(51) International Patent Classification
G06F 13/00, H04L 11/00

(11) International Publication Number:
WO 86/02749

(21) International Application Number:
PCT/SE84/00351

(22) International Filing Date:
23 October 1984 (23.10.84)

(43) International Publication Date:
9 May 1986 (09.05.86)

(72) Inventors; and
(75) Inventors/Applicants (for US only) : KATZEFF, Kurt [SE/SE]; AKesson, Bengt [SE/SE]; Televerkets Huvudkontor, Fack, S-123 86 Farsta (SE).

(74) Agent: KARLSSON, Berne; Televerkets Huvudkontor, Patentkontoret, Fack, S-123 86 Farsta (SE).

(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), JP, LU (European patent), NL (European patent), SE (European patent), US.

(54) Title: ARRANGEMENT FOR COMMUNICATION BETWEEN EQUIPMENT BELONGING TO DIFFERENT NETWORK ARCHITECTURES

(57) Abstract

A communications network (K) provides the integration of at least two networks with different network architectures (SNA, DCNA, DECNET). The communications network as such exhibits its specific network architecture (ICNA) independent of the aforementioned architectures. To the selector system (V) of the network are connected pieces of conversion equipment (CEI, CDI, CSI, CIE, CIS, CID). Pieces of equipment for different network architectures are capable of being linked via the aforementioned pieces of conversion equipment. Connections between equipment belonging to the specific network architecture (ICNA) and a second network architecture are routed via a piece of conversion equipment and connections between equipment belonging to two other network architectures are routed via two pieces of conversion equipment wired in series.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TITLE OF THE INVENTION
Arrangement for communication between equipment belonging to different network architectures.

The present invention relates to an arrangement permitting communication between pieces of equipment in a communications network, for example an integrated network for data, telephony, text and/or images. The aforementioned communications network is also of the kind which, in principle, provides the integration of at least two networks with different network architectures. The aforementioned communications network is constructed with its own specific network architecture independent of the architectures of the aforementioned two networks. There are connected to the selector system of the communications network pieces of conversion equipment via which connections between pieces of equipment for different network architectures are capable of being linked.

DESCRIPTION OF THE PRIOR ART
The different companies which market different pieces of equipment on the open market, for example computers and terminals, etc., and their associated communications systems, stipulate the use of designs specific to that particular company, which means that the system of one company will not, as a general rule, be compatible
with the system of another company. The following may be mentioned as examples of previously disclosed systems: SNA (System Network Architecture), DCNA (Distributed Communication Network Architecture), and DECNET (Digital Equipment Computer Network).

5 DESCRIPTION OF THE PRESENT INVENTION

TECHNICAL PROBLEM

There is a general wish for the expansion of data communications networks of the type in question, to which connection is possible and in which communication can be provided between the pieces of equipment which are specific to the different companies. This presupposes, amongst other things, the use of conversion equipment, and it is desirable in this respect that the designs of the components concerned should be simple, and that the range of components should be kept to a minimum.

15 SOLUTION

One of the objects of the present invention is to solve the problem outlined above, and what may be regarded in this respect as being essentially characteristic of the novel arrangement is that connections between pieces of equipment belonging to the specific architecture, that is to say to the architecture of the communications network, and a second network architecture are routed via a piece of conversion equipment, and that connections between pieces of equipment belonging to two other network architectures are routed via two pieces of conversion equipment wired in series.

25 In further developments of the idea of invention it is proposed that the first pieces of conversion equipment should be so arranged as to be utilized for the conversion of trace routines between equipment in the specific network architecture (i.e. that of the communications network) and equipment in each of the aforementioned other network architectures, and that the other pieces of conversion equipment should be so arranged as to be wired in series with the aforementioned first pieces of conversion equipment for the purpose of the conversion of trace routines between equipment belonging to two of the aforementioned other network architectures.
ADVANTAGES

The solution proposed above will permit the number of pieces of conversion equipment to be kept to a minimum, at the same time as a comparatively simple design can be retained for each of the pieces of conversion equipment.

DESCRIPTION OF THE DRAWINGS

A preferred embodiment of an arrangement which exhibits the significant characteristic features of the invention is described below with reference to the accompanying drawing.

Figure 1 shows in the form of a block diagram the basic design of a communications network having, amongst other things, terminals, processors and path selection equipment; and

Figure 2 shows in the form of a block diagram the basic design of the central monitoring organs in the network in accordance with Figure 1.

DESCRIPTION OF THE PREFERRED EMBODIMENT

A communications network, for instance an integrated network for data, telephony, text and/or images, is indicated by K in Figure 1. The design of the network may be of a previously disclosed type and will accordingly not be described here in detail, but is shown only in principle by means of a selector symbol V and inputs and outputs in the network.

A number of terminals T1, T2, T3, T4 are connected to the network via storage devices RT-C1, RT-S, RT-0 and RT-E for the purpose of determining the path selection in the network. To the network are also connected host computers or processors P1, P2, P3 and P4, these designations being able to represent not only the processors but also mail boxes, text conference equipment, and connection equipment to other networks, etc. The aforementioned pieces of equipment can also include multiplexers and concentrators. Each of the terminals T1-T4 shall be capable of being linked to the
aforementioned pieces of equipment P1-P4 for the purpose of performing different operating tasks. In this respect the host computers are able to perform different operating tasks. Two or more computers can, of course, perform the same operating task, should the need for the operating task in question to be performed exist within the network. Each of the terminals is thus capable of being connected to one or more computers via the network.

In accordance with the invention, the design illustrated includes pieces of specific path selection equipment RI, RS, RD and RE, to which the terminals are automatically connected via the network when they are activated. The pieces of path selection equipment are connected to outlets in the selection network in accordance with Figure 1, but may, as an alternative or in addition, be arranged inside or adjacent to one or more of the pieces of equipment P1-P4.

The latter case will be of interest, for example, when a terminal is used almost exclusively with a single processor, which is provided in this way with a piece of path selection equipment of this kind.

In the embodiment shown, use is made of a network which provides the integration of networks with a number, being in the case illustrated three, of different network architectures. Terminals, processors and path selection equipment are provided in this case for each of the network architectures, and also for the integrated network as such.

The terminal T1, the storage device RT-CI for path selection information, the path selection equipment RI and the processor P4 are matched to the overall integrated network architecture, referred to here as ICNA, which is the preferred designation for the Integrated Communications Network Architecture used by the Swedish Telecommunications Administration. T2, RT-S, RS and P4 are matched to a network architecture in accordance with SNA (System Network Architecture), which constitutes a first network architecture developed for a company. T3, RT-D, RD and T2 are contained in the DCNA (Distributed Communication Network Architecture) network architecture, which constitutes a second network architecture
developed for a company. T4, RT-E, RE and P1 are contained in the DECNET (Digital Equipment Computer Network) network architecture, which constitutes a third network architecture developed for a company.

In order to permit communication between terminals and processors of different architectures, the network design includes CIS conversion equipment, which is conversion equipment between ICNA and SNA. Similarly, CIE is conversion equipment between ICNA and DECNET, CID between ICNA and DCNA, CSI between SNA and ICNA (which can be the same as CIS), CEI between DECNET and ICNA (which can be the same as CIE), and CDI between DCNA and ICNA (which can be the same as CID).

The aforementioned architectures SNA, DCNA and DECNET represent at the present time the most common network architectures and trace routines. ICNA overlaps all three of the aforementioned architectures and presupposes the use of OSI, on condition that OSI has been defined.

When one terminal of the aforementioned terminals T1–T4 is occupied or is activated, it will be connected automatically to the path selection equipment RI, RS, RD or RE, of the group or architecture to which it belongs. The operator initiates his work at the terminal by indicating the designation of the task which he wishes to perform. The path selection equipment translates the name of the task into path selection information which is transmitted back to the storage device of the terminal, that is to say to one of the pieces of path selection equipment RT-CI, RT-S, RT-O or RT-E. The storage equipment for the terminal concerned controls the establishment of the connection to that processor which is able to perform the task.

Each piece of path selection equipment may conveniently also be so arranged as to provide automatic switching over from one computer which is already linked to another computer. This may be of interest if the operating task at the terminal changes, and if it is wished to have performed another type of work which the computer concerned is unable to execute. Another reason for the aforementioned switching
over is that the computer concerned may be required to perform a
task of higher priority than that with which it is involved at the
time.

In a preferred embodiment one or more terminals are executed in
such a way that each terminal for each computer and/or each piece
of path selection equipment is able to transmit a code which
describes the characteristics and execution of the terminal, for
example the key arrangement, graphics, capabilities, colour, and
print-out capabilities, etc. The path selection equipment is able
in a preferred embodiment to take into account the aforementioned
terminal characteristics when selecting the computer. The path
selection equipment notifies the terminal of any restrictions on
the use of the terminal for the desired task. The path selection
equipment can also notify the terminals of the type of terminal
which should be used if complete processing of the task is desired.
The aforementioned information can also be provided by the computer
if information relating to the type of terminal is transmitted
further to the computer.

Different instances of trace routine conversion may occur in
accordance with the above. If the terminal and the processor are
matched to the same architecture and trace routine, no conversion
equipment will be linked in. Conversion equipment will be required
if either the processor or the terminal is matched to ICNA. If
neither the terminal nor the processor is matched to ICNA, then
two pieces of conversion equipment will require to be linked
together via ICNA. The connection between the ICNA terminal T1 and
the SNA processor P3 is routed via the selector network V and the
conversion equipment CIS. Similarly, T1 is connected to P1 and P2
via CID and CIE respectively. The connection between, for example,
SNA terminal T2 and the DCNA processor P1 is routed via the
selector network V, the conversion equipment CSI, the fixed
connection 1, once more through the selector network, and the
conversion equipment CID. T2 communicates with P2 via V, CDI, the
connection 2, V and CIE, and so on.

The Table below shows the occasions when the different pieces of
conversion equipment are required.
The concept for the equipment illustrated contains functions for the control, monitoring and administration of the network, which is shown clearly in Figure 2. The pieces of path selection equipment connected to the network K in Figure 1 are indicated in Figure 2 by the designation R. The pieces of conversion equipment and the processors in accordance with Figure 1 are included in a similar fashion in Figure 2 and are indicated respectively by the designations C and P. The central monitoring organs in the network are symbolized by CDP (Central Monitoring Processors). Control paths 1–6 are indicated by arrows. The arrow 1 indicates the possibility for changing the path selection information, the blocking of certain traffic and/or the allocation of priority to certain traffic via the pieces of equipment R. The arrow 2 indicates availability information and/or traffic statistics from the path selection equipment. The arrow 3 indicates availability information and/or traffic statistics from the conversion equipment, whereas the arrow 4 indicates corresponding information or statistics from the processors P. The processors can also be controlled so as to allocate priority to certain traffic, as indicated by the arrow 5. The interruption of certain connections, for example those with low priority, can also be controlled; see the arrow 6.

The central monitoring processors may be of a previously disclosed type and may include connections for a printer S, a screen B and a keyboard T A, etc.

Changes to traffic path information shall be capable of being made from appropriate central points in the network, cf. CDP, which will arrive at the pieces of path selection equipment R via separate selectors. The terminals and the operators must identify themselves to the path selection equipment R so that the latter can select a
path or, if necessary, block traffic on the basis of its origin. Processors and pieces of conversion equipment shall meter their traffic continuously and shall notify blocking situations to the central monitoring points of the network, which in turn control the operation of the path selection equipment. The path selection equipment shall be able to communicate with the central monitoring points of the network and shall notify any communication requirements which cannot be executed. The possibility shall be afforded of interrupting connections of low priority via the processors from a central point in the network, should the information from the path selection equipment so require.

The invention is not restricted to the embodiment described above by way of example, but may undergo modifications within the context of the following Patent Claims and the idea of invention.
PATENT CLAIMS

1. Arrangement permitting communication between pieces of equipment in a communications network involving the integration of at least two networks with different network architectures (SNA, DCNA, DECNET) and exhibiting its own specific architecture (ICNA) independent of the aforementioned architecture, in addition to which there are connected to the selector system of the network pieces of conversion equipment via which connections between pieces of equipment for different network architectures are capable of being linked, characterized in that connections between pieces of equipment belonging to the specific architecture (ICNA) and a second network architecture (SNA, DCNA or DECNET) are routed via a piece of conversion equipment (e.g. CID) and connections between pieces of equipment belonging to two other network architectures (SNA, DCNA or SNA, DECNET, etc.) are routed via two pieces of conversion equipment (e.g. CSI—CDI) wired in series.

2. Arrangement in accordance with Patent Claim 1, characterized in that the first pieces of conversion equipment (CID, CIE, CIS) are so arranged as to be utilized for the conversion of trace routines between equipment in the specific network architecture (ICNA) and equipment in each of the aforementioned other network architectures (SNA, DCNA, DECNET).

3. Arrangement in accordance with Patent Claim 2, characterized in that other pieces of conversion equipment (CEI, CDI and CSI) are so arranged as to be wired in series with the aforementioned first pieces of conversion equipment for the purpose of the conversion of trace routines between equipment belonging to two of the aforementioned other network architectures (SNA, DCNA, DECNET).
INTERNATIONAL SEARCH REPORT

International Application No.: PCT/SE84/00351

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC:

- G 06 F 13/00, H 04 L 11/00

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Minimum Documentation Searched</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 3</td>
<td>G 06 F 3/04</td>
</tr>
<tr>
<td>IPC 4</td>
<td>G 06 F 15/16; H 04 L 11/00, 02, 16, 18</td>
</tr>
<tr>
<td>US Cl</td>
<td>340.172.5; 364.100-108, 200, 900</td>
</tr>
</tbody>
</table>

Documentation searched other than Minimum Documentation to the extent that such Documents are Included in the fields searched:

- SE, NO, DK, FI classes as above

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 1 with indication, where appropriate, of the relevant passages 12</th>
<th>Relevance to Claim No. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4 466 063 (SEGARRA) 14 August 1984</td>
<td></td>
</tr>
<tr>
<td>A, E</td>
<td>EP, A2, 0 125 773 (MULDER) 21 November 1984</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "A" document member of the same patent family

IV. CERTIFICATION

- **Date of the Actual Completion of the International Search**: 1985-05-21
- **Date of Mailing of this International Search Report**: 1985-05-29
- **International Searching Authority**: Swedish Patent Office
- **Signature of Authorized Officer**: Jan-Eric Bodin

Form PCT/ISA/210 (second sheet) (January 1985)