A multi-ply paper web is formed by bringing a top ply liner into ply-bonding engagement with a base ply web (W₆) traveling on a base ply forming wire (36). The top ply liner (W₇) is formed between two co-running forming wires (10, 20) in a convex upwardly/concave downwardly curved, substantially horizontal forming zone. Dewatering in the forming zone is effected by applying sub-atmospheric air pressure solely beneath the lower surface of the top ply liner (W₇) being formed. Water is removed from the upper surface of the top ply liner (W₇) solely by wire tension, gravity and centrifugal force created by passing the co-running forming wires (10, 20) over the convex upwardly curved path of travel. This permits a greater concentration of pulp stock fines to remain in the upper surface of the top ply liner (W₇) to effect greater ply-bonding affinity with the base ply (W₆) when the two plies (W₆, W₇) are brought together and bonded.

+ See back of page
DESIGNATIONS OF "SU"

It is under examination in which parts of the former Soviet Union the designation of the Soviet Union has effect.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>ES</th>
<th>Spain</th>
<th>MG</th>
<th>Madagascar</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>GN</td>
<td>Guiana</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>HU</td>
<td>Hungary</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multy-ply web former and method

This invention relates to multi-ply paper formation. More specifically, this invention relates to two-wire, multi-ply paper formation. Still more particularly, this invention relates to two-wire, multi-ply web formation wherein the outer ply to be ply-bonded to the base ply of the multi-ply web, has its surface dewatered essentially by wire tension and centrifugal force.

In prior forming arrangements for forming a multi-ply paper web product, a relatively coarse base ply is first produced and a second, outer ply is produced to be brought into ply-bonding contact with the previously formed base ply. The outer ply, which is intended to form the outer surface of the printed container, such as a box, is formed of a finer grade of pulp stock so as to provide a smoother, higher quality surface. In order to form the outer ply at commercially desirable speeds, dewatering was effected through both of its surfaces before the outer ply was brought into ply-bonding contact with the base ply of the paper web sheet. This produces an acceptable paper product, mainly due to the quality of the pulp stock used to produce the outer ply, but the requirements of producing a better product with cheaper pulp, and the need to produce a better product at higher speeds regardless of pulp quality, or a combination of both, have necessitated the conception of an improved multi-ply web former having an outer surface which exhibits the desired printability, and feel and visual smoothness while having an inner surface which has better ply-bonding characteristics.

In prior apparatus, both sides of the outer ply were dewatered positively, that is, they were dewatered by the application of sub-atmospheric air pressure directly to both surfaces to enhance the removal of water through both of the web surfaces. When
both surfaces are positively dewatered, fines and fillers in the pulp stock are urged outwardly in both directions to the respective surfaces of the web and removed during the dewatering process. Thus, while the web is rapidly dewatered, which was the desired effect, the fines and fillers which contribute so much to the ply bonding characteristics of the outer side of the web produced, were removed in large quantities which deleteriously effected web quality as well.

The aforementioned shortcomings, deficiencies and characteristics of the outer ply in a ply-bonded multi-ply paper web, and the resultant multi-ply paper product, have been obviated by this invention.

In this invention, the outer ply of a multi-ply web, which is sometimes referred to as a "white top liner", is produced by dewatering through one side of the web using only centrifugal force and the force of the tension of the forming wire over the web. The outer ply is formed in the general direction opposite to the direction of the traveling base ply to which it is ply bonded. The generally upwardly facing surface of the top ply is dewatered by the tension of the upper, outer forming wire being concave downwardly held over the web which has been formed by the aqueous pulp stock slurry projected between the outer and inner forming wires. In addition, one, or more, water collection devices, such as water skimming slots, which may or may not be assisted by a vacuum, assist in removing water expressed inwardly of the outer forming wire. The fines and fillers in the pulp stock slurry are thus exposed to sub-atmospheric (vacuum) pressure only within the lower forming wire in a generally concave downward direction for a relatively long distance. This affects the rate of water removal as well as permits the retention of a greater proportion of fines and fillers in the web,
particularly the top surface of the web, due to the fact that migration of the fines and fillers through the lower surface of the web is hindered by the web fibers. The downwardly directed, relatively gentle dewatering through the lower surface of the outer web ply is effected by subjecting the ply to a sub-atmospheric pressure over a relatively long dewatering zone, which can take the form of a vacuum or suction box, or a plurality of spaced foil blades, or a combination of both.

Accordingly, it is an object of this invention to provide a method and apparatus for producing a multi-ply paper sheet having improved ply-bond characteristics.

Another object of this invention is to provide a method and apparatus for producing the outer ply of a multi-ply paper sheet wherein the surface to be ply-bonded is dewatered solely by centrifugal force, wire tension and gravity.

A feature and advantage of this invention is the provision of a white top liner in a multi-ply paper sheet, which sheet can be produced at improved speeds while exhibiting improved ply-bonding characteristics and a commercially desirable outer surface.

These and other objects, features and advantages of the invention will become readily apparent to those skilled in the art upon reading the following description of the preferred embodiments in conjunction with the attached drawings.

Figure 1 is a side-elevational view of the former showing a foil box within the first wire for substantially the length of the forming zone between the throat and the turning roll.
Figure 2 is a side-elevational view of the former showing a foil box followed by two suction boxes within the first, or lower, top ply forming wire.

Figure 3 is a side-elevation view, similar to that shown in Figure 1, but including a forming shoe within the lower top ply forming wire upstream of where the second, or upper, top ply forming wire comes into co-running engagement with the web over the first forming wire.

As shown in Figure 1, a first, lower looped top ply forming wire 10 is shown looped about guide rolls 12, 12', 12'' and turning roll 14. Disposed within the first forming wire is a foil box 16 which has an outer contour defined by a plurality of foils 18 arranged to distend the first forming wire in a concave downwardly, or convex upwardly, shaped curve which defines a forming zone extending substantially between guide roll 12 and turning roll 14.

Disposed above the first, lower forming wire 10 is a looped second, upper forming wire 20 which is directed to travel in its looped path by guide rolls 22, 22', 22'' and 22'''.

Guide rolls 12, 22 direct their respective forming wires 10, 20 into a throat 24 which converges near the leading edge of foil box 16. In the embodiment shown in Figure 1, the throat 24 extends to just after the beginning of foil box 16.

The second forming wire 20 is guided to remain over the first forming wire for a short circumferential distance over the surface of turning roll 14. Turning roll 14 is a suction roll having a vacuum chamber 26 extending between circumferentially spaced seals 28, 30. The first and second forming wires are shown engaged for a short distance past the upstream vacuum chamber seal 28.
Positioned within the looped second forming wire 20 is a save-all 32, which can take the form of a so-called autoslice. In either configuration, the save-all or auto-slice represents a blade, lip or slot 33 which is positioned in closely spaced adjacency, or even non-pressure contact, with the inner side of looped forming wire 20. More than one such lip or slot 33 may be used.

A headbox 34 is positioned to direct an aqueous slurry of stock fibers into the throat 24. Depending on operating parameters, such as machine speed, stock consistency and, possibly, the type of forming wires used, the headbox slice nozzle may be directed slightly toward one or the other of the forming wires.

Beneath the top ply former, which is the designation for the apparatus just described, is a base ply forming wire 36 on which a base ply web W_B has been formed upstream of the top ply former by other means. A pivoted guide roll 38 wraps the base ply forming wire 36 around a portion of the periphery of the turning roll 14 beginning at a point over the trailing seal 30. The top ply web W_T is thus brought into co-running engagement with the base ply web W_B, and ply-bonding occurs between the webs during this period of contact. Transfer of the composite, multi-ply paper sheet so formed to the base ply wire 36 is assured by the application of vacuum pressure in transfer box 40.

A source of sub-atmospheric air pressure 42 is optionally linked to the foil box 16 to provide vacuum pressure to the lower side of the web being formed between the co-running forming wires 10, 20 over the foil blades 18 in the foil box. Water is removed from the inner side of the looped second forming wire by
a drain 44, and water is removed from within the looped first forming wire by drain 46.

In the various configurations shown in Figures 1-3, corresponding elements in each figure will be correspondingly numbered with a letter postscript to distinguish between corresponding elements in the various figures. Similarly, like elements within a particular figure will be distinguished by a different number of prime superscripts after each element number.

As shown in Figure 2, the dewatering elements within the first forming wire 10a comprise a foil box 16a, and two vacuum boxes 17a, 17a'. The last forming box 17a', in the downstream direction, effects the transfer of the newly formed top ply web \(W_T \) onto the first forming wire.

Within the looped second forming wire 20a, is a first auto-slice 48a following the foil box, and a second auto-slice 48a' intermediate the two vacuum boxes 17a, 17a'. Both auto-slices have a leading lip 33a, 33a' which is mounted in closely spaced adjacency, or non-pressure contact, with the inner side of looped forming wire 20a. A headbox 34a discharges an aqueous stock fiber stream into the throat 24a formed between the forming wires 10a, 20a converging over guide rolls 12a, 22a.

Turning roll 14a, which in this configuration is a plane surfaced roll with no vacuum chamber, brings the first forming wire around its surface and into co-running engagement with the base ply web \(W_B \) being carried on base ply forming wire 36a.

In the embodiment shown in Figure 3, a blade forming shoe 50 has been mounted within the first forming wire 10b upstream of the foil box 16b. The second forming wire 20b is brought into engagement with the web over the first forming wire 10b just prior to
the beginning of their co-running travel over the foil box 16b. The first forming wire is guided onto the leading edge of foil box 16b by a guide roll 12b. The headbox 34b discharges an aqueous slurry of stock onto the first forming wire over the surface of guide roll 12b. As in the embodiment shown in Figure 2, the second vacuum box 17b effects the transfer of the newly formed top ply web W_T onto the first forming wire which is directed into ply-bonding contact with the base ply web W_B to form the multi-ply web W in a manner similar to that described in conjunction with Figure 2.

While the cross-sectional profile of the first forming wire contour over blade forming shoe 50, or forming board, may be substantially planar, or concave downward, the overall contour of the forming zone extending from before the leading edge of the forming shoe 50 to the trailing edge of vacuum box 17b' is concave downwardly/convex upwardly as shown which is similar to the configurations shown in Figures 1 and 2.

The vacuum pressure beneath forming wire 10b is zero or low, regardless of how it is induced, so as to promote better formation, and improved web properties, such as directional strength.

In the embodiments shown in Figure 2 and 3, foil boxes 16a, 16b and vacuum boxes 17a, 17a' and 17b' are connected to a source of sub-atmospheric air pressure which are designated generally as 52a, 52a', 52b and 52b'. The profile contours of the wire-contacting surfaces of the foil boxes and vacuum boxes is concave downwardly/convex upwardly. While the surface of the foil boxes is defined by a series of spaced foils which are parallel and spaced in the machine direction and which extend in the cross-machine direction, the contours of the vacuum boxes are usually comprised of an arcuate surface which is perforated, such as with holes
drilled through their covers, which permit the application of vacuum pressure to the underside of the first looped forming wire.

In operation, with particular reference to Figures 1 and 2, the headbox discharges an aqueous stock slurry into the throat between the co-running forming wires. Since the only application of sub-atmospheric air pressure to the fibrous stock slurry between the forming wires is provided by the foil box or vacuum boxes beneath the first forming wire 10, 10a, 10b, water is urged from the stock slurry outwardly and downwardly through the lower top ply web \(W_T \) to within the looped first forming wire. Due to the tension of the second forming wire 10, 10a, 10b over the stock slurry over the first forming wire water is expressed outwardly through the top ply web \(W_T \) being formed between the first and second forming wires and into the save-all 32, or autoslices 48a, 48a', 48b, 48b'. The water is also urged outwardly through the upper surface of the top ply web by centrifugal force and the force of gravity in the slightly down-turning portions of co-running forming wire travel in the generally horizontally disposed, concave downwardly forming zone. The blades in the foil box 16, 16a, 16b, operating with or without sub-atmospheric vacuum pressure, urge the water gently to within the foil boxes. Downstream, at a point where the web is more dewatered, higher sub-atmospheric vacuum pressure is applied to vacuum boxes 17a', 17b' to further dewater the top ply web through the lower surface thereof.

In the embodiment shown in Figure 3, the headbox discharges the stock slurry onto the first forming wire and additional dewatering through the lower surface of the top ply web is effected by the blades 51 contacting the inner surface of the first forming wire.
over the forming shoe 50. This is substantially similar to the water removal operation at the beginning of a conventional fourdrinier.

In all of the embodiments, the application of sub-atmospheric air pressure solely to the lower side of the top ply web through the first forming wire urges the fines and any fillers in the stock slurry to migrate downwardly toward the lower surface of the top ply web. Thus, while some of the fines near the lower surface of the top ply web over the first forming wire are removed from the web, a relatively large proportion of the fines initially near the upper surface of the top ply web adjacent the second forming wire remain in the web during the dewatering effected by the sub-atmospheric air pressure. Not only do these fines remain in the web, but a relatively larger total proportion of the fines initially in the stock remain in the web due to the absence of any application of sub-atmospheric air pressure to the stock slurry between the forming wires through the second forming wire. In other words, the only forces urging water out of the upper surface of the top ply web are centrifugal force, forming wire tension and, in the slightly downwardly extending portion of forming wire travel in the substantially horizontally disposed forming section, gravity. Water expressed through the top (second) forming wire, therefore, need only be collected by the save-all or auto-slices; it is not urged through the top wire by these elements.

Thus, a relatively higher proportion of fines remain in the upper surface of the top ply web being formed, and it is this surface which is brought into ply-bonding contact with the upper surface of the base ply web W_B over the turning roll. Since ply-bonding is enhanced by a higher proportion of fines in the surface of one, or both, of the webs at their interface,
ply-bonding between the top ply web \(W_T \) and the base ply web \(W_B \) is promoted by this invention. This allows ply-bonding to be achieved at lower web moisture levels and faster machine speeds, or some combination of both.

In this invention, both upward (through the second forming wire) and downward (through the first forming wire) dewatering is effected, but the dewatering is controlled as described. More fines remain at or near the top surface of the top ply web for better ply bonding, and more fines and fibers remain in the whole top ply web due to the application of sub-atmospheric pressure on only the lower side through the first forming wire. In other words, the bottom of the top ply web is also of a higher quality. This promotes good top ply smoothness and printing properties in the composite multi-ply web \(W \).

Naturally, variations in the method and apparatus described can be made without departing from the spirit of the invention and scope of the claims. For example, the throat can extend from upstream of the place where the top ply forming wires are guided to travel in substantially the same direction to where the wires converge. Also, while the foil boxes, and forming shoe, have been described as operated in conjunction with sub-atmospheric air pressure, it is contemplated that, under certain circumstances, they need not be so operated. Finally, it is to be understood that the terms web, sheet and paper include the term board.
CLAIMS:

1. A method for forming a multi-ply paper web, comprising the steps:
 forming a base ply web on a traveling foraminous base forming wire;
 bringing first and second looped forming wires into co-running engagement over a concave downwardly/convex upwardly curved, substantially horizontal, path of travel;
 projecting an aqueous top ply stock stream onto one or the other, or both, of the first and second looped forming wires upstream of a throat formed by the converging first and second forming wires;
 dewatering the top ply stock stream through the first forming wire by applying sub-atmospheric air pressure to the stock stream solely beneath its substantially horizontal path of travel to thereby form a lower web surface of a top ply web;
 expressing water upwardly through the second forming wire over its substantially horizontal path of travel solely by wire tension and centrifugal force to thereby form an upper web surface of the top ply web;
 bringing the upper web surface of the top ply web into co-running engagement with the base ply web to effect ply-bonding therewith to form a multi-ply web.

2. The method as set forth in claim 1, further including the steps of:
 guiding the second forming wire away from the first forming wire downstream of the dewatering through the first forming wire;
 subjecting the top ply web to additional sub-atmospheric dewatering through the first forming wire downstream of where the second forming wire is guided away.

3. The method as set forth in claim 1, wherein:
the top ply stock stream is projected onto the first forming wire upstream of the throat; and further including the step of dewatering the top ply stock stream downwardly within the first forming wire before the first and second forming wires converge into co-running engagement.

4. The method as set forth in claim 3, further including the steps of:

guiding the second forming wire away from the first forming wire downstream of the dewatering through the first forming wire;

subjecting the top ply web to additional sub-atmospheric dewatering through the first forming wire downstream of where the second forming wire is guided away.

5. The method as set forth in claim 3, wherein:

the dewatering of the top ply stock stream before the first and second forming wires converge is effected by the application of sub-atmospheric air pressure.

6. Apparatus for forming a multi-ply paper web, comprising, in combination:

a looped base ply forming wire for carrying and dewatering a base ply web;

first and second looped top ply forming wires arranged to converge in a throat and travel in co-running engagement in a concave downwardly/convex upwardly, substantially horizontal, path of travel together;

headbox means for depositing an aqueous top ply stock slurry on the first forming wire, or in the throat to initiate formation of a top ply web having lower and upper surfaces;

sub-atmospheric air pressure dewatering apparatus within the first top ply forming wire for
13
dewatering the top ply stock stream downwardly therethrough and forming a top ply web having its lower
surface on the first forming wire;

means for receiving water expressed upwardly

and inwardly through the second looped forming wire solely by centrifugal force and forming wire tension,
the upper surface of the top ply web facing the second wire;

guide means for guiding the second forming
wire away from the first forming wire;

turning means for directing the first forming wire and web into co-running engagement with the
base ply web to effect ply bonding between the upper surface of the top ply and the base ply web.

7. Apparatus for forming a multi-ply paper web as set forth in claim 6, wherein:

the headbox deposits the top ply stock onto the first top ply forming wire upstream of where the
first and second forming wires converge;

dewatering means are disposed beneath the first forming wire upstream where the first and
second forming wires converge.

8. Apparatus for forming a multi-ply paper web as set forth in claim 6, wherein:

the turning means comprises a suction roll.

9. Apparatus for forming a multi-ply paper web as set forth in claim 6, wherein:

the means for receiving water comprises an auto-slice.

10. Apparatus for forming a multi-ply paper web as set forth in claim 6, wherein:

the sub-atmospheric dewatering apparatus comprises a first vacuum forming shoe and at least one
vacuum box downstream of the forming shoe.
AMENDED CLAIMS
[received by the International Bureau on 30 October 1991 (30.10.91);
original claims 1, 6 and 7 amended;
other claims unchanged (3 pages)]

1. A method for forming a multi-ply paper web, comprising the steps:
 forming a base ply web on a traveling foraminous base forming wire;
 bringing first and second looped forming wires into co-running engagement over a concave downwardly/convex upwardly curved, substantially horizontal, path of travel;
 projecting an aqueous top ply stock stream onto one or the other, or both, of the first and second looped forming wires closely upstream of a throat formed by the converging first and second forming wires;
 dewatering the top ply stock stream through the first forming wire by applying sub-atmospheric air pressure to the stock stream solely beneath its substantially horizontal path of travel to thereby form a lower web surface of a top ply web;
 expressing water upwardly through the second forming wire over its substantially horizontal path of travel solely by wire tension and centrifugal force to thereby form an upper web surface of the top ply web;
 bringing the upper web surface of the top ply web into co-running engagement with the base ply web to effect ply-bonding therewith to form a multi-ply web.

2. The method as set forth in claim 1, further including the steps of:
 guiding the second forming wire away from the first forming wire downstream of the dewatering through the first forming wire;
 subjecting the top ply web to additional sub-atmospheric dewatering through the first forming wire downstream of where the second forming wire is guided away.

3. The method as set forth in claim 1, wherein:
the top ply stock stream is projected onto
the first forming wire upstream of the throat; and
further including the step
dewatering the top ply stock stream
downwardly within the first forming wire before the
first and second forming wires converge into co-running
engagement.

4. The method as set forth in claim 3,
further including the steps of:

guiding the second forming wire away from
the first forming wire downstream of the dewatering
through the first forming wire;
subjecting the top ply web to additional
sub-atmospheric dewatering through the first forming
wire downstream of where the second forming wire is
guided away.

5. The method as set forth in claim 3,
wherein:
the dewatering of the top ply stock stream
before the first and second forming wires converge is
effected by the application of sub-atmospheric air
pressure.

6. Apparatus for forming a multi-ply paper
web, comprising, in combination:
a looped base ply forming wire for carrying
and dewatering a base ply web;
first and second looped top ply forming
wires arranged to converge in a throat and travel in co-
running engagement in a concave downwardly/convex
upwardly, substantially horizontal, path of travel
together;
headbox means for depositing an aqueous top
ply stock slurry on the first forming wire closely
upstream of the throat, or in the throat to initiate
formation of a top ply web having lower and upper
surfaces;
sub-atmospheric air pressure dewatering
apparatus within the first top ply forming wire for
dewatering the top ply stock stream downwardly therethrough and forming a top ply web having its lower surface on the first forming wire;

means for receiving water expressed upwardly and inwardly through the second looped forming wire solely by centrifugal force and forming wire tension, the upper surface of the top ply web facing the second wire;

guide means for guiding the second forming wire away from the first forming wire;

turning means for directing the first forming wire and web into co-running engagement with the base ply web to effect ply bonding between the upper surface of the top ply and the base ply web.

7. Apparatus for forming a multi-ply paper web as set forth in claim 6, wherein:

the headbox deposits the top ply stock onto the first top ply forming wire closely upstream of where the first and second forming wires converge;

dewatering means are disposed beneath the first forming wire upstream where the first and second forming wires converge.

8. Apparatus for forming a multi-ply paper web as set forth in claim 6, wherein:

the turning means comprises a suction roll.

9. Apparatus for forming a multi-ply paper web as set forth in claim 6, wherein:

the means for receiving water comprises an auto-slice.

10. Apparatus for forming a multi-ply paper web as set forth in claim 6, wherein:

the sub-atmospheric dewatering apparatus comprises a first vacuum forming shoe and at least one vacuum box downstream of the forming shoe.
STATEMENT UNDER ARTICLE 19

Claims 1 and 6 have been amended to more clearly define the invention over the prior art cited in the International Search Report, and in particular over FR-A-2 388 936.

The language in claim 1 to the effect that the top ply stock stream is projected into the throat formed by the first and second forming wires now more accurately recites the fact that such projection is closely upstream of the convergence of the first and second looped forming wires so as to more clearly distinguish from the apparatus of FR-A-2 388 936 wherein the upper forming wire 30 is brought into convergence with the lower forming wire 20 well downstream of where the headbox 10 applies the stock slurry solely to the lower forming wire 20. In this regard, both claims 6 and 7 have also been amended to more clearly recite this distinction.

Referring to Figure 1 of FR-A-2 388 936, it is seen that the headbox 10 projects the aqueous slurry of pulp fibers onto the lower forming wire 20 for the top ply well in advance of the application of the top forming wire 30 onto the top ply over the lower forming wire. Further, in the portion of the top ply forming apparatus wherein the top ply web is carried between the top ply forming wires 20,30, the forming zone only comprises zone D and the arcuate surface subtended by angle within the forming roll 24. In other words, the forming zone is not substantially horizontal (i.e. the portion over the surface of forming roll 24 is not horizontal), and the forming takes place initially in both directions (between points "A" and "B" within forming zone D), and then solely upwardly through the top forming wire 30 in sub-zone 23b since portion 23b is solid and water can not travel downwardly therethrough.

Thus, the French reference clearly does not teach downward dewatering in the latter portion of sub-zone 23b which is the last part of the formation zone which is close to being substantially horizontal. Also, upward dewatering only occurs in zone D which represents a relatively small portion of the relatively horizontal path of travel which is not over the forming roll 24.

In contrast, as recited in independent claims 1 and 6 of this application, the first/lower and second/upper looped forming wires both travel over a substantially horizontal path of travel. Secondly, the aqueous top ply stock stream
is selectively projected onto one, or the other, or both of the first and second looped forming wires closely upstream of a throat formed by the converging first and second forming wires. Finally, the water in the second/upper forming wire is expressed solely by wire tension and centrifugal force over its substantially horizontal path of travel.

Thus, comparing the method and structure of forming the top ply web and making a composite web with the base ply between the French reference and the method and apparatus of this invention, the French reference dewatered initially solely through the lower top ply forming wire, then through both the upper and lower top ply forming wires, and finally solely through the upper top ply forming wire. We would respectfully submit that these differences distinguish the invention from the French reference.
INTERNATIONAL SEARCH REPORT
International Application No. PCT/EP 91/01255

I. CLASSIFICATION OF SUBJECT MATTER
(If several classification symbols apply, indicate all)*

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.Cl. 5 D21F11/04 ; D21F9/00

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl. 5</td>
<td>D21F</td>
</tr>
</tbody>
</table>

Minimum Documentation Searched

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR,A,2 388 936 (VALMET OY) see the whole document</td>
<td>1-7,10</td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2 418 298 (VOITH) see the whole document</td>
<td>1-7,10</td>
</tr>
<tr>
<td>A</td>
<td>US,A,4 153 504 (JUSTUS) see the whole document</td>
<td>1,2,6</td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2 072 936 (WALMSLEYS) see the whole document</td>
<td>1,2,6, 8-10</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

"A" - document defining the general state of the art which is not considered to be of particular relevance
"E" - earlier document published on or after the international filing date
"L" - document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" - document referring to an oral disclosure, use, exhibition or other means
"P" - document published prior to the international filing date but later than the priority date claimed

"T" - later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" - document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
"Y" - document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" - document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 23 AUGUST 1991
Date of Mailing of this International Search Report: 1. 09. 91

International Searching Authority: EUROPEAN PATENT OFFICE
Signature of Authorized Officer: DE RIJCK F.
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDI file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23/08/91

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR-A-2388936</td>
<td>24-11-78</td>
<td>AT-B- 365253</td>
<td>28-12-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1076862</td>
<td>06-05-80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A,C 2818118</td>
<td>02-11-78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1589801</td>
<td>20-05-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 7804893</td>
<td>29-10-78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 2015054</td>
<td>05-09-79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 55030484</td>
<td>04-03-80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 7901588</td>
<td>25-08-79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4216056</td>
<td>05-08-80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1589400</td>
<td>13-05-81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-C- 1094836</td>
<td>27-04-82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 53098404</td>
<td>28-08-78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-B- 56037357</td>
<td>31-08-81</td>
</tr>
<tr>
<td>FR-A-2072936</td>
<td>24-09-71</td>
<td>DE-A,B,C 2059962</td>
<td>24-06-71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 7017764</td>
<td>08-06-71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1336713</td>
<td>07-11-73</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82