(54) Title: APPARATUS FOR RETORTING ORGANIC MATTER

Apparatus for retorting organic matter including a conveyor (15) for advancing organic matter through a chamber (17) in the absence of oxygen, temperature sensors for sensing the temperature in the chamber at a plurality of locations along the length of the chamber, a plurality of burners located along the length of the chamber (17), controls for individually adjusting the heat generated by the plurality of burners in response to the temperature sensed at the locations means for selectively directing the heat (19) to the plurality of locations along the length of the chamber so as to convert the organic matter into a plurality of by-products and transporting at least one of said by-products to said burners for burning therein.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IT</td>
<td>Italy</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>RD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SK</td>
<td>Slovak Republic</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LV</td>
<td>Latvia</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>ML</td>
<td>Mali</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MN</td>
<td>Mongolia</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPARATUS FOR RETORTING ORGANIC MATTER

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to an apparatus for removing hydrocarbons from materials contaminated therewith and waste materials for recycling, and more particularly to an apparatus for retorting organic matter in an essentially continuous closed system which is adaptable to various types of raw materials to be treated and which does not have a negative effect on the ecology.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide an apparatus for retorting organic matter which is easily selectably adaptable to a number of variables including the input raw material to be treated, the desired quality of the output byproducts, a start-up versus steady state condition, and flow rate.

A further object of this invention is to provide an apparatus for retorting organic matter in an essentially closed system which is capable of recycling selected byproducts of the process for burning within the system. It is a further object of this invention to provide an apparatus for retorting organic matter without creating atmospheric pollution.

A further object of this invention is to provide an apparatus for retorting organic matter which is capable of utilizing, selectively, byproducts of the process for creating heat within the process in an essentially closed system manner.

A further object of this invention is to provide an apparatus for retorting organic matter which is simple and cost-effective and which will profitably process a substantial volume of material on a continual operating basis.
A further object of this invention is to provide an apparatus for retorting organic matter in a system which is highly mobile and completely self-contained.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be further described in conjunction with the accompanying drawings, in which:

- FIGURE 1 is a flow diagram of the apparatus of the present invention;
- FIGURE 2 is a flow diagram of the preferred embodiment of the present invention;
- FIGURE 3 is a side plan view of the exterior of the apparatus of the present invention;
- FIGURE 4 is a side view of the inlet portion of the mobile apparatus of the present invention;
- FIGURE 5 is a partial cutaway end view of the retort chamber of the present invention;
- FIGURE 6 is a partial end plan view of the inlet portion of the apparatus of the present invention; and
- FIGURE 7 is a partial side view of the outlet portion of the retort chamber of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference to the figures, wherein like reference characters indicate like elements throughout the several views and, in particular, with reference to Figure 1, there is shown a source of raw material 11, to be treated, which is first loaded into a feed hopper 13 manually or, preferably, by way of a motorized front-end loader, dump-truck, or the like. The raw material to be treated may be any solid material, wherein it is desired to remove hydrocarbons or contaminants such that the separated byproducts of the process can be separately utilized or disposed of. Some examples of such raw materials are contaminated soil, tires, automobile fluff, medical waste, batteries, asphalt, roof shingles, chicken droppings, iron oxide, gas contaminated soil, PCB in soil, tanker bottoms, drill cuttings, oil field sludge,
tar sands, landfills (household garbage), and belt cake. The feed hopper 13 is preferably equipped with rotating blades to break the material into chunks, which then drop onto an inlet conveyor means 15 such as an auger conveyor. The inlet conveyor means 15 lifts or conveys the chunk material to the input end of a retort chamber means 17. The retort chamber means 17 is heated by a heater means 19. The heater means 19 includes a plurality of burners 21 spaced along the length of the retort chamber 17, with each burner 21 being capable of selective individual adjustment. The burners 21 are spaced along the length of the retort chamber 17 for directing a plurality of individual gases flames along the length thereof.

The retort chamber means 17 preferably includes a retort screw or auger that rotates inside of a stainless steel retort pipe causing the raw material 11 to be conveyed through the retort pipe to the outlet end of the retort chamber 19. The interior of the retort pipe is maintained oxygen-free by the use of airlocks in a conventional manner which will be apparent to those skilled in the art.

The heated air from the burners 21 passes through a plenum chamber to heat the retort pipe to a desired temperature which may be in excess of 1200°F. The temperature is selected to be sufficient to drive out all of the hydrocarbons from the raw material being conveyed through the retort pipe. A plurality of temperature sensors 22 are provided at spaced distances along the length of the retort chamber for sensing the temperature of the retort chamber at spaced distances along the length thereof. The gaseous flames from the burners 21 are adjusted along the length of the chamber in response to the temperature sensed by the sensors 22. The interior of the retort chamber 17 surrounding the retort pipe is lined with refractory materials such that the heat generated in the plenum chamber will be absorbed by the refractories which will then be the primary source of
heat for the retort chamber pipe. The burners 21 are adjusted individually from a condition of being completely turned off to a condition of generating maximum heat, selectively and individually, so as to provide sufficient heat to the material in the retort pipe at each location therealong according to the amount of heat necessary at that position within the retort pipe needed at a particular time. The particular temperature required for treating a particular raw material depends upon the end result which is desired. For example, the temperature applied to a solid material containing hydrocarbons would depend upon the amount of hydrocarbons desired to be removed. With regard to automobile tires, the byproducts would be carbon black, oil, and methane. Depending upon the desired BTU content desired for the carbon black, the temperature must be adjusted in such a way to remove a certain portion of the hydrocarbons while leaving a certain portion of the hydrocarbons in the carbon black. The more hydrocarbons contained in the carbon black, the higher the BTU value of the carbon black byproduct. Depending upon the end use for the carbon black, and the potential economic value of each of the three byproducts, the temperature will be selected to produce each of the three end products of the process accordingly.

There is also reason for desiring a different temperature at the inlet portion of the retort chamber than at the outlet portion of the retort chamber. For example, when treating oilfield sludge which contains approximately 1/3 water, 1/3 oil, and 1/3 soil, it is necessary to remove the water in the early stages of the process before the oil can be cracked and removed from the soil. The water has to be heated to 212°F. to vaporize, and takes seven times the amount of energy to vaporize than oil. When feeding oilfield sludge through the retort chamber, the initial feed of sludge will need a higher temperature to reduce the water before the oil will start cracking. If the water remains in the sludge,
it will automatically drop the bed temperature. Therefore, increasing the bed temperature at the initial burners 21 at the inlet end of the retort chamber will insure total vaporization of the water such that the remaining burners 21 at the middle and output ends of the retort chamber can be utilized for cracking the oil.

The particular settings for the temperature at any portion of the retort chamber will be in accordance with a number of variables, such as the particular raw material 11 being introduced into the process, the desired output materials including the BTU value of such materials and the economic value of each of the materials, the start-up versus steady state condition of the retort chamber, the necessity to drive off water or other selected volatiles in the initial stage of the retort process, and the flow rate of the materials through the retort chamber.

As will be described in more detail, fins are provided along the bottom of the retort pipe such that the temperature at the lower portion of the retort pipe is higher than the temperature at the upper portion of the retort pipe. The raw materials being conveyed through the retort chamber are contained in the lower portion of the retort pipe and therefore require a higher temperature applied thereto as opposed to the gaseous byproducts which are contained in the upper portion of the retort pipe.

The burners 21 are capable of operation from three distinct fuels, such as natural gas, methane and oil, which may be individually selected depending upon the availability and cost of each of the materials. For example, when treating shredded tire material, the process may be started by utilizing natural gas. However, the byproducts methane and oil from the treated automobile tire scrap material can be recycled to operate the burners once the process has begun. Therefore, the system becomes an essentially closed system utilizing its own byproducts to feed the burners and to create heat.
which will in turn generate more byproducts. Furthermore, the excess oil and methane from the process may be stored for resale.

As the water and hydrocarbons from the process are vaporized in the retort chamber, they are pulled away from the raw material through a manifold means 23 of a blower 25 (e.g., a typical induction draft fan). After the vapors leave the retort pipe, they are forced into a tube and shell heat exchanger 27, where condensing occurs. Water is conveyed to the heat exchanger 27 from a water supply 29. The liquid (oil and water) from the heat exchanger 27 is conveyed to a storage tank 31 and is separated. The separated water is conveyed to a water discharge 33. The separated oil is conveyed to a covered fuel storage means 35, which may be conveyed back to the heater means 21 for re-burning, or which may be stored for later disposal and/or sale.

After the hydrocarbons have been removed from the raw material to be treated, the remaining solid material is removed from the output end of the retort chamber means 17 onto an outlet conveyor means 37, which may also be a transfer auger, so as to remove the reclaimed solid material for resale and/or disposal.

A starter fuel such as natural gas 41 is utilized to initially burn in the burners 21 to begin the process until sufficient byproducts are generated in the retort chamber to be recycled to the burners, after which the starter fuel would be discontinued. The gaseous products from the heat exchanger 27 may be flared or burned-off through a gas burn-off stack 43 or may be recovered in a gas storage tank 45. The recovered gas in storage tank 45 can be fed back to the heater means 19 to be burned in burners 21.

As shown in Figure 3, the entire apparatus, as described, can be completely mounted on a flatbed truck 46 so as to be movable from location to location. The only additional materials to be supplied at a particular location would be storage tanks for the reclaimed
materials, and equipment for loading the raw material 11 into the hopper 13.

Referring now to Figures 4 through 7, wherein details of the mechanism are more clearly illustrated, there is shown a truck bed 46 upon which the entire apparatus is assembled such that it may be easily brought upon a site wherein the raw materials to be treated are located. The retort chamber means 17 rest upon the truck bed 46 and may be securely fastened thereto by conventional means. The interior of the retort chamber means 17 are lined with refractory material 47. The flames from the burners 21 heat the air in the plenum chamber 49, which in turn heats the refractory material 47 to radiantly heat the retort pipe 51 which is constructed of stainless steel or other suitable heat conducting material. Fins 53 are provided along the lower portion of retort pipe 51 for assuring a higher temperature in the lower portion of the retort pipe 51 than in the upper portion thereof. A retort auger conveyor 55 is journaled in bearings 57 and 59 at the inlet and outlet portions, respectively, of the retort pipe 51. The retort auger conveyor 55 is rotated by means of a drive shaft 61 which is rotated by conventional power means 63. The retort auger conveyor 55 is located adjacent the lower portion of the retort pipe 51 so as to leave a space 65 between the retort auger conveyor 55 and the upper portion of the retort pipe 51 for easy passage and removal of gases generated during the process. Furthermore, the space 65 allows for thermal expansion of the metallic parts, which will occur during the heating process.

Referring now to Figures 3, 4 and 6, details of the inlet portion of the retort chamber means 17 are shown. The retort pipe 51 has a circumferential flange member 67 affixed thereto, which is slidably mounted in a circumferential seal 69. The seal 69 is affixed to the retort chamber means 17 such that the circumferential flange member 67 can axially slide along the seal 69 allowing for thermal expansion of the retort auger.
conveyor 55, the retort pipe 51, and other metallic parts being heated. The inlet conveyor means 15, feed hopper 13, and associated inlet feed equipment are fixedly attached to the outer end wall 71 of the inlet portion of the retort pipe 51. A frame member 73 is affixed to the outer end wall 71, the inlet conveyor means 15 and other inlet supported equipment, and is mounted on a base 74 having wheel members 75 which ride upon tracks 77 mounted on the truck bed 46. In this manner, as the retort chamber means 17 heats the retort pipe 51, retort auger conveyor 55 and associated equipment, the thermal expansion of the metallic parts will cause elongation in the axial direction. As the metallic parts expand, the retort pipe 51 will axially move in the direction of the inlet portion such that circumferential flange member 67 will slide along seal 69. The inlet conveyor means 15, feed hopper 13, and associated inlet equipment which are fixedly attached to the movable frame member 73 will slide along the tracks 77 mounted on the truck bed.

As can be seen from the foregoing description, a retort system has been described which can have all of the essential components thereof mounted upon a truck bed to be brought upon a location having contaminated or waste products and wherein the waste products can be converted to end products which can be recycled or disposed of without creating any damaging effects to the ecology. The solid, liquid and gaseous byproducts of the process can be removed in storage containers. Excess gas can be flared, on site, if such gases do not produce products harmful to the atmosphere. Furthermore, oil and burnable gas which may be byproducts of the process can be recycled to the apparatus to create an essentially closed system which does not need auxiliary fuel except in the start-up period. The burners in the heater means can be individually controlled by heat sensors and can be selectively adjusted depending upon conditions desired. The system can be adapted to produce byproducts in a most desirable state depending upon the economic value of each
of the byproducts and the intended end use of each of the byproducts.

Although the present invention has been fully described in connection with the preferred embodiment thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications are apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims, unless they depart therefrom.
WHAT IS CLAIMED IS:

1. Apparatus for retorting organic matter comprising:
 means for advancing organic matter through a chamber in the absence of oxygen;
 means for sensing the temperature in said chamber at a plurality of locations along the length of said chamber;
 a plurality of burners located along the length of said chamber;
 means for individually adjusting the heat generated by said plurality of burners in response to the temperature sensed at said locations;
 means for selectively directing said heat to said plurality of locations along the length of said chamber so as to convert said organic matter into a plurality of byproducts; and
 means for transporting at least one of said byproducts to said burners for burning therein.

2. The apparatus of claim 1, further comprising:
 means for separating the solid and gaseous byproducts;
 means for mechanically removing said solid byproduct from said chamber;
 means for condensing said gaseous byproducts into liquid and burnable gaseous byproducts;
 means for separating said liquid byproducts into burnable and non-burnable byproducts; and
 means for selectively burning either said burnable liquid byproducts or said burnable gaseous byproducts in said burners.

3. The apparatus of claim 2, further comprising:
 means for containing said burnable gaseous byproducts;
 means for burning a portion of said gaseous
byproducts in said burners; and
means for flaring a portion of said gaseous
byproducts in the atmosphere.

4. The apparatus of claim 1, further comprising:
refractory material lining the interior of said
chamber;
a retort pipe extending axially through said
chamber and surrounded by said refractory material; and
said means for advancing organic matter through
said chamber comprising a retort auger.

5. Apparatus according to claim 4, wherein said
retort auger conveyor is radially offset in said retort
pipe so as to be disposed along the bottom portion
thereof leaving a gap between the upper portion of said
retort auger conveyor and the inner wall of the upper
portion of said retort pipe.

6. Apparatus according to claim 5, wherein said
retort pipe includes heat conducting fins located along
the bottom outer portion thereof.

7. Apparatus according to claim 6, wherein said
apparatus is mounted on a flatbed truck wherein said
apparatus is easily transportable.
INTERNATIONAL SEARCH REPORT

PCT/US92/08192

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5): A47J 36/00; F23G 5/12
US CL.: 110/226, 246, 346; 210/219
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S.: 110/226, 246, 346; 210/219

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, A, 3,682,115 (RODGERS) 08 August 1972</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,977,839 (FOCHTMAN ET AL.) 12 December 1990</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,715,965 (SIGERSON ET AL.) 29 December 1987</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,235,676 (CHAMBERS) 25 November 1980</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,308,103 (ROTTER) 29 December 1981</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,738,206 (NOLAND) 19 April 1988</td>
<td>1-7</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "B" earlier document published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "Z" document member of the same patent family

Date of the actual completion of the international search: 12 NOVEMBER 1992

Date of mailing of the international search report: **07 JAN 1993**

Name and mailing address of the ISA/Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Authorized officer
HENRY C. YUEN
Telephone No. (703) 308-2125

Facsimile No.: NOT APPLICABLE

Form PCT/ISA/210 (second sheet)(July 1992)*