This invention is a small hand piston type pump design to pump small quantities of flammable liquids safety from a drum. The pump has an attached grounding and bonding clips, and a metal bung adapter to ensure that static build up during the pumping process is adequately grounding from not only the pump but the vessel into which the liquid is being pumped and the drum. The pump also contains a flame arrester in the spout, a check ball, and a strainer in the pickup tube to ensure that a fire within the pump will not extend into the drum. The pump is made out of carbon steel, glass and teflon so that the parts have good chemical resistance and are long lasting. The pump has a sealing device designed for longevity. This sealing device has a packing gland whose edges are beveled. It fits into a conical channel between the packing head and packing nut and when the packing unit is tightened the packing gland is forced toward the shaft.

* See back of page
+ DESIGNATIONS OF “SU”

Any designation of “SU” has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>ES</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>MN</td>
<td>Mali</td>
<td>ML</td>
<td>Malawi</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SU</td>
<td>Soviet Union</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
SAFETY HAND PUMP

The present invention relates to an improved hand pump of the type used in connection with barrels or drums containing fluids and flammable liquids.

BACKGROUND OF THE INVENTION

Today many small businesses deal with small quantities of flammable liquids. Usually these flammable liquids are shipped to the small companies in drums that contains larger quantities of the liquid than the small companies can use at one time. Therefore, these flammable liquids usually have to be pumped out of the larger drums into a smaller container. The pumping of these liquids into the small containers is very hazardous. In fact the inventor began work on this invention after reading an article on a man who died in a fire which was caused by the pumping of flammable liquids.

Pumps that are built to pump small quantities of liquid
are extremely unsafe when pumping flammable liquids. If any of the liquids after it has been pumped out catches on fire there is problem, with the pumps in prior art, of the fire spreading up through the spout of the pump due to vapors in that spout and then continuing to spread through the pumps into the drum setting the whole drum on fire and probably causing an explosion. Also, pumps in the prior art cause fires themselves. Static electricity is built up in the pumping actions and this static electricity could cause a spark igniting the flammable liquids. Thus, the object of this invention is to create a pump that can pump flammable liquids safety without a fear of fire or explosion. The feature that achieved this objective are that the pump is equipped with a grounding clip, bonding clip, metal bung adapter, ball check valve, pick up tube and flame arrester. Another objective is to create a pump that can pump all types of flammable liquids including lacquer thinner. Lacquer thinner quickly deteriorate most materials used in the pump. The feature that achieved this objective is that the pump parts are made of carbon steel, glass and teflon. Further objective is to make a pump that is long lasting. The feature that achieved this objective is a specialty design packing gland. The above stated features give the pump a large number of advantages. First, this is a safety
pump that an individual can use to pump small quantities of flammable liquids without the fear of a fire spreading into the drum, nor the fear of static build up which could cause a spark that leads to fire. Secondly, this pump has great advantage over the prior art in that it can pump a great numbers of different liquids including lacquer thinner. Further, this pump has advantage over other hand operated pumps in the prior art in it longevity due to it special packing gland.

SUMMARY OF THE INVENTION

This invention is a hand pump with several built in safety features. The safety hand pump is designed to pump small quantity of flammable liquids without the fear of fire spreading into the drum nor the fear of static build up which could cause a spark that could lead to a fire. The pump is a small piston type pump design to pump small quantity of liquids safely from a drum. The pump has a attached grounding and bonding clips and a metal bung adaptor to ensure that static build up during the pumping process is adequately grounded from not only the pump but the vessel into which the liquid is being pumped and the drum. The pump also contains a flame arrester in the spout, a check ball to ensure that a fire within the pump will not extend into the drum, and a strainer in the pickup tube to further arrest any
flames. The pump is made out of carbon steel, glass and teflon so that the parts have good chemical resistance and are long lasting. The sealing device between the shaft of the pump and the barrel has been design for longevity. The sealing device consist of a packing head attached to the barrel of the pump which has a conically shaped chamber which the packing gland fits against. The packing nut also has a conically shaped channel which fits against the upper portion of the packing gland. These conically shaped channels are cut on a 30' degree angle to a line running through the center of the packing nut and packing head. When the packing nut is tighten against the packing gland this conic channel pushes on the packing gland toward its center, where the shaft runs through the packing gland. Thus by tightening down the nut, the seal of the packing gland against the shaft becomes tighter.

DESCRIPTION OF THE DRAWINGS

Figure 1. Is a view of the pump showing in phantom the flame arrester, the strainer, and the check valve with ball.

Figure 2. Is a cut away view of the pump with cut away showing the packing nut, head and gland, the flame arrester in the pumps spout, the check valve, and the piston.

Figure 3. Shows the pickup tube with the cut away
showing the strainer.

Figure 4. Shows the bung adaptor.

Figure 5. Shows the packing head, the packing gland and the packing nut.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

This invention is a hand operated piston pump which is constructed to pump a small amount of liquid from a drum. Figure 1 is a detailed drawing of the pump 14. The handle 10 extends out of the top of the barrel 12 of the pump. The handle 10 is P shaped for easy pumping. Also extending out of the barrel 12 near the top of the barrel 12 is the spout 16 of the pump 14. In the spout 16, very near the end of the spout 16, is a flame arrester 20. This flame arrester 20 is to keep any spark or fire from igniting the gasses in the spout 16 and spreading down into the drum 18 containing large quantities of the flammable liquids. As one goes farther down the barrel 12 of the pump 14 we find a ground wire 26 and a bonding wire 24 attached to the barrel 12 of the pump 14. In the preferred embodiment a threaded stud 30 is welded to the barrel of the pump 14. The terminal connectors 32 and 34 are placed over the threaded stud 30 and they are held in placed by a lock nut 76. On the ends of the bonding wire and the grounding wire 26 are clamps 36 and 38 for attachment to metal surfaces. The bonding wire 24 and the grounding wire
26 could be attached to the pump 14 by soldering, welding, or many other ways known in the art. The bonding and the grounding wires 24 and 26 and clamps 36 and 38 are design to prevent static buildup. In operation you would attach the bonding 36 to bare metal on the receiving container. One then attaches the grounding wire 26 to a proper ground. Since the pump 14 and the bung adapter 40 are made out of a conductive material any static build up on the container from which you are pumping conducts through the bung adapter 40 to the pump 14 and to the grounding wire 26 and down into the ground. Also any static build up on the receiving container will be conducted through bonding clamps 36 and bonding wire 24 to the grounding wire 26 and into the ground. Any static build up on the pump will travel through the grounding wire 26 into the ground. This eliminates the possibility of a spark caused by static built up. It should also be noted that in the preferred embodiment the grounding clamps 36 and the bonding clamps 38 are heavy duty clamps so that when they are attached they will chip away or scratch away at the paint to get a good connection.

As we go further down in the barrel 12 of the pump 14 we come to the bung adapter 40. The bung adapter 40 is adapter to fit into a bung on the top of the container to be pump from. In the preferred embodiment the bung adapter 40 is
threaded to fit into a container those bung is threaded. The bung adapter is shown in figure 4. From this figure you can see that the bung adapter 40 has an opening adapted to fit the barrel 12 of the pump through. The pump 14 is secured to the bung adapter 40 by a thumb screw 42 that passes through a threaded opening 44 in the bung adapter 40 and is tighten against the barrel 12 of the pump 14. The opening in the bung adapter 40 for the pump is sufficiently large to allow the pump 14 to be placed through it and to be turned when the pump 14 is in the adapter 40. Therefore, the user of the pump 14 can position the spout 16 in any position and tighten it in that position by use of the thumb screw 42.

In the preferred embodiment the bung adapter is made from metal. However, any conducting substances can be used to make the bung adapter. The conductive bung adapter is one of the safety features of the pump. Since the bung adapter is conductive it can carry static electricity that builds up in the container being pumped from to the pump 14 and since the pump 14 is also conductive this static electric will flow through the pump to the ground wire 26 grounding the pump 14.

As shown in figure 3 a pickup tube 46 passes out of the bottom of the barrel 12 of the pump 14. This pick up tube is cylindrical and smaller in diameter then the barrel 12 of the pump 14. In the preferred embodiment the pick up tube 46 is attached to the barrel 12 of the pump 14 by a threaded end
plug 48. The pick up tube however could be welded or attached by numerous other methods known in the art. The pick up tube 46 is shown in figure 3. Near the bottom end of the pick up tube 46 on the inside of the tube is a strainer 50. The strainer 50 strain out debris that may be contain in the liquid being pumped out of the container.

The strainer 50 also acts as a flash suppressor in the case where the drum is almost empty, but still could have flammable or explosive fumes in the container. Thus, if a fire started in the pump it would not spread past the strainer 50 and explode the fumes in the drum.

At the bottom end of the barrel 14 is a nipple 41. In the preferred embodiment the nipple is threaded and is adapted to allow the end plug 48 of the pickup tube 46 to be attached to it. Above this nipple 41 on the inside of the barrel 12 is a check valve 54. In the preferred embodiment this checked valve 54 is a ball type check valve. The check valve 54 has a ball 56 that seats on the opening 58 at the bottom of the barrel 12 of the pump 14. This check valve 54 is one of the safety feature of the pump. This ball 56 insures that if the liquid being pumped catches on fire within the pump 14, that fire will not spread past the ball 56 and into the container from which the liquid is to be pumped. The ball 56 in the preferred embodiment is made out
of glass to ensure long life and resistance to the chemicals being pumped.

The handle 10 is attached to a shaft 60 that passes into the barrel 14 of the pump 10 through a sealing means at the top of the barrel 14 of the pump 10. The sealing means of the preferred embodiment is shown in figure 5. The sealing means comprise of a packing nut 62, a packing head 64 and a packing gland 66. The packing head is attached to the top of the barrel 12 and has a opening 68 in its center. At the bottom of the opening 68 of the packing head 64, the opening 68 is just a little bit larger in diameter than the pump shaft 60. The top portion of the opening 68 is of a size large enough that the packing gland 66 can fit with in the opening 68. Between the packing gland size opening and the shaft opening is a channel with conic sides 70. In the preferred embodiment these conic sides 70 are at a 30° degree angle from a line running through the center of the opening 68. The packing gland 54 in the preferred embodiment is circular in shape and has a opening 72 in the center which has a diameter nearly the same as the diameter of the shaft 60 of the pump 14. The top edge 74 and the bottom edge 70 of the packing gland 66 are cut or beveled at an angle of 30° degrees from a line running parallel with the side of the packing gland 66. The packing gland 66 in the preferred embodiment is made out of teflon because of it resistance to
chemicals. The packing gland 66 however, could be made out of rubber, cloth, plastics or other substances that are used for gaskets. The packing nut 62 in the preferred embodiment has a hex head. However, this nut could have a screw type head or other shaped of nut heads know in the art. The bottom portion on the packing nut 62 is threaded and is adapted to fit the threads of the packing head 64. The packing nut 62 also has cylindrical channel passing through its center and the channel is of a diameter slightly larger than the shaft 60 of the pump 14. This channel at the bottom is conically shaped tapering towards the top of the nut on an angle of 30' degrees from a line that is runs through the center of the channel.

In operation the packing head 64 is placed over the shaft and attached to the barrel of the pump. In the preferred embodiment the packing head 64 has threads that are adapted to fit the threads on the pump barrel 12. However, the packing head 64 could be attacked to the barrel 12 by welding or other means that are air tight. The packing gland 66 is also put over the shaft and fit in the packing head 64. Lastly the packing nut 62 is put over the shaft 60 and thready advance inward towards the packing head 64. When the packing nut 62 is thready advanced there a pressure from upon the packing gland forcing the packing gland to expand against
the shaft 60 of the pump 14 forming an effective seal. As I pointed out above the packing nut 62 and the packing head 64 have conic sections that press against the packing gland 66. These conic sections place a pressure on the packing gland 66 not only causing it to expand but also push it towards the shaft 60 forming even a better seal. As the packing gland 66 wears around the shaft 10 the packing nut 62 can be advanced even further against the packing head 64 and the conic sections will force the packing gland 66 against the shaft of the pump 14. In the prior art the packing gland was advanced towards the shaft of the pump by putting vertical pressure on the packing gland and causing it to expand. However, in my invention the packing gland 66 is not only compressed vertically but it is also forced by the conical sections toward the shaft 10 of the pump 14. This makes the seal more effective and causes the packing gland 66 to last longer.

Near the end of the shaft 60 of the pump 14 is the piston disk 80. This piston disk 80 fits up with sufficient tightness against the barrel of the pump that a vacuum is created below the piston 80 when the handle 10 of the pump 14 is lifted. When the handle 10 of the pump 14 is again forced down liquid is transferred by restricted orifices in the piston disk 80 to the chamber above the piston disk 80.

The operation of the pump 14 depends on a small vacuum developed between the liquid level and the piston side 80.
created by the up lift of the handle 10. This result in a small pressure in the barrel 10 which is relieved by the lifting of the ball 56 of the check valve and the drawing up of liquids into the pump. Pushing the handle 10 down again causes the liquids to be forced through the restrictive orifices in the piston disk 80 and into the pump barrel 10 above the piston 80. Next uplift the handle 10 dispense the liquid to the pump spout 16. The pump 14 is self priming.

Although one embodiment of this invention has been illustrated and described, it is to be understood by one skilled in the art that numerous changes and modifications can be carried out specifically in the embodiment shown and described without disparting from the spirit and scope of the claim invention. Accordingly, that scope of the invention is intendant to be limited only by the scope of the claims.
WHAT IS CLAIMED IS:

1. A safely hand pump comprising:
   a. a means for pumping liquids by hand from a reservoir container to a receptacle container; and,
   b. a means for stopping the spread of fire through the pumping means adapted to fit within the pumping means; and,
   c. a means for safely discharging static buildup on the pumping means and the receptacle container during the pumping of liquids and said discharging means is attached to the pumping means.

2. A safety hand pump as in claim 1 wherein:
   a. the means for safety discharging static buildup during the pumping of liquids is a means for grounding the pump, and the receptacle container and said means for grounding is attached to the pump and is releasably attachable to the receptacle container and the means for grounding prevents static buildup on the pump and the receptacle container.

3. A safety hand pump as in claim 1 wherein:

SUBSTITUTE SHEET
a. the means for pumping comprising:

1. a cylindrical barrel with an upper and lower end; and,

2. a spout located on the upper end of the cylindrical barrel; and,

3. a means for pumping liquids into the barrel and out through the spout; and,

b. the means for stopping the spread of fire is a flame arrestor inside the spout.

4. A safety pump as in claim 1 further comprising:

a. a second means for safety discharging static buildup on the reservoir container to which the pump is attached during the pumping of liquids and said second discharging means is attached to the pumping means.

5. A safety pump as in claim 1 comprising:

a. the means for pumping is made out of steel, Teflon and glass.

6. A safety pump as in claim 2 wherein:

a. the means for pumping has an outer surface; and,

b. the means for grounding comprising
1. a wire attach to the pump; and,
2. a means for attaching that wire to a ground; and,
3. a second wire attached to the pump; and,
4. a second means for attaching the second wire to the receptacle container; and,
5. the outer surface of the pump is made out of a conductive substance.
7. A safety hand pump as in claim 2 wherein:
   a. a means for pumping comprises:
      1. a cylindrical barrel with an upper and lower ends;
      and,
      2. a spout located on the upper end of the cylindrical barrel; and,
      3. a means for pumping liquids into the barrel and out through the spout; and,
      b. the means for stopping the spread of fire is a flame arrestor inside the spout.
8. A safety hand pump as in claim 4 wherein:
   a. the means for safety discharging static buildup during the pumping of liquids is a means for grounding the pump, the reservoir container, and the receptacle container and said means for grounding is attached to the pump and is releasably attachable to the reservoir container and the receptacle container and the means for grounding prevents
static buildup on the pump, the reservoir container, and the receptacle container.

9. A safety pump as in claim 8 wherein:
   a. the means for pumping has an outer surface; and,
   b. the means for grounding comprises:
      1. a wire attached to the pump; and,
      2. a means for attaching that wire to a ground; and,
      3. a second wire attached to the pump; and,
      4. a second means for attaching the second wire to the receptacle container; and,
      5. the outer surface of the pump is made out of a conductive substance; and,
      6. a bung adaptor made out of a conductive substances that is threading adapted to screw into the bung on the receptacle container and a bung adaptor has an opening in the center of sufficient size for the pump to pass through and the pump is secured to the bung adaptor by a thumb screw made out of a conductive substance that passes through a threaded opening in the bung adaptor and is tighten against the pump.

10. A safety hand pump as in claim 8 wherein:
    a. the means for pumping comprises:
       1. a cylindrical barrel with an upper and lower end; and,
       2. a spout located on the upper end of the cylindrical
barrel; and,

3. a means for pumping liquids into the barrel and out through the spout; and,

b. the means for stopping the spread of fire is a flame arrestor inside the spout.

11. A mechanism for making a air tight seal around said shaft comprising:

a. a packing gland with a top and bottom and with a channel through it center which has a diameter slightly larger than the shaft and the packing gland’s top and bottom edges are beveled; and,

b. a packing head with a top and bottom and a channel through it center, said channel at the bottom of the packing head is slightly larger than the diameter of the shaft and said channel at the top of the packing head is a size large enough that the packing gland can fit within said channel; and,

c. said channel is threaded at the top and in between the threaded top and the bottom the channel becomes conicly shaped tapering toward the bottom; and,

d. a packing nut with a top and bottom threaded adapted to fit within the packing head, the packing nut having a channel in the center of a diameter slightly larger than the shaft, and said channel at it bottom is conic shaped tapering towards the top of the nut; and,
e. said packing head is fitted over said shaft and attached to the barrel of the pump in an air tight seal and then the packing gland is fit over said shaft and is fitted within the packing head, and then said packing nut is fitted over said shaft and threadedly advanced within the packing head, the concicly shaped channels of the packing nut and packing head apply pressure on the packing gland forcing it towards the shaft, and therefore forms an air tight seal around the shaft.

12. A mechanism as in claim 8 wherein:
   a. the top and bottom edge of the packing gland are beveled at a 30 degree angle to a line running parallel to a side of a packing gland.
   b. the conic portion of the packing head tapers 30 degrees from a line that runs through the center of the channel.
   c. the conic portion of the packing nut tapers at an angle of 30 degrees from a line that runs through the center of the channel.

13. A mechanism as in claim 9 wherein:
   a. the packing gland is made of teflon

14. A hand pump comprising:
   a. a cylindrical barrel with an upper and lower end; and,
b. a spout located on the upperend of the cylindrical barrel; and,
c. a means for pumping liquids into barrel and out through the spout; and,
d. said means for pumping is driven by a shaft which passes into the cylindrical barrel; and,
e. a mechanism for making a air tight seal around said shaft comprising:

1. a packing gland with a top and bottom and with a channel through it center which has a diameter slightly larger than the shaft and the packing gland's top and bottom edges are beveled; and,

2. a packing head with a top and bottom and a channel through it center, said channel at the bottom of the packing head is slightly larger than the diameter of the shaft and said channel at the top of the packing head is a size large enough that the packing gland can fit within said channel; and,

3. said channel is threaded at the top and in between the threaded top and the bottom the channel becomes conicly shaped tapering toward the bottom; and,

4. a packing nut with a top and bottom threaded adapted to fit within the packing head, the packing nut having a channel in the center of a diameter slightly larger than the shaft, and said channel at it bottom is conic shaped
tapering towards the top of the nut; and,

5. said packing head is fitted over said shaft and attached to the barrel of the pump in an air tight seal and then the packing gland is fit over said shaft and is fitted within the packing head, and then said packing nut is fitted over said shaft and threadedly advanced within the packing head, the concically shaped channels of the packing nut and packing head apply pressure on the packing gland forcing it towards the shaft, and therefore forms an air tight seal around the shaft.

15. A hand pump as in claim 14 wherein:
   a. the packing gland is made of Teflon.

16. A hand pump as in claim 14 further comprising:
   a. a means for stopping the spread of fire through the pump adapted to fit within the pump; and,
   b. a means for safely discharging static buildup on the pumping means and the receptacle container during the pumping of liquids and said discharging means is attached to the pump.