Novel compounds of formula (I), wherein A is a group (a), (b), (c), (d), (e), (f), (g), useful for the treatment of cardiac arrhythmia, pharmaceutical compositions containing such compounds as active ingredients, processes for preparation of such compounds as well as intermediates for their preparation.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT Austria FR France ML Mali
AU Australia GA Gabon MR Mauritania
BB Barbados GB United Kingdom MW Malawi
BE Belgium HU Hungary NL Netherlands
BG Bulgaria IT Italy NO Norway
BJ Benin JP Japan RO Romania
BR Brazil KP Democratic People's Republic of Korea SD Sudan
CF Central African Republic KR Republic of Korea SE Sweden
CG Congo LI Liechtenstein SN Senegal
CH Switzerland LX Sri Lanka SU Soviet Union
CM Cameroon LU Luxembourg TD Chad
DE Germany, Federal Republic of MC Monaco TG Togo
DK Denmark MG Madagascar US United States of America
Novel antiarrhythmic agents II

Description

Field of the Invention

The present invention relates to novel, pharmacologically active compounds and to processes for their preparation. The invention also relates to pharmaceutical compositions containing the compounds and to methods of their pharmacological use.

The object of the invention is to provide substances useful in the treatment, acute as well as long term, of cardiac arrhythmias of diverse etiology.

Background Art

GB 1 433 920 discloses compounds of the formula

\[
\begin{align*}
\text{R}^2 & \quad \text{OCH}_2\text{CHOHCH}_2\text{NH-A-X-R}^1 \\
\end{align*}
\]

wherein \(R^1 \) for instance stands for an alkyl or cycloalkyl radical or an aryl radical, \(R^2 \) for instance stands for halogen, CN or NO\(_2\) radical, \(A \) stands for an alkylene radical of from 2 to 6 carbon atoms and \(X \) stands for -S-, -SO- or -SO\(_2\)- radical.

These compounds are said to possess \(\beta \)-adrenergic blocking acitivity.

GB 1 457 876 discloses among others the compounds

\[
\begin{align*}
\text{NH}_2\text{COCH}_2 & \quad \text{OCH}_2\text{CHOHCH}_2\text{NHCH}_2\text{CH}_2\text{NH}_2\text{SO}_2
\end{align*}
\]
These compounds are said to possess β-adrenergic blocking activity.

Disclosure of the Invention

The present invention concerns new compounds useful for treatment, acute as well as long term, of cardiac arrhythmics of diverse etiology.

An object is to provide antiarrhythmics which have less prominent side effects than existing antiarrhythmic drugs. The compounds should for instance be free of negative inotropic effect and the compounds may even be positively inotropic. The compounds should further separate the antiarrhythmic effect from central nervous and gastrointestinal effects.

The compounds of the invention are characterized by the general formula:

\[
\begin{array}{c}
Z \\
X - (\text{CH}_2)_n - Y - \text{CH} - A \\
\end{array}
\]

and when appropriate in the form of a racemic mixture or in the form of a stereoisomeric component and the pharmaceutically acceptable salts thereof, in which formula
X is O, CH₂, CHO, CO, CONH, NH, S, SO or SO₂,

n is an integer 0, 1 or 2

Y is (CH₂)ₘ, CHO, CHOCH₃, CHNHR or CHF

m is an integer 0 or 1 and
R is hydrogen, methyl or ethyl,

Z is hydrogen or a saturated or unsaturated, straight or branched alkyl group containing 1-3 carbon atoms,

A is a group

Rₐ

||

- N - [CH₂]ₙ - S - Rₖ

Rₐ'

||

- N - [CH₂]ₙ - S - Rₖ

Rₐ''

- N

\[\text{Cyclic structure} \]

\[\text{Cyclic structure} \]

\[\text{Cyclic structure} \]
wherein R_a is a straight or branched hydroxyalkyl or a straight or branched alkyl group containing 1-5 carbon atoms and optionally substituted by one or more fluoro atoms,
R_c is a saturated or unsaturated, straight or branched alkyl group containing 1-4 carbon atoms and optionally substituted by one or more fluoro atoms,

a cycloalkyl or an alkylcycloalkyl group, containing 3-5 ring carbon atoms,

an unsubstituted phenyl group or a phenyl group substituted by one or more substituents selected from the group consisting of fluoro, hydroxy, methoxy, ethoxy, CN, CONH$_2$, NHSO$_2$CH$_3$.

R_a' is the same as R_a and independently of R_a''.

R_a'' is the same as R_a and independently of R_a'.

p is an integer 0, 1 or 2,

r is an integer 0, 1, 2 or 3,

s is an integer 2, 3, 4 or 5

with the proviso that when X is 0 and

$$\begin{align*}
A \text{ is a group } & - N - [CH_2]_s - S - R_c \quad \text{or} \quad - N - [CH_2]_s - S - R_c \\
\end{align*}$$

then R_c is a cycloalkyl or an alkylcycloalkyl group, containing 3-5 ring carbon atoms, an unsubstituted phenyl group or a phenyl group substituted by one or more substituents selected from the group consisting of fluoro, hydroxy, methoxy, ethoxy, CN, CONH$_2$, NHSO$_2$CH$_3$.
Halogen atoms in formula I comprise fluorine, chlorine, bromine and iodine.

Alkyl groups in formula I which are straight and saturated are for instance methyl, ethyl, n-propyl, n-buty1.

Alkyl groups in formula I which are straight and unsaturated are for instance vinyl, allyl, propenyl, -C≡CH, -CH₂-C≡CH and -C≡CCH₃.

Alkyl groups in formula I which are branched and saturated are for instance i-propyl, s-buty1, i-buty1, t-buty1.

Alkyl groups in formula I which are branched and unsaturated are for instance

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_2 \\
\text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

Alkyl groups in formula I which are substituted by fluorine are for instance 1-3 H changed for F in the definition for alkyl groups which are straight and saturated or branched and saturated, for instance CH₂CHFCH₃, CH₂CH₂CF₃, CH₂CF₂CH₃ etc.

Alkyl groups in formula I which are substituted by hydroxy are for instance CH₂-OH, CH₂-CH₂-OH, CH-CH₃, CH-CH₂-CH₃, CH₂-CH-CH₃, CH₂-CH₂-CH₂

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

CH-CH₂-CH₂-CH₃, CH₂-CH-CH₂-CH₃, CH₂-CH₂-CH-CH₃, CH₂-CH₂-CH₂-CH₂

Cycloalkyl groups in formula I are for instance cyclopropyl, cyclobutyl, cyclopentyl.

Alkylcycloalkyl groups in formula I are for instance
Substituted phenyl group in formula I would be substituted by one substituent in the ortho, meta or para position or by two substituents - the same or different - in the 2,3-position, 2,4-position, 2,5-position, 2,6-position, 3,4-position or 3,5-position, or by three substituents - the same or different - in the 2,3,4-position, 2,3,5-position, 2,3,6-position and 3,4,5-position.

Preferred groups of compounds of the invention are obtained when

X is O, CH₂, CHOH, CONH, NH

n is 0, 1

Y is CHOH, (CH₂)m wherein m 0, 1

Z is hydrogen

A is a group

\[\begin{array}{c}
R_a \\
\downarrow \\
- N - (CH₂)ₚ - S - R_c
\end{array} \]

wherein \(R_a \) is CH₃, C₂H₅, C₃H₇, CH₂CH₂OH, CH₂CHOHCH₂

\(s \) is 3, 4

\(p \) is 0, 1

\(R_c \) is C₂H₅, C₃H₇, CH₂CHFCH₃, cyclopropylmethyl or an unsubstituted phenyl or a phenyl group substituted with OH, F, OCH₃, OC₂H₅

Particularly preferred groups of compounds of the invention are obtained when
n is 1
Y is CHO\textsubscript{2}, (CH\textsubscript{2})\textsubscript{m} \text{ wherein m} = 1
Z is hydrogen
A is a group

\[
\begin{array}{c}
\text{R}_a \\
\text{O} \\
\text{N} \\
\text{R}_c \\
\text{S}
\end{array}
\]

wherein \(\text{R}_a \) is \(\text{CH}_3 \), \(\text{C}_2\text{H}_5 \), \(\text{C}_3\text{H}_7 \), \(\text{CH}_2\text{CH}_2\text{OH} \)

s is 3
p is 0, 1
\(\text{R}_c \) is an unsubstituted phenyl group or a phenyl group substituted with OH, F, OCH\textsubscript{3}, OC\textsubscript{2}H\textsubscript{5}

Other preferred groups of compounds of the invention are obtained when
X is CH\textsubscript{2}
n is 0, 1
Y is CHO\textsubscript{2}, (CH\textsubscript{2})\textsubscript{m} \text{ wherein m} = 0, 1
Z is hydrogen
A is a group

\[
\begin{array}{c}
\text{R}_a \\
\text{O} \\
\text{N} \\
\text{R}_c \\
\text{S}
\end{array}
\]

wherein \(\text{R}_a \) is \(\text{CH}_3 \), \(\text{C}_2\text{H}_5 \), \(\text{C}_3\text{H}_7 \), \(\text{CH}_2\text{CH}_2\text{OH} \), \(\text{CH}_2\text{CHOHCH}_2 \)

s is 3
p is 0, 1
\(\text{R}_c \) is \(\text{C}_2\text{H}_5 \), \(\text{C}_3\text{H}_7 \), \(\text{CH}_2\text{CHFCH}_3 \).

Quaternary nitrogen compound may be obtained from the compounds above by alkylation at the amino group.

Preferred compounds are
4-[3-[ethyl[3-(phenylthio) propyl] amino]-2-hydroxypropoxy] benzonitrile

5 4-[3-[ethyl[3-(phenylsulfinyl) propyl] amino]-2-hydroxypropoxy] -benzonitrile

10 4-[2-[ethyl[3-(propylthio)propyl] amino]-1-hydroxyethyl] benzonitrile

15 4-[2-[ethyl[3-(propylsulfinyl)propyl] amino]-1-hydroxyethyl] benzonitrile

benzamide

2-[3-[3-(4-cyanophenoxy)-2-hydroxypropyl] ethyl amino] propyl] thio

15 4-[3-[ethyl[3-[(4-hydroxyphenyl)thio]propyl] amino]-2-hydroxypropoxy] -benzonitrile

20 4-[2-hydroxy-3-(4-thiomorpholiny1)propoxy] benzonitrile

25 4-[2-hydroxy-3-(4-thiomorpholiny1)propoxy] -benzonitrile-S-oxide

30 4-[4-[2-hydroxyethyl][3-(propylthio)propyl] amino] butyl] -benzonitrile

35 4-[4-[2-hydroxyethyl][3-(propylsulfinyl)propyl] amino] butyl] benzonitrile

4-[3-[ethyl[3-(propylthio) propyl] amino]-2-hydroxypropyl] amino

-benzonitrile

35 4-[3-[ethyl[3-(propylsulfinyl) propyl] amino]-2-hydroxypropyl] amino

-benzonitrile

4-cyano-N-[N'-isopropyl-N'-(3-propylthio)propyl] aminoethylbenzamide
4-[3-[ethyl[3-[[4-hydroxyphenyl]sulfinyl]propyl]amino]-2-hydroxypropoxy]-benzonitrile

More preferred compounds are

4-[3-[ethyl[3-[(phenylthio)propyl]amino]-2-hydroxypropoxy]-benzonitrile

4-[3-[ethyl[3-[(phenylsulfinyl)propyl]amino]-2-hydroxypropoxy]-benzonitrile

4-[3-[ethyl[3-[[4-hydroxyphenyl]thio]propyl]amino]-2-hydroxypropoxy]-benzonitrile

4-[4-[2-hydroxyethyl][3-(propylthio)propyl]amino]-butyl]-benzonitrile

4-[4-[2-hydroxyethyl][3-(propylsulfinyl)propyl]amino]-butyl]-benzonitrile

4-[3-[ethyl[3-[[4-hydroxyphenyl]sulfinyl]propyl]amino]-2-hydroxypropoxy]-benzonitrile

Particularly preferred compounds are

4-[4-[2-hydroxyethyl][3-(propylthio)propyl]amino]-butyl]-benzonitrile

4-[4-[2-hydroxyethyl][3-(propylsulfinyl)propyl]amino]-butyl]-benzonitrile.
In many instances the compounds of formula I occur in stereoisomeric forms, such forms being due to for instance optical isomerism, geometric isomerism and conformations of molecules.

5 The tertiary amines of the invention can be quarternarized with a lower alkyl group and the quarternary compounds have the same effect as the tertiary compounds.

10 The new compounds of this invention may be used therapeutically as a sterochemical mixture or in the sterochemical pure forms.
Pharmaceutical preparations

In clinical practice the compounds of the present invention will normally be administered orally, rectally or by injection in the form of pharmaceutical preparations comprising the active ingredient either as a free base or as a pharmaceutically acceptable non-toxic, acid addition salt, e.g. the hydrobromide, hydrochloride, phosphate, sulphate, sulphonate, sulphonate, citrate, lactate, maleate, tartrate, acetate and the like in association with a pharmaceutically acceptable carrier. Accordingly, terms relating to the novel compounds of this invention whether generically or specifically are intended to include both the free amine base and the acid addition salts of the free base, unless the context in which such terms are used, e.g. in the specific examples would be inconsistent with the broad concept.

The carrier may be a solid, semisolid or liquid diluent or capsule. These pharmaceutical preparations constitute a further aspect of this invention. Usually the active substance will constitute between 0.1 and 99% by weight of the preparation, more specifically between 0.5 and 20% by weight for preparations intended for injection and between 2 and 50% by weight for preparations suitable for oral administration.

To produce pharmaceutical preparations containing a compound of the invention in the form of dosage units for oral application, the selected compound may be mixed with a solid pulverulent carrier, e.g. lactose, saccharose, sorbitol, mannitol, starches such as potato starch, corn starch or amylopectin, cellulose derivatives, gelatine or other suitable tablet excipients, and a lubricant such as magnesium stearate, calcium stearate, sodium stearyl fumarate, polyethylene glycol waxes, and the like, and then compressed to form tablets. If coated tablets are required, the cores, prepared as described above, may be sugar coated or film coated by conventional film coating polymers.

Dyestuffs may be added to these coatings in order to readily distinguish between tablets containing different active substances or different amounts of the active compound.
For the preparation of soft gelatine capsules (pearl-shaped closed capsules) consisting of gelatine and for example, glycerol or similar closed capsules, the active substance may be admixed with a vegetable oil. Hard gelatine capsules may contain granulates of the active substance in combination with solid, pulverulent carrier such as lactose, saccharose, sorbitol, mannitol, starches (e.g. potato starch, corn starch or amylpectin), cellulose derivatives or gelatine or other suitable pharmaceutically acceptable constituents.

Dosage units for rectal application can be prepared in the form of suppositories comprising the active substance in admixture with a neutral fatty base, or gelatine rectal capsules comprising the active substance in admixture with vegetable oil or paraffin oil.

Liquid preparations for oral application may be in the form of syrups or suspensions, for example solutions containing from about 0.2 to about 20% by weight of the active substance herein described, the balance being sugar alcohols and water optionally mixed with ethanol, glycerol, or propyleneglykol. Optionally such liquid preparations may contain colouring agents, flavouring agents, saccharine and, as a thickening agent, such as carboxymethylcellulose, hydroxypropylmethylcellulose or the like.

Solutions for parenteral applications by injection can be prepared in an aqueous solution of a water-soluble pharmaceutically acceptable salt of the active substance preferably in a concentration of from about 0.5 to about 10% by weight. These solutions may also contain stabilizing agents and/or buffering agents and may conveniently be provided in various dosage unit ampoules.

Suitable doses for oral administration of the compounds of the invention are 1-300 mg 1 to 4 times a day, preferably 20-80 mg 1 to 4 times a day.

Methods of preparation

The compounds of the invention may be prepared by any of the following methods;
A. A compound of formula I

where A is

\[
\begin{array}{c}
\text{R}_a \\
\text{N} - (\text{CH}_2)_n - S - \text{R}_c
\end{array}
\]

wherein X, Y, Z, n, s, p,
R_a and R_c are defined as above can be obtained by a reaction of a compound of the formula

\[
\begin{array}{c}
\text{Z} \\
\text{X} - (\text{CH}_2)_n - Y - \text{CH} - \text{L}
\end{array}
\]

where L is a leaving group such as Cl, Br, I, mesyloxy or tosyloxy and a compound of the formula

\[
\begin{array}{c}
\text{R}_a \\
\text{HN} - (\text{CH}_2)_s - S - \text{R}_c
\end{array}
\]

The reaction is typically carried out in a suitable organic solvent such as acetonitrile or N,N-dimethylformamide. A suitable organic or inorganic base such as triethylamine or potassium carbonate is added. The mixture is then heated to 40 - 100 °C until the reaction is completed after which the product can be isolated and purified by conventional methods.

B. The compounds of the formula I

wherein A is
and the symbols X, Y, Z, n, s, p, R_a and R_c are defined as above, can be obtained by reaction of a compound of the formula

wherein L is a leaving group such as Br, Cl or I mesyloxy or tosyloxy and s, p and R_c are as defined above.

The reaction is typically carried out in a suitable organic solvent such as acetonitrile, isopropanol or N,N-dimethylformamide. A suitable organic or inorganic base (acid acceptor) such as triethylamine or potassium carbonate is added to the mixture. The mixture is then heated to a temperature in the range of 40-100°C until the reaction is completed after which the products can be isolated and purified by conventional methods.

C. The compounds of the formula I wherein p is an integer 1 or 2 can be obtained by oxidation of a compound of the formula I wherein p is an integer 0.
When the substrate is an amine it could be neutralized with a suitable acid, e.g. p-toluene sulfonic acid in a solvent where the salt is soluble e.g. ethanol. When the sulfoxide (p=1) shall be prepared the temperature should be kept between -20-0°C. When the sulfone (p=2) shall be prepared a temperature in the range 20-80°C could be used.

D. The compounds of the formula I wherein

\[
X = O, \\
n = 1, \\
Y = \text{CHOH}, \\
Z = H, \\
p = 1 \text{ or } 2, \\
R_a, R_c \text{ and } s \text{ have the meaning given above,}
\]

can be prepared by reaction of a compound of the formula

\[
\begin{align*}
O - \text{CH}_2 & \xrightarrow{\text{O}} \\
& \quad \text{OXO} \\
& \quad \text{CN}
\end{align*}
\]

with a compound of the formula

\[
\begin{align*}
\text{HN} & \quad \text{[CH}_2\text{]}_s \quad \text{S} \quad R_c \\
\text{Ra} & \quad \text{(C)}_p
\end{align*}
\]

wherein \(R_a, R_c, s\) and \(p\) have the meanings given above.
Intermediates

The compounds of the formula

$$\text{II}$$

wherein

15 X is O, CH_2, CHOH, CO, CONH, NH, S, SO or SO_2,

n is an integer 0, 1 or 2

Y is $[\text{CH}_2]^m$, CHOH, CHOCH_3, CHNHR or CHF,

m is an integer 0 or 1 and

R is hydrogen, methyl or ethyl,

Z is hydrogen or a saturated or unsaturated, straight or branched alkyl group containing 1-3 carbon atoms,

R_a is a straight or branched hydroxy alkyl or an alkyl group containing 1-4 carbon atoms and optionally substituted by one or more fluoro atoms,

are valuable intermediates for the preparation of the compounds of the formula I via the method A. These intermediates are new and constitute a part of the invention.

The compounds of formula II are prepared by reaction of a compound of the formula
with a compound of the formula

\[\text{X} - (\text{CH}_2)_n - \text{CH}_2 - \text{CH}_2 \]

\[\text{CN} \]

wherein X, n and \(R_a \) have the definitions given above.

Other valuable intermediates are

\[R_a \]
\[\text{NH}_2 \]

\[\text{HN} - [\text{CH}_2]_s - S - R_c \]

wherein \(R_a, R_c, s \) and \(p \) have the meanings given above.

Such intermediates can generally be obtained by a reaction of a compound of the formula

\[\text{L} - (\text{CH}_2)_s - S - R_c \]

where \(L \) is Cl, Br, I, mesyloxy or toslyloxy with an amine of the formula

\[R_a - \text{NH} \]

where \(P \) is an easily removable protective group.

A typical procedure in analogy with procedure B can be used.
Working examples

Example 1

5 4-[3-ethyl[3-(phenylthio) propyl] amino]-2-hydroxypropoxy]-benzonitrile

a) 4-[3-(ethylamino)-2-hydroxypropoxy]-benzonitrile

86.0 g of 4-(oxiranylmethoxy) benzonitrile was dissolved in 250 ml acetonitrile and mixed with 29.7 g ethylamine in an autoclave. The mixture was heated in a boiling water-bath over night, evaporated and the residue was dissolved in 2-M hydrochloric acid. This acid water layer was washed twice with ether, alkaized with 10 M sodium hydroxide and extracted with three portions of dichloromethane.

The combined organic layers were dried over sodium sulfate and evaporated. The solid residue was recrystallized twice from a mixture of diisopropylether: acetonitrile(9:1). Yield: 57 g 4-[3-(ethylamino)
-2-hydroxypropoxy]-benzonitrile.

NMR: 13C in CDCl$_3$: 14.88, 43.93, 51.28, 67.60, 70.77, 104.31, 115.26, 119.00, 133.93, 161.93 ppm
b) 4-[3-ethyl[3-(phenylthio)propyl]amino]-2-hydroxypropoxy]-benzonitrile

5.0 g of 4-[3-(ethylamino)-2-hydroxypropoxy]-benzonitrile and 4.0 g of 1-chloro-3-(phenylthio)propane was dissolved in 70 ml of acetonitrile and mixed with 6.4 g potassium carbonate and 8.0 g of sodium iodide. The mixture was refluxed over night, filtrated, evaporated and the residue was dissolved in 2 M hydrochloric acid. This acidic waterlayer was washed with two portions of diethylether, alkalized with 10 M sodium hydroxide and extracted with three portions of dichloromethane. The combined layers of dichloromethane were dried over sodium sulphate and evaporated. The oily residue was purified by column chromatography on silica gel. Yield: 2.1 g of the title compound.

NMR: 13C in CDCl$_3$: 11.04, 25.86, 31.42, 47.90, 52.32, 56.48, 65.66, 70.50, 104.22, 115.25, 119.02, 126.05, 128.88, 129.23, 133.88, 133.95, 161.90 ppm

Example 2

4-[3-ethyl[3-(phenylsulfinyl)propyl]amino]-2-hydroxypropoxy]-benzonitrile

4 g of 4-[3-ethyl[3-(phenylthio)propyl]amino]-2-hydroxypropoxy]-benzonitrile and 1 g of p-toluenesulfonylic acid were mixed in 50 ml of ethanol. The mixture was cooled to -10 °C and 2.1 g of
m-chloroperbenzoic acid was added in small portions. The mixture was stirred for 0.5 hour at -10 °C and one hour at room temperature and then evaporated. The residue was dissolved in dichloromethane and washed with three portions of sodium carbonate and twice with water and thereafter dried over sodium sulfate, filtrated and evaporated. The residue, 3.8 g oil was purified by column chromatography and yielded 3.1 g of the title compound.

NMR: 13C in CDCl$_3$; 11.37, 11.49, 19.97, 20.19, 47.52, 52.14, 52.48, 54.72, 55.02, 56.25, 56.32, 66.08, 66.14, 70.55, 70.62, 115.26, 119.03, 123.84, 129.19, 130.92, 133.87, 144.03, 144.21, 162.00 ppm

Example 3

4-[2-[3-(propylthio)propyl]amino]-1-hydroxyethyl] benzonitrile

1.5 g of 4-[2-(ethylamino)-1-hydroxyethyl]-benzonitrile, 2.1 g of potassium carbonate, 1.7 g of 1-bromo-3-(propylthio)-propane was mixed in 50 ml acetonitrile and refluxed over night. The mixture was filtered and evaporated and the residue was dissolved in 2 M hydrochloric acid. The acidic waterlayer was washed twice with ether, alkalized with 10 M sodiumhydroxide and extracted with three portions of dichloromethane.

The combined organic layer was dried over sodium sulphate, filtered and evaporated. The residual oil, 2.2 g, was separated by column chromatography. Yield: 1.7 g of the title compound.
NMR: 13C in CDCl$_3$: 11.31, 13.05, 22.51, 26.68, 29.43, 33.92, 47.04, 51.81, 61.85, 68.54, 110.51, 118.39, 126.05, 131.60, 147.92 ppm.

Example 4

4-[[2-ethyl[3-(propylsulfanyl)propyl]amino]-1-hydroxyethyl]-benzonitrile

0.9 g of 4-[[2-ethyl[3-(propylthio)propyl]amino]-1-hydroxyethyl]-benzonitrile was oxidized with 0.7 g of m-chloroperbenzoic acid in analogy with example 2. Yield: 0.7 g of the title compound.

NMR: 13C in CDCl$_3$: 10.95, 11.07, 12.93, 15.84, 20.10, 20.22, 47.03, 49.35, 49.63, 51.64, 51.98, 54.01, 54.11, 61.49, 68.94, 110.36, 118.42, 126.17, 131.55, 148.04, 148.14 ppm.

Example 5

2-[[3-[3-(4-cyanophenoxy)-2-hydroxypropyl]ethylamino]propyl]thio benzamide

5.5 g 2-(3-chloropropylthio)benzamide, 5.3 g of 4-[3-(ethylamino)-2-hydroxypropoxy]-benzonitrile, 66 g potassium carbonate and 7.2 g sodiumiodide were mixed in 100 ml of acetonitrile and heated to reflux for two days. The mixture was filtered and evaporated and the residue was dissolved in 1 M sulphuric acid. The acidic water layer was then
washed twice with ether, alkalized with 10 M sodium hydroxide and extracted with dichloromethane. The organic layer was dried over sodium sulphate, treated with active carbon, filtered and evaporated. The residue, 8.7 g, was separated by column chromatography. Yield: 4.5 g of the title compound.

\[^{13}C \text{ in CDCl}_3; 11.10, 26.90, 41.48, 47.37, 50.28, 58.04, 66.07, 70.38, 103.56, 114.99, 118.81, 120.09, 124.22, 125.17, 126.15, 131.45, 133.49, 139.72, 161.79, 164.98 \text{ ppm}. \]

Example 6

4-[3-[ethyl[3-[(4-hydroxyphenyl thio) propyl] amino]-2-hydroxypropoxy]-benzonitrile

5.0 g of 4-[3-[ethylamino]-2-hydroxypropoxy]-benzonitrile and 4.0 g of 4-[3-chloropropyl]thio]-phenol was dissolved in 70 ml of acetonitrile and mixed with 6.4 g potassium carbonate and 8.0 g of sodium iodide. The mixture was refluxed over night, filtrated, evaporated and the residue was dissolved in 2 M hydrochloric acid. This acidic water layer was washed with two portions of diethylether, alkalized with 10 M sodium hydroxide and extracted with three portions of dichloromethane. The combined layers of dichloromethane were dried over sodium sulphate and evaporated. The oily residue was purified by column chromatography on silica gel. Yield: 3.6 g of the title compound.
Example 7

4-[2-hydroxy-3-(4-thiomorpholiny1)propoxy]-benzonitrile

A solution of 4-(oxiranylmethoxy)benzonitrile (10 g, 56.8 mmol) and thiomorpholine (7 g, 67.8 mmol) in 2-propanol (100 ml) was stirred overnight at room temperature. Solvent was evaporated. The oily residue was dissolved in hydrochloric acid (2M, 50 ml) and extracted twice with diethylether. The acid aqueous solution was treated with sodium carbonate solution. The basic-aqueous layer was extracted three times with methylene chloride. The combined organic layers were dried over magnesium sulphate and solvent was evaporated. The crude oil was crystallized from diisopropylether; methylene chloride (9:1). Yield of the title compound (8.85 g; 56%) as colourless crystals with mp 94-95°C.

NMR: 13C in CDCl$_3$; 27.80, 55.17, 60.81, 65.11, 70.35, 104.15, 115.18, 118.90, 133.81, 161.84 ppm.
Example 8

4-[2-hydroxy-3-(4-thiomorpholinyl)propoxy]-benzonitrile, S-oxide

To an ice cold stirred solution of 4-[2-hydroxy-3-(4-thiomorpholinyl)propoxy]-benzonitrile (5.57 g, 20 mmol) in methylene chloride (50 ml) was added toluene-4-sulfonic acid (3.80 g, 20 mmol) and after five minutes 3-chloroperbenzoic acid (3.80 g, 22 mmol). The solution was stirred at room temperature over night. The resulting suspension was worked-up by evaporation of the solvent. The residue was treated with hydrochloric acid (2M, 20 ml) and extracted twice with diethylether. The acidic aqueous layer was treated with a sodium hydroxide solution to pH 12 and extracted with methylene chloride. The organic layer was dried over magnesium sulphate and evaporated. Yield 5.3 g of a colourless solid. Recrystallization from methylene chloride by addition of diisopropyl ether gave the title compound (4.7 g, 80%) as colourless crystals with mp. 130-31°C.

NMR: 13C in CDCl$_3$; 43.75, 45.06, 46.15, 46.21, 60.10, 65.81, 70.19, 104.18, 115.17, 118.88, 133.83, 161.76 ppm.
Example 9

4-[4-[(2-hydroxyethyl)3-(propylthio)propyl]amino]butyl]benzonitrile

5.0 g of 4-[4-[(2-hydroxyethyl)amino]butyl]benzonitrile and 4.9 g of 1-bromo-3-(propylthio)propane were dissolved in 50 ml of isopropanol.
6.3 g of potassium-carbonate was added and the mixture was refluxed overnight and thereafter filtrated and evaporated. The oily residue was purified by column chromatography. Yield: 4.3 g of the title compound.

NMR: 13C in CDCl$_3$; 13.17, 22.64, 26.45, 26.76, 28.35, 29.64, 34.04, 35.59, 52.44, 53.32, 55.52, 58.40, 109.32, 118.69, 128.67, 131.80, 147.77 ppm.

Example 10

4-[4-[(2-hydroxyethyl)(3-(propylsulfanyl)propyl)amino]butyl]benzonitrile
3.1 g of 4-[[2-hydroxyethyl][3-(propylthio)propyl]amino]butyl]benzonitrile was oxidized with 2.2 g of m-chloroperbenzoic acid in analogy with example 2. The yield was 0.8 g of the title compound.

NMR: \(^{13}\)C in CDCl\(_3\); 13.27, 16.18, 20.45, 26.48, 28.52, 35.75, 50.01, 52.84, 53.48, 54.57, 55.82, 58.70, 109.54, 118.88, 129.02, 132.01, 147.84 ppm.

Example 11

4-[[3-ethyl][3-(propylthio)propyl]amino]-2-hydroxypropyl]amino]benzonitrile

A solution of 4-[[0xiranylmethyl]amino]benzonitrile (4.7 g, 27 mmol) and N-ethyl-3-(propylthio)-1-propanamine (4.4 g, 27 mmol) in 2-propanol (50 ml) was refluxed over night. The solvent was evaporated and the residue was purified by column chromatography on silica gel. Yield: 3.2 g of the title compound.

NMR: \(^{13}\)C in CDCl\(_3\); 11.50, 13.25, 22.70, 26.86, 29.67, 34.15, 46.55, 47.44, 52.26, 57.33, 65.62, 98.15, 112.17, 120.30, 133.38, 151.47.
Example 12

4-[[3-ethyl[3-(propylsulfanyl)propyl]amino]-2-hydroxypropyl]amino]-benzonitrile

A solution of 4-[[3-ethyl[3-(propylthio)propyl]amino]-2-hydroxy-propyl]amino]-benzonitrile (2.0 g, 5.9 mmol) and toluene-4-sulfonic acid (2.3 g, 11.9 mmol) in ethanol (50 ml) was stirred 1/2 h at room temperature. The mixture was cooled to -10 °C and solid 3-chloroperbenzoic acid was added during 1/2 h. The solution was stirred for 1 h at room temperature. Solid calcium hydroxide (1.2 g, 16.4 mmol) was added, followed by stirring for 15 minutes. Filtration and evaporation gave an oily residue. Purification by column chromatography on silica gel yielded 1.0 g of the title compound.

NMR: 13C in CDCl$_3$; 11.17, 11.34, 13.15, 16.09, 20.47, 46.58, 46.64, 47.52, 47.60, 49.79, 50.00, 52.21, 52.40, 54.40, 54.46, 57.40, 57.43, 65.96, 66.02, 97.98, 112.13, 120.33, 133.33, 151.56
Example 13

4-Cyano-N[N'-isopropyl-N'-(3-propylthio)propyl]aminoethylbenzamide

\[
\begin{align*}
\text{O} & \quad \text{NH} \\
& \quad \text{N} \\
& \quad \text{S} \\
\text{CN}
\end{align*}
\]

a) N-Acetyl-N'[isopropyl-N'-benzyl]diaminoethane

A solution of 19.2 g (0.1 mol) of N-acetyl-N'benzyl]diaminoethane and 12.3 g (0.1 mol) of 2-bromopropane in 150 ml of acetonitrile was refluxed together with 15 g of finely ground \(\text{K}_2\text{CO}_3 \) overnight. The solution was filtered and evaporated to dryness. Yield 23.5 g (0.1 mol, 100%) of a yellow oil.

NMR: \(^{13}\text{C} \text{ in CDC}_3\): 17.89, 23.03, 37.40, 48.06, 49.87, 53.69, 126.85, 128.29, 128.48, 140.75, 169.71.

b) N-Acetyl-N'[isopropyl]diaminoethane

To a solution of 23.5 g (0.1 mol) of N-acetyl-N'[isopropyl]-N'-benzyl]diaminoethane in 200 ml of ethanol was added 1.5 g of Pd/C (5%), and the solution was hydrogenated at atmospheric pressure (2.3 L of \(\text{H}_2 \) absorbed). The solution was filtered and evaporated to dryness. Yield 14.5 g (0.1 mol, 100%) of a pale yellow oil.

NMR: \(^{13}\text{C} \text{ in CDC}_3\): 21.07, 23.13, 38.09, 45.67, 49.74, 171.09.
c) N-Acetyl-N'-isopropyl-N'-(3-propylthio)propyldiaminoethane

A solution of 14.5 g (0.1 mol) of N-acetyl-N'-isopropyl-N'-
(3-propylthio)propyldiaminoethane and
19.8 g (0.1 mol) of 1-bromo-(3-propylthio)propane was refluxed overnight
with 18 g (0.13 mol) of K₂CO₃ in 200 ml of acetonitrile. The solution
was filtered and evaporated to dryness. Yield 15.0 g (58 mmol, 58%)
of a
brownish-yellow oily liquid.

NMR: ¹³C in CDC₃; 13.44, 17.89, 22.93, 23.25, 28.60, 29.90, 34.41,
37.54, 48.00, 48.54, 49.54, 169.85.

d) N-Isopropyl-N-(propylthio)propyldiaminoethane

A solution of 15.0 g (58 mmol) of N-acetyl-N'-isopropyl-N'-
(3-propylthio)propyldiaminoethane and 3.83 g (58 mmol; 85%)
of KOH in
100 ml of n-butanol was refluxed for 20 h. The butanol was removed by
evaporation and the remainder was dissolved in water. The water solution
was extracted with 4x50 ml of ether. The etherphase was dried (Na₂SO₄)
and evaporated to dryness. Yield 10.2 g (47 mmol, 81%)
of a yellow oil.

NMR: ¹³C in CDC₃; 13.35, 17.94, 23.11, 28.97, 29.72, 34.11, 40.53,
48.85, 49.96, 52.58.

e) 4-Cyano-N-[N'-isopropyl-N'-(3-propylthio)propyl]aminoethylbenzamide

To a cooled (-5°C) slurry of 6.8 g (46.2 mmol) of 4-cyanobenzoic acid in
100 ml of ethyl acetate was added 6.32 g (46.2 mmol) of isobutyl
chloroformate over a 1/2 h period. The resulting slurry was stirred for
1/2 additional hour, and then 10.1 g (46.2 mmol) of N-isopropyl-N-
(propylthio)propyldiaminoethane was added at -5°C. After stirring 1 h
the clear solution was poured into water, and the mixture extracted with
4x50 ml of ether. The ether solution was dried (Na₂SO₄) and evaporated.
The product was purified chromatographically (Si-gel, CH₂Cl₂/MeOH 9/1).
Yield 10.1 g (29.1 mmol, 63%) of a very pale yellow oily liquid.
Example 14

4-[[3-ethyl[3-[4-hydroxyphenyl)sulfanyl]propyl]amino]-2-hydroxypropoxy]benzonitrile

To a solution of sodium hydroxide (0.9 g in 25 ml dioxan) was added 4-[[3-ethyl[3-[4-(acetyloxy)phenyl]thio]propyl]ethylamino]-2-hydroxypropoxy]benzonitrile (3.4 g, 8.8 mmol) and tetrabutylammonium hydrogen sulphate. To the solution was added dropwise acetyl chloride (0.78 g, 10 mmol) dissolved in dioxan (10 ml). The solution was stirred at room temperature for 2 h. After filtration and evaporation the residue was dissolved in methylene chloride, treated with charcoal and filtered through Celite. The solvent was evaporated. The yield of the title compound was 3.8 g.

b) 4-[[3-ethyl][3-[4-hydroxyphenyl)sulfanyl]propyl]amino]-2-hydroxypropoxy]benzonitrile

A solution of 4-[[3-[[3-[4-(acetyloxy)phenyl]thio]propyl]ethylamino]
-2-hydroxypropoxy)-benzonitrile (3.80 g, 8.8 mmol) and toluene-4-sulfonic acid (1.67 g, 8.8 mmol) in ethanol (100 ml) was stirred and chilled to -15 °C. To the chilled solution was added a solution of 3-chloroperbenzoic acid (2.05 g, 8.8 mmol) in ethanol (10 ml). The solution was stirred at room temperature for 2 h. Sodium hydroxide (8.8 g, 0.22 mol) was added and the solution was stirred for 1 h. The pH was adjusted to about 7 with hydrochloric acid. After evaporation the residue was treated with 2M hydrochloric acid and washed with diethylether. The acidic aqueous layer was treated with sodium hydroxide solution to pH = 9 and extracted with three portions of ethyl acetate. The combined ethyl acetate fractions were dried over sodium sulfate and evaporated. The oily residue was purified by column chromatography on silica gel. Yield: 0.9 g of the title compound.

NMR: \(^{13}\)C in CDCl\(_3\); 11.29, 11.40, 20.34, 20.52, 47.53, 52.09, 52.37, 54.47, 54.72, 56.06, 66.21, 70.42, 70.46, 104.09, 115.28, 116.70, 119.08, 126.35, 131.68, 131.82, 133.94, 160.41, 161.98, 186.69.

Example 15

4-[(3-ethyl)-3-[(3-fluorophenyl)thio]propyl]amino]-2-hydroxypropoxy)-benzonitrile

![Chemical Structure](image)

a) 1-chloro-3-[(3-fluorophenyl)thio]-propane

A slurry of 1-bromo-3-chloro-propane (6.5 g, 41 mmol),
3-mercaptopfluorobenzene (5.3 g, 41 mmol) and potassium carbonate
(11.3 g) in acetonitrile (60 ml) was refluxed over night. The slurry was
filtered and evaporated. The residue was dissolved in methylene
chloride, washed with sodium hydroxide, dried over sodium sulfate and
evaporated. Yield: 8.4 g of the title compound.

NMR: ^{13}C in CDCl$_3$: 30.29, 31.55, 43.12, 112.76, 112.84, 113.01, 115.44,
115.63, 124.36, 130.15, 130.21, 138.32, 138.90, 161.89, 162.88.

b) 4-[3-ethyl][3-[3-fluorophenyl]thio]propyl]amino]-2-hydroxopropoxy]
-benzonitrile

A slurry of 4-[3-(ethylamino)-2-hydroxy]benzonitrile
(5 g, 23 mmol) and 1-chloro-3-[3-fluorophenyl]thio]-
propane (4.65 g, 23 mmol) and potassium carbonate (6.35 g) in
acetonitrile (70 ml) was refluxed over night. The slurry was filtered
and evaporated. The residue was dissolved in 2 M hydrochloric acid,
washed with diethylether and extracted with methylene chloride
(3 x 75 ml). The extract was treated with 2 M sodium hydroxide, the
phases were separated and the organic phase was dried over sodium
sulfate and evaporated. Yield: 6.85 g of the title compound.

NMR: ^{13}C in CDCl$_3$: 11.43, 26.22, 30.77, 47.48, 52.13, 56.05, 65.94,
70.43, 103.87, 112.27, 112.44, 114.74, 114.93, 115.08, 118.88, 122.78,
129.22, 129.82, 133.64, 138.99, 161.87, 163.58
Example of pharmaceutical composition

The following examples illustrate the preparation of pharmaceutical compositions of the invention. The wording "active substance" denotes a compound according to the present invention or a salt thereof.

Formulation A. Soft gelatin capsules

500 g of active substance were mixed with 500 g of corn oil, whereupon the mixture was filled in soft gelatin capsules, each capsule containing 100 mg of the mixture (i.e. 50 mg of active substance).

Formulation B. Soft gelatin capsules

500 g of active substance were mixed with 750 g of pea nut oil, whereupon the mixture was filled in soft gelatin capsules, each capsule containing 125 mg of the mixture (i.e. 50 mg of active substance).

Formulation C. Tablets

50 kg of active substance were mixed with 20 kg of silicic acid of the trademark Aerosil. 45 kg of potato starch and 50 kg of lactose were mixed therewith and the mixture was moistened with a starch paste prepared from 5 kg of potato starch and distilled water, whereupon the mixture was granulated through a sieve. The granulate was dried and sieved, whereupon 2 kg of magnesium stearate was mixed into it. Finally the mixture was pressed into tablets each weighing 172 mg.

Formulation D. Effervescing tablets

100 g of active substance, 140 g of finely divided citric acid, 100 g of finely divided sodium hydrogen carbonate, 3.5 g of magnesium stearate
and flavouring agents (q.s.) were mixed and the mixture was pressed into tablets each containing 100 mg of active substance.

5 Formulation E. Sustained release tablet

200 g of active substance were melted together with 50 g of stearic acid and 50 g of carnauba wax. The mixture thus obtained was cooled and ground to a particle size of at most 1 mm in diameter. The mixture thus obtained was mixed with 5 g of magnesium stearate and pressed into tablets each weighing 305 mg. Each tablet thus contains 200 mg of active substance.

15 Formulation F. Injection solution

<table>
<thead>
<tr>
<th>Active substance</th>
<th>3.0 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium pyrosulfite</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>Disodium edetate</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>8.5 mg</td>
</tr>
<tr>
<td>Sterile water for injection</td>
<td>ad 1.0 ml</td>
</tr>
</tbody>
</table>

Formulation G. Hard gelatine capsules

25 10 g of active substance was mixed with 400 g of lactose and finally 2 g of magnesium stearate was added. The mixture was then filled in hard gelatine capsules, each capsule containing 206 mg of the mixture (i.e. 5 mg of active substance).

30 Formulation H. Tablets

35 50 g of active substance was mixed with 1500 g of lactose, 200 g of microcrystalline cellulose and 10 g magnesium stearate. Tablets of 5 mg active substance with a core weight of 176 mg were finally compressed.
Pharmacology

Drugs which cause a delay of the repolarization process, thereby prolonging the period during which the heart is unable to respond to a new stimulus (the so called effective refractory period) are said to exert a Class III antiarrhythmic action (Vaughan Williams, 1970, 1984). This effect can be recorded as a prolongation of the action potential of myocardial cells, and can be measured directly in transmembrane potential recordings or indirectly in the monophasic action potential. The compounds belonging to this invention have been studied with the latter technique.

Male guinea-pigs are anaesthetized with barbiturate and ventilated with room air under blood gas control. The heart is exposed by thoracotomy and the vagal nerves are cut. A standard electrocardiogram is recorded from skin electrodes, and a monophasic action potential (MAP) is recorded from the epicardial surface of the ventricles, usually from the left one, by a specially designed bipolar electrode, which is gently pressed against the epicardial surface or attached by use of suction pressure. A local electrocardiogram from the area of the MAP electrode is also obtained (between the peripheral electrode and reference from the skin electrodes). Arterial blood pressure is recorded via an arterial catheter in one femoral artery, and intravenous lines are used for infusion of barbiturate and test substance. Since the duration of the depolarization of the heart cells (the MAP duration) is dependent on the frequency, the evaluation of a drug effect must be made at a constant frequency. For that purpose a pacing electrode is attached to the left atrium, and the heart can be electrically stimulated at a constant frequency slightly above the normal sinus node frequency.

The monophasic action potential duration at 75% repolarization is used for primary screening.
All experiments are done under β-adrenoceptor blockade, achieved by pretreatment with 0.5 mg/kg propranolol.
The test substances are administered intravenously during 30 seconds in increasing doses at exact, predetermined intervals and recordings are made at exact intervals after dosing, both on a Mingograph recorder and on tape for later analysis of the signals by a custom-designed computer program. Dose-response curves are constructed for the different variables, and the doses needed to obtain 10 and 20 per cent prolongation of the MAP duration are derived by interpolation. The dose giving 20 per cent increase of the MAP duration (D_{20} MAP) is used as a measure of potency.

Selected compounds are subject to further testing in anaesthetized and chronically instrumented conscious dogs, in which effects on atrial and ventricular refractoriness are also recorded.

TABLE 1

<table>
<thead>
<tr>
<th>Substance according to Example No</th>
<th>D_{20} MAP</th>
<th>VERP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 2</td>
<td>7.2</td>
<td>n.t.</td>
</tr>
<tr>
<td>Ex. 9</td>
<td>7.2</td>
<td>n.t.</td>
</tr>
</tbody>
</table>

D_{20} MAP = -log dose (moles/kg) giving 20 per cent increase of the MAP duration in anaesthetized guinea-pigs (see screening method).

Change in ventricular refractoriness (VERP) in anaesthetized and conscious dogs at dose levels equivalent to D_{20} MAP in guinea-pigs.

+ = prolonged VERP
n.t. = not tested
Claims

1. A compound of the formula

\[
X-(CH_2)_n \quad \overset{Z}{Y} \quad CH \quad A
\]

and when appropriate in the form of a racemic mixture or in the form of a stereoisomeric compound and the pharmaceutically acceptable salts thereof, in which formula

X is O, CH₂, CHO, CO, CONH, NH, S, SO or SO₂,

n is an integer 0, 1 or 2

Y is \([CH_2]_m\), CHO, CHOCH₃, CHNHR or CHF,

m is an integer 0 or 1 and
R is hydrogen, methyl or ethyl,

Z is hydrogen or a saturated or unsaturated, straight or branched alkyl group containing 1-3 carbon atoms,

A is a group

\[
\begin{array}{c}
R_a \\
\uparrow \\
- N - [CH_2]_s - S - R_c
\end{array}
\]
\[R_a' \quad (O)_p \]

\[\text{N} - \left[\text{CH}_2 \right]_s - S - R_c \]

\[\text{N} \]

\[S = (O)_p \]

\[\text{N} \]

\[S = (O)_p \]

\[\text{N} \]

\[\left[\text{CH}_2 \right]_r - S - R_c \]

\[\text{N} \]

\[\left[\text{CH}_2 \right]_r - S - R_c \]

\[\text{N} \]

\[\left[\text{CH}_2 \right]_r - S - R_c \]

wherein \(R_a \) **is a straight or branched hydroxyalkyl or a straight or branched alkyl group containing 1-5 carbon atoms and optionally substituted by one or more fluoro atoms,**
R_c is a saturated or unsaturated, straight or branched alkyl group containing 1-4 carbon atoms and optionally substituted by one or more fluoro atoms,

a cycloalkyl or an alkylcycloalkyl group, containing 3-5 ring carbon atoms,

an unsubstituted phenyl group or a phenyl group substituted by one or more substituents selected from the group consisting of fluoro, hydroxy, methoxy, ethoxy, CN, CONH_2, NHSO_2CH_3

R_a' is the same as R_a and independently of R_a'',

R_a''' is the same as R_a and independently of R_a',

p is an integer 0, 1 or 2,

r is an integer 0, 1, 2 or 3,

s is an integer 2, 3, 4 or 5

with the proviso that when X is 0 and

\[\begin{array}{c}
\text{A is a group} \\
\text{or} \\
\text{or} \\
\text{then } R_c \text{ is a cycloalkyl or an alkylcycloalkyl group, containing 3-5 ring} \\
\text{carbon atoms, an unsubstituted phenyl group or a phenyl group} \\
\text{substituted by one or more substituents selected from the group} \\
\text{consisting of fluoro, hydroxy, methoxy, ethoxy,} \\
\text{CN, CONH_2, NHSO_2CH_3.}
\end{array} \]
2. A compound according to claim 1 wherein

X is O, CH₂, CHO, CONH, NH

n is 0, 1

Y is CHO, (CH₂)m wherein m 0, 1

Z is hydrogen

A is a group

\[Ra \quad (0) \quad (0) \quad (0) \quad p \]

- N - (CH₂)s - S - Rc

wherein Ra is CH₃, C₂H₅, C₃H₇, CH₂CH₂OH,

s is 3, 4

p is 0, 1

Rc is C₂H₅, C₃H₇, CH₂CH₂CH₂F, or an unsubstituted phenyl or a phenyl group substituted with OH, F, OCH₃, OCH₂CH₃,

3. A compound according to claim 2 wherein

X is O

n is 1

Y is CHO, (CH₂)m wherein m = 1

Z is hydrogen

A is a group

\[Ra \quad (0) \quad (0) \quad (0) \quad n \]

- N - [CH₂]s - S - Rc
wherein R_a is CH_3, C_2H_5, C_3H_7, $\text{CH}_2\text{CH}_2\text{OH}$

s is 3
p is 0, 1
R_c is an unsubstituted phenyl group or a phenyl group substituted with OH, F, OCH_3, OC_2H_5.

4. A compound according to claim 2 wherein

X is CH_2

n is 0, 1
Y is $\text{CHOH}, (\text{CH}_2)_m$ where $m = 0$, 1
Z is hydrogen
A is a group

\[
\begin{array}{c}
\text{R}_a \\
\text{N} - (\text{CH}_2)_s - S - R_c
\end{array}
\]

wherein R_a is CH_3, C_2H_5, C_3H_7, $\text{CH}_2\text{CH}_2\text{OH}$

s is 3
p is 0, 1
R_c is C_2H_5, C_3H_7, $\text{CH}_2\text{CHFCH}_3$

5. A compound according to claim 1 wherein

4-[[3-ethyl[3-(phenylthio) propyl] amino]-2-hydroxypropoxy] benzonitrile

4-[[3-ethyl[3-(phenylsulfinyl) propyl] amino]-2-hydroxypropoxy] benzonitrile

4-[[2-ethyl[3-(propylthio)propyl] amino]-1-hydroxyethyl] benzonitrile

4-[[2-ethyl[3-(propylsulfinyl)propyl] amino]-1-hydroxyethyl] benzonitrile
2-{3-[3-{(4-cyanophenoxy)-2-hydroxypropyl}ethylamino]-propyl}thio]benzamide

4-{3-{ethyl[3-{(4-hydroxyphenyl)thio}propyl]amino]-2-hydroxypropoxy]-benzonitrile

4-{4-{(2-hydroxyethyl)[3-{(propylthio)propyl]amino]-butyl]benzonitrile

4-{4-{(2-hydroxyethyl)[3-{(propylsulfanyl)propyl]amino}-butyl]benzonitrile

4-{3-{ethyl[3-{(propylthio)propyl]amino]-2-hydroxypropyl]amino}-benzonitrile

4-{3-{ethyl[3-{propylsulfanyl}propyl]amino]-2-hydroxypropyl]amino}-benzonitrile

4-cyano-N-[N'-isopropyl-N'-(3-propylthio)propyl]aminoethylbenzamide

4-{3-{ethyl[3-{(4-hydroxyphenyl)sulfanyl}propyl]amino]-2-hydroxypropoxy]-benzonitrile

4-{3-{ethyl[3-{(3-fluorophenyl)thio}propyl]amino]-2-hydroxypropoxyl-benzonitrile

6. A process for the preparation of a compound of the formula

\[
\begin{align*}
X - (CH_2)_n - Y - CH - N - (CH_2)_s - S - R_C
\end{align*}
\]
wherein X, n, Y, Z, R_a, s, p and R_c are as defined in claim 1, or a pharmaceutically acceptable salt or stereoisomer thereof, by

a) a reaction of a compound of the formula

\[X - (\text{CH}_2)_n - Y - \text{CH} - L \]

with a compound of the formula

\[\begin{array}{c}
 R_a \\
 (O) p \\
 H - N - (\text{CH}_2)_s - S - R_c
\end{array} \]

wherein X, n, Y, Z, R_a, s, p and R_c are as defined above and L is Br, Cl, I, mesyloxy or tosylxy, whereafter, if desired, the compound obtained is converted to a stereoisomer or a pharmaceutically acceptable salt thereof.

b) a reaction of a compound of the formula

\[X - (\text{CH}_2)_n - Y - \text{CH} - N - H \]

with a compound of the formula
wherein X, n, Y, Z, R_a, s, p and R_c are as defined above and L is a leaving group, such as Cl, Br, I, mesyloxy or tosyloxy.

whereafter, if desired, the compound obtained is converted to a stereoisomer or a pharmaceutically acceptable salt thereof.

7. A process for the preparation of a compound of the formula I of claim 1 wherein p is 1 or 2, which process comprises oxidation of a compound of the formula I of claim 1 wherein p is 0.

8. A process for the preparation of a compound of the formula I of claim 1 wherein

$X = \text{O}$,
$n = 1$,
$Y = \text{CHOH}$,
$Z = \text{H}$,
$p = 1$ or 2,
R_a, R_c and s have the meaning given in claim 1,

which process comprises reaction of a compound of the formula

![Chemical Structure](image)

with a compound of the formula
wherein R_a, R_c, s and p have the meanings given above.

9. A process according to any of claims 6-8 characterized in that a compound according to any of claims 2-5 is prepared.

10. A compound of the formula

\[
\begin{array}{c}
\text{II} \\
\text{CN}
\end{array}
\]

\[
\begin{array}{c}
Z \quad R_a \\
X - (CH_2)_n - Y - CH - NH
\end{array}
\]

wherein

- X is O, CH_2, CHOH, CO, CONH, NH, S, SO or SO_2,
- n is an integer 0, 1 or 2,
- Y is $(CH_2)_m$, CHOH, CHOCH_3, CHNHR or CHF,
- m is an integer 0 or 1 and
- R is hydrogen, methyl or ethyl,
- Z is hydrogen or a saturated or unsaturated, straight or branched alkyl group containing 1-3 carbon atoms,
- R_a is a straight or branched group hydroxyalkyl or an alkyl.
group containing 1-4 carbon atoms and optionally substituted by one or more fluoro atoms.

11. A compound of the formula

\[
\begin{align*}
&\text{R}_a \quad (O) \quad \text{p} \\
&\text{HN} - (\text{CH}_2)_s - S - \text{R}_c
\end{align*}
\]

wherein \(R_a, R_c, s \) and \(p \) have the meanings given in claim 1.

12. A pharmaceutical preparation comprising as active ingredient a compound according to any of claims 1-5 or a pharmaceutically acceptable salt or a stereoisomer thereof.

13. A pharmaceutical preparation according to claim 12 in dosage unit form.

14. A pharmaceutical preparation according to claims 12-13 comprising the active ingredient in association with a pharmaceutically acceptable carrier.

15. A method for the treatment of cardiac arrhythmia in mammals, including man, characterized by the administration to a host in need of such treatment of an effective amount of a compound according to any of claims 1-5 or pharmaceutically acceptable salt thereof.

16. A compound according to any of claims 1-5 for use as a drug.

17. Use of a compound according to any of claims 1-5 for the preparation of medicaments with action against cardiac arrhythmia.
INTERNATIONAL SEARCH REPORT

International Application No. PCT/SE88/00692

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC:
C 07 C 149/273; /14, /32, 147/14, /02, /06, 121/78, /80, C 07 D 279/12, 281/06, 207/08, /12, 211/19, /24, 223/04, /06, A 61 K 31/10, /13, /33

II. FIELDS SEARCHED

Minimum Documentation Searched

IPC 4 C 07 C; C 07 D; A 61 K

Documentation Searched other than Minimum Documentation to the extent that such documents are Included in the Fields Searched

SE, NO, DK, FI classes as above

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB, A, 1 433 920 (IMPERIAL CHEMICAL INDUSTRIES LIMITED) 28 April 1976 see page 3, lines 69-71, page 4, table, 4-th compound, page 6, table, 3-th compound, claims & FR, 2246264 DE, 2445811 JP, 50059340</td>
<td>1-9, 11-14 16-17</td>
</tr>
<tr>
<td>X</td>
<td>FR, A1, 2 280 376 (SOCIETE GENERALE DE RECHERCHES ET D'APPLICATIONS SCIENTIFIQUES (SOGERAS)) 27 February 1976 see claims & BE, 832036</td>
<td>1, 12-14, 16</td>
</tr>
<tr>
<td>X</td>
<td>CH, A5, 570 368 (BRISTOL-MYERS COMPANY) 15 December 1975 see claims, columns 25-26, example 30, column 1, lines 5-9 & NL, 7014293 DE, 2048555 FR, 2070107</td>
<td>1, 12-14, 16</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search 1989-02-20

Date of Mailing of this International Search Report 1989-03-08

International Searching Authority Swedish Patent Office

Signature of Authorized Officer

Form PCT/ISA/210 (second sheet) (January 1985)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US, A, 4 544 694 (D.D. DAVEY ET AL.) 1 October 1985 see columns 15-18, claims</td>
<td>1,12-14,16,17</td>
</tr>
<tr>
<td></td>
<td>& EP, 0158775 JP, 60209559 US, 4629739 DE, 3562238</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP, A2, 0 245 997 (PFIZER LIMITED) 19 November 1987 see pages 73-76, claims, page 17</td>
<td>1-9,11-14, 16,17</td>
</tr>
<tr>
<td></td>
<td>& JP, 62267250 AU, 578557</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 1 457 876 (IMPERIAL CHEMICAL INDUSTRIES LTD) 8 December 1976 see page 12, lines 44-45, claims</td>
<td>1-9,11-14, 16,17</td>
</tr>
<tr>
<td>A</td>
<td>EP, A2, 0 206 747 (WARNER-LAMBERT COMPANY) 30 December 1986 see pages 37-41, claims 1, 2, page 3, lines 1-6</td>
<td>1,12-14,16</td>
</tr>
<tr>
<td>A</td>
<td>EP, A1, 0 017 893 (BASF AKTIENGESELLSCHAFT) 29 October 1980 see claims</td>
<td>1,12-14,16</td>
</tr>
<tr>
<td>X</td>
<td>DE, A, 1 593 771 (C.H. BOEHRINGER SOHN) 30 April 1970 see claims</td>
<td>10</td>
</tr>
<tr>
<td>X</td>
<td>SE, B, 404 793 (C.H. BOEHRINGER SOHN) 30 Oktober 1978 see the claim</td>
<td>10</td>
</tr>
<tr>
<td>X</td>
<td>SE, B, 421 123 (C.H. BOEHRINGER SOHN) 30 November 1981 see the claim</td>
<td>10</td>
</tr>
<tr>
<td>X</td>
<td>DE, A1, 25 03 222 (C.H. BOEHRINGER SOHN) 29 July 1976 see page 6, the last two compounds, page 10, the 5:th and 6:th compounds, claim 1 & LU, 74246 AT, 340389 CH, 623024 SE, 7600846</td>
<td>10</td>
</tr>
</tbody>
</table>

Form PCT ISA 210 (extra sheet) (January 1985)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB, A, 952 547 (SMITH KLINE & FRENCH LABORATORIES) 18 March 1964 see claims</td>
<td>10</td>
</tr>
<tr>
<td>X</td>
<td>EP, A1, 0 195 396 (AMERICAN CYANAMID COMPANY) 24 September 1986 see claims & US, 4614746 JP, 61227557</td>
<td>10</td>
</tr>
</tbody>
</table>
FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

VI[X] OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. [X] Claim numbers 15, because they relate to subject matter not required to be searched by this Authority, namely:

 Methods for treatment of the human or animal body by surgery or therapy, as well as diagnostic methods (PCT Rule 39.1 (iv)).

2. [] Claim numbers........,..., because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claim numbers........,..., because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(e).

VII[X] OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This International Searching Authority found multiple inventions in this international application as follows:

See enclosure

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. [X] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. [X] As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

[] The additional search fees were accompanied by applicant's protest.

[] No protest accompanied the payment of additional search fees.
Enclosure

1) Claims 1-9, 12-14, 16, 17 in part:
 compounds of formula I in which A is represented by
 \[
 R_a - \left[\begin{array}{c}
 \text{CH}_2 \\
 S
 \end{array} \right]_n - S - R_c
 \]
 or
 \[
 NC_{[\text{CH}_2]_n} S \equiv (O)_p
 \]
 their preparation and use and claim 11:
 intermediates of formula III.

2) Claims 1, 12-14, 16, 17 in part:
 compounds of formula I in which A is represented by
 \[
 NC_{[\text{CH}_2]_n} S \equiv (O)_p
 \]
 their use.

3) Claims 1, 12-14, 16, 17 in part:
 compounds of formula I in which A is represented by
 \[
 NC_{[\text{CH}_2]_n} S \equiv (O)_p
 \]
 or
 \[
 NC_{[\text{CH}_2]_n} S \equiv (O)_p
 \]
 their use.

4) Claim 10: intermediates of formula II