>Stable, no increase in organic impurities</td>
</tr>
<tr>
<td>Polarized light microscopy</td>
<td>prismatic needle type crystals (100-500 microns)</td>
<td>microcrystalline (10-250 microns)</td>
</tr>
<tr>
<td>Hygroscopicity (% w/w Karl Fischer analysis)</td>
<td>t=0 5.6</td>
<td>t=0 0.9</td>
</tr>
<tr>
<td></td>
<td>t= 21 days 20.1</td>
<td>t= 21 days 0.8</td>
</tr>
</tbody>
</table>

The hydrochloride salt has also been found to be about ten times more soluble in water than the zwitterion.
Example 2

Pharmaceutical Composition

For preparing a standard 200 mg capsule containing 20 mg of the active drug product, the following components are used: (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-benzodiazepine-2-acetic acid, hydrochloride (21.7 mg), microcrystalline cellulose N.F. (57.7 mg), magnesium stearate N.F. (2 mg), pregelatinized starch N.F. (q.s. ad 200 mg). All ingredients are screened with a #40 mesh stainless steel screen. A suitable mixer/blender, such as a Paterson Kelly V blender, is charged with an equal portion of the pregelatinized starch, microcrystalline cellulose and the hydrochloride salt, and mixed well. Portions of pregelatinized starch and microcrystalline cellulose are added in geometric increments and mixed. Finally the magnesium stearate is added and blended to produce the final capsule mix which is then filled into a size 2 hard gelatin capsule.
What is claimed is:

1. (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-
 1,4-benzodiazepine-2-acetic acid, hydrochloride.

2. The compound of claim 1 having a melting point of about 291°C.

3. The compound of claim 1 having a negative specific rotation of about 175.

4. A pharmaceutical composition comprising the compound of claim 1 and a
 pharmaceutically acceptable carrier.

5. The use of the compound of claim 1 in the manufacture of a medicament for
 inhibiting platelet aggregation.

6. A method of inhibiting platelet aggregation which comprises administering
 the compound of claim 1 to a mammal in need thereof.

7. A method of treating myocardial infarction, thrombosis, embolism, stroke and
 infarct-related disorders, or restenosis following angioplasty, which comprises
 administering the compound of claim 1.

8. A process for preparing the compound of claim 1 which comprises forming a
 solution of (S)-7-[(4,4'-bipiperidin-1-yl)carbonyl]-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-
 1,4-benzodiazepine-2-acetic acid, hydrochloride and crystallizing said hydrochloride salt
 by precipitation or recrystallization.
International application No.
PCT/US97/15292

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :A61K 31/55; C07D 243/14
US CL :514/221; 540/570
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S. : 514/221; 540/570

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAS ONLINE CHEMICAL ABSTRACTS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 95/18619 A1 (SMITHKLINE BEECHAM CORPORATION) 13 July 1995 (13.07.95), see entire document.</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

"A" document defining the general state of the art which is not considered to be of particular relevance
"B" earlier document published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"T" later document published after the international filing date or priority data and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"Z" document member of the same patent family

Date of the actual completion of the international search: 15 DECEMBER 1997
Date of mailing of the international search report: 04 FEB 1998

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
ROBERT T. BOND acc.
Telephone No. (703) 308-1235

Form PCT/ISA/210 (second sheet)(July 1992)