Title: Warming Blanket Having Multiple Inlets and Method

The present invention relates to a blanket (10) for use with forced air convection systems, wherein the blanket includes multiple inlet ports (30, 40). By providing a blanket (10) with multiple inlet ports (30, 40), the user has the choice of positioning the air supply or blower unit and the supply hose on either side of the patient. In addition, in a preferred embodiment, the inlet ports are resealable, thus allowing the user to switch inlets during use.
For the purposes of information only
Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>FR</th>
<th>France</th>
<th>MB</th>
<th>Mauritania</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BP</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IT</td>
<td>Italy</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CP</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LIE</td>
<td>Liechtenstein</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SK</td>
<td>Slovak Republic</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LV</td>
<td>Latvia</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>ML</td>
<td>Mali</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>MN</td>
<td>Mongolia</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
WARMING BLANKET HAVING MULTIPLE INLETS AND METHOD

Background

Hypothermia is a condition of subnormal body temperature and presents serious consequences to the patient suffering therefrom. It has been shown that nearly seventy five percent of all patients who undergo surgical procedures develop hypothermia. This equates to approximately fourteen million patients a year in the United States alone. The hypothermic condition is brought on by many factors including anesthesia, the air conditioning of the operating room, and the infusion of cold blood, I-V solutions, or irrigating fluids.

Several methods and products have been developed to help prevent hypothermia from occurring; such as the use of infrared lamps, cotton blankets, and warm water mattresses. However, none of these methods and products have proven completely successful. In fact, it has been shown that these methods and products can not even prevent the patients from losing their endogenous heat. (See Journal of Post Anesthesia Nursing, Vol. 5, No. 4, August 1990, pp 254-263).

Another method of helping to prevent hypothermia that has proven very effective is the use of forced warm air convection. As early as 1937, a refrigeration blanket using cold air convection was suggested in US patent 2,093,834 to Gaugler. This blanket included a plurality of layers for channeling air flow from an inlet port. Non-inflatable portions were provided around the periphery of the blanket to secure the blanket around the body. Gaugler does not mention hypothermia treatment and does not suggest that the blanket could be used to supply warm air.

US patent 2,512,559 to Williams also relates to a
blanket for providing cooled air to a person. The blanket in Williams comprised a plurality of thin sheets of material connected together at a plurality of discrete locations and connected together in a continuous line about the peripheral edge. An air inlet was provided to communicate with space between the sheets to allow cool air to be supplied thereto. Again, no mention of hypothermia treatment or the supply of warm air is made.

In US patent 4,572,188 to Augustine et al, a forced air convection system which can supply either cool or warm air to a blanket is described. The blanket in Augustine et al comprises a plurality of inflatable hollow tubes having their interiors connected together through transverse openings. An entry port is provided in the upper surface of the blanket for admitting the cool or warm air and small exit ports are provided through the lower surface to allow the cool or warm air to flow out toward a body covered by the blanket.

Other patents relating to the supply of cool or warm air to a person through an inflatable blanket include US patents 4,660,388 to Greene, Jr.; 4,777,802 to Feher; and 4,867,230 to Voss. Each of these patents describe blankets having various attributes and configurations to supply cool or warm air to the person.

While some of the above systems suggest use in the operating room, they all possess similar disadvantages. In particular, for the system to work, the blanket must be attached to an air supply or blower unit through a hose. The placement of the hose during surgery can be crucial, as full access to the patient can be compromised if the hose must be located in a position which the surgeon wants to occupy. The placement of the hose can create difficulties
in locating other equipment such as I-V stands, monitors, etc. necessary for the surgical procedure.

Therefore, there is a need in the art for improvements to forced warm air convection systems.

Objects Of The Invention

It is one object of the present invention to provide a blanket for a forced warm air convection system that allows placement of an air supply hose to be selectively chosen depending on the needs of the surgical procedure to be performed.

It is another object of the present invention to provide a blanket for a forced warm air convection system that allows placement of an air supply hose to be changed during a surgical procedure.

Summary Of The Invention

The above objects and others are accomplished according to the present invention by providing a blanket for a warm air convection system having multiple (at least two) inlets, each such inlet having means whereby such inlet may be selectively closed or opened.

Brief Description Of The Drawings

Fig. 1 is a plan view of a blanket for a forced warm air convection system according to one embodiment of the present invention.
4

Detailed Description Of The Invention

Fig. 1 is a plan view of a blanket, generally designated by reference numeral 10, for a forced warm air convection system, wherein the blanket 10, is appropriate for use in the operating room. The blanket 10, shown in Fig. 1 is an upper body blanket, designed to cover the upper body portions of a patient who is undergoing a surgical procedure to lower body portions. The blanket, 10, has a generally rectangular shape and include a head recess portion 20. The blanket 10, comprises two sheets of material which are sealed together along their peripheral edges and are connected together at connection spot welds 50, discretely located on the interior surface portions of the sheets. By connecting the sheets of the blanket 10, in this manner, the blanket 10, may be inflated by supplying air to the interior area formed between the sheets of material.

The blanket 10, further includes a first inlet port 30, and a second inlet port 40. Inlet ports 30, 40 are in communication with the interior of the blanket 10, and may be used to supply air to the interior of the blanket 10, so as to inflate blanket 10. The lower surface (not shown) of the blanket 10, is provided with a plurality of small exit ports to allow warm air to escape from the blanket 10, toward a patient.

In use, the blanket 10, is placed over the upper body of a patient so that the patient's head remains exposed within the head recess portion 20, and the inlet ports 30, 40, are oriented in a direction pointing toward the top of the head of the patient. In this position, one inlet port will be located on each side of the patient's head.
The inlet ports 30, 40, may initially be closed by any suitable means such as sealing, folding, taping, snapping, etc. In the case where the inlet has been permanently sealed, means such as a perforated tear strip may be provided to enable easy opening of the inlet port selected for use. However, such sealing of the inlet ports requires the user to select the inlet port to be used prior to operation of the blanket 10, and does not allow switching to the other inlet port during use. This is because once the permanent seal for such an inlet port has been broken or opened, it is not possible to re-close the inlet port.

Therefore, in a preferred embodiment, the inlet ports 30, 40 will be initially closed by means that allow re-closing. In particular, means such as an adhesive strip, double-sided tape, snaps, zippers, folding flaps, or a ziplock type seal, etc. may be utilized. In a most preferred embodiment, the inlet ports 30, 40 are initially sealed by velcro strips to allow easy opening and re-closing.

The blanket according to the present invention has several advantages. In particular, by providing a blanket with dual inlets, the user has the choice of positioning the air supply or blower unit and the supply hose on either side of the patient. In addition, by providing resealable inlet ports, the user may switch inlets during use. This is particularly advantageous in allowing the surgeon full access to the patient.

The provision of spot welds 50, to connect the separate sheets of the blanket 10, also is advantageous. In particular, the spot welds 50, allow the free flow of warm air in all directions and therefore allow for better heat distribution within the blanket. This can be critical
in reducing the occurrence of hot or cold spots within the blanket during use.

The blanket may be formed of any suitable material capable of being sealed together at selected positions and having sufficient strength to allow inflation and adequate air distribution within the inflated portion. Such materials include plastics, non-woven wood pulp compositions, laminated plastic and wood pulp materials, and combinations thereof.

It should be noted that the present invention is primarily concerned with a blanket which can be used to supply warm air to a patient in the operating room during a surgical procedure, so as to help prevent the occurrence of hypothermia. However, it will be evident to one skilled in the art that the blankets according to the present invention could be used in areas other than the operating room, such as in the recovery room, or in the patient's regular hospital room. Further, it will be evident to one skilled in the art that a source of pressurized cooled air could be provided to the blanket according to the present invention to control body temperature of the patient under conditions of hyperthermia.

In addition, while the present invention has been particularly described by reference to a blanket having two inlets, it will be evident to one skilled in the art that any number of inlets could be provided to enable even greater flexibility of use. The placement of additional inlets is limited only by the need to maintain good air distribution and flow within the blanket.

It is also noted that it would be possible to connect a supply source of warm air to each of the inlets when
using the blanket according to the present invention. Alternatively a single supply source could be connected to each inlet using a multiply branched supply hose. For example, if there are two inlets, the supply hose could have a y-shaped configuration. Each of these embodiments of using the present invention, may be advantageous in providing more even heat distribution to all parts of the blanket.

The foregoing has been a description of certain preferred embodiments of the present invention, but is not intended to limit the invention in any way. Rather, many modifications, variations and changes in details may be made within the scope of the present invention.
What is claimed is:

1. A blanket for use with a forced air convection system, wherein such blanket includes multiple inlet ports.

2. A blanket according to claim 1, wherein said blanket includes two inlet ports.

3. A blanket according to claim 1, wherein said multiple inlet ports are initially sealed closed.

4. A blanket according to claim 3, wherein said multiple inlet ports are non-reversibly sealed and further including means to open said multiple inlet ports.

5. A blanket according to claim 4, wherein said means to open comprises a tear strip.

6. A blanket according to claim 3, wherein said multiple inlet ports are sealed with reversible sealing means.

7. A blanket according to claim 6, wherein said reversible sealing means is selected from the group consisting of an adhesive strip, double-sided tape, snaps, zippers, folding flaps, and a ziplock type seal.

8. A blanket according to claim 6, wherein said reversible sealing means is velcro strips.
9. A method of preventing hypothermia, said method comprising:
 providing a blanket which may be used with a forced air convection system, wherein such blanket includes multiple inlet ports;
 connecting at least one of said multiple inlet ports to a supply source of forced air; and
 supplying forced air from said supply source to said blanket.

10. A method according to claim 9, wherein said blanket includes two inlet ports.

11. A method according to claim 9, wherein said multiple inlet ports are initially sealed closed.

12. A method according to claim 11, wherein said multiple inlet ports are non-reversibly sealed and further including means to open said multiple inlet ports.

13. A method according to claim 12, wherein said means to open comprises a tear strip.

14. A method according to claim 11, wherein said multiple inlet ports are sealed with reversible sealing means.

15. A method according to claim 14, wherein said reversible sealing means is selected from the group consisting of an adhesive strip, double-sided tape, snaps, zippers, folding flaps, and a ziplock type seal.
16. A method according to claim 14, wherein said reversible sealing means is velcro strips.

17. A method according to claim 9, wherein each of said multiple inlet ports are connected to a supply source of forced air.

18. A method according to claim 17, wherein a separate supply source is connected to each of said multiple inlet ports.

19. A method according to claim 17, wherein a single supply source is connected to each of said multiple inlet ports.

20. A method according to claim 19, wherein said blanket includes two inlet ports, and said single supply source is connected to both inlet ports through a supply hose having a Y-shaped configuration.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(5): A61F 7/00; A47G 9/11
 US CL.: 5/423,482; 128/400; 137/272; 165/46
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 U.S.: 5/284, 421,423,455,482,494; 62/261;
 128/400;137/269,271;561;165/46
 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US A 2,122,964 (SWEETLAND) 05 JULY 1938 (SEE ENTIRE DOCUMENT)</td>
<td>1,2,9,10,17-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-8,11-16</td>
</tr>
<tr>
<td>Y</td>
<td>US A 4,660,388 (GREENE) 28 APRIL 1987 (SEE ENTIRE DOCUMENT)</td>
<td>1,2</td>
</tr>
<tr>
<td>X</td>
<td>US A 2,093,834 (GAUGLER) 21 SEPTEMBER 1937 (SEE ENTIRE DOCUMENT)</td>
<td>1,2</td>
</tr>
<tr>
<td>Y</td>
<td>US A 3,768,467 (JENNINGS) 30 OCTOBER 1973 (SEE ENTIRE DOCUMENT)</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US A 1,266,482 (KAMRASS) 14 MAY 1918 (SEE ENTIRE DOCUMENT)</td>
<td>1-20</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step if the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search: 19 October 1993
Date of mailing of the international search report: [Signature]

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. NOT APPLICABLE
Authorized officer
FLEMING S. SAETHER
Telephone No. (703) 308-2168

Form PCT/ISA/210 (second sheet)(July 1992)*
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US,A 4,777,802 (FEHER) 18 OCTOBER 1988 (SEE ENTIRE DOCUMENT)</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US,A 3,757,366 (SACHER) 11 SEPTEMBER 1973 (SEE ENTIRE DOCUMENT)</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US,A 4,997,230 (SPITALNICK) 05 MARCH 1991 (SEE ENTIRE DOCUMENT)</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US,A 3,674,034 (HARDY) 04 JULY 1972 (SEE ENTIRE DOCUMENT)</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US,A 3,308,850 (GILL) 14 MARCH 1967 (SEE ENTIRE DOCUMENT)</td>
<td>1-20</td>
</tr>
</tbody>
</table>