International Application Published Under the Patent Cooperation Treaty (PCT)

(11) International Publication Number: WO 85/01961

(43) International Publication Date: 9 May 1985 (09.05.85)

(54) Title: PRODUCTION OF FACTOR VIII AND RELATED PRODUCTS

(57) Abstract

Preparations of recombinant DNA which code for cellular production of human and porcine factor VIII:C and methods of obtaining such DNA and expression thereof in bacteria and eucaryotic cells. New compounds, including deoxyribonucleotides and ribonucleotides which are utilized in obtaining clones which express factor VIII:C are also disclosed.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT:

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>GA</th>
<th>Gabon</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SU</td>
<td>Soviet Union</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
PRODUCTION OF FACTOR VIII AND RELATED PRODUCTS

Prior Application

This application is a continuation-in-part application of U.S. Application Serial No. 546,650 filed on October 28, 1983.

Background of the Invention

This invention relates to the preparation of recombinant deoxyribonucleic acid (DNA) which codes for cellular production of human factor VIII:C, and of DNA which codes for porcine factor VIII:C, to methods of obtaining DNA molecules which code for factor VIII:C, and to expression of human and porcine factor VIII:C utilizing such DNA, as well as to novel compounds, including deoxyribonucleotides and ribonucleotides utilized in obtaining such clones and in achieving expression of human factor VIII:C. This invention also relates to human AHF and its production by recombinant DNA techniques.

Factor VIII:C is a blood plasma protein that is defective or absent in Hemophilia A disease. This disease is a hereditary bleeding disorder affecting approximately one in 20,000 males. Factor VIII:C has also been known or referred to as factor VIII, the antihemophilic factor (AHF), antihemophilic globulin (AHG), hemophilic factor A, platelet cofactor, thromboplastinogen, and thrombocytolysin. It is referred to as "Factor VIII:C", to indicate that it is the compound which affects clotting activity. As used herein, "factor VIII:C" and "AHF" are synonymous.

Although the isolation of AHF from blood plasma has been described in the literature, the precise structure of AHF has not previously been identified, due in part to the unavailability of sufficient quantities of pure material, and the proteolytic nature of many contaminants and purification agents. While some quantities of impure AHF have been available as a concentrated preparation processed from fresh-frozen human plasma, the extremely low concentration of AHF in human plasma and the high cost of obtaining and processing human plasma make the cost of
this material prohibitive for any extensive treatment of hemophilia.

The present invention makes it possible to produce human AHF using recombinant DNA techniques.

AHF, like other proteins, is comprised of some twenty different amino acids arranged in a specific array. By using gene manipulation techniques, a method has been developed which enables production of AHF by identifying and cloning the gene which codes for the human AHF protein, cloning that gene, incorporating that gene into a recombinant DNA vector, transforming a suitable host with the vector which includes that gene, expressing the human AHF gene in such host, and recovering the human AHF produced thereby. Similarly, the present invention makes it possible to produce porcine AHF by recombinant DNA techniques, as well as providing products and methods related to such porcine AHF production.

Recently developed techniques have made it possible to employ microorganisms, capable of rapid and abundant growth, for the synthesis of commercially useful proteins and peptides, regardless of their source in nature. These techniques make it possible to genetically endow a suitable microorganism with the ability to synthesize a protein or peptide normally made by another organism. The technique makes use of fundamental relationships which exist in all living organisms between the genetic material, usually DNA, and the proteins synthesized by the organism. This relationship is such that production of the amino acid sequence of the protein is coded for by a series of three nucleotide sequences of the DNA. There are one or more trinucleotide sequence groups (called codons) which specifically code for the production of each of the twenty amino acids most commonly occurring in proteins. The specific relationship between each given trinucleotide sequence and the corresponding amino acid for which it codes constitutes the genetic code. As a consequence, the amino acid sequence of every protein or peptide is reflected by a corresponding nucleotide sequence, according to
a well understood relationship. Furthermore, this sequence of nucleotides can, in principle, be translated by any living organism. For a discussion of the genetic code, see J. D. Watson, *Molecular Biology of the Gene*, (W. A. Benjamin, Inc., 1977), the disclosure of which is incorporated herein by reference, particularly at 347-77; C. F. Norton, *Microbiology* (Addison, Wesley 1981), and U. S. Patent No. 4,363,877, the disclosure of which is incorporated herein by reference.

The twenty amino acids from which proteins are made, are phenylalanine (hereinafter sometimes referred to as "Phe" or "F"), leucine ("Leu", "L"), isoleucine ("Ile", "I"), methionine ("Met", "M"), valine ("Val", "V"), serine ("Ser", "S"), proline ("Pro", "P"), threonine ("Thr", "T"), alanine ("Ala", "A"), tyrosine ("Tyr", "Y"), histidine ("His", "H"), glutamine ("Gln", "Q"), asparagine ("Asp", "N"), glutamic acid ("Glu", "E"), cysteine ("Cys", "C"), tryptophane ("Trp", "W"), arginine ("Arg", "R") and glycine ("Gly", "G"). The amino acids coded for by the various combinations of trinucleotides which may be contained in a given codon may be seen in Table 1:
<table>
<thead>
<tr>
<th>First Position</th>
<th>Second Position</th>
<th>Third Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Phe</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Phe</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stop*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stop*</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>His</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gly</td>
<td></td>
</tr>
</tbody>
</table>

The "Stop" or termination codon terminates the expression of the protein.
Knowing the deoxyribonucleotide sequence of the gene or DNA sequence which codes for a particular protein allows the exact description of that protein's amino acid sequence. However, the converse is not true; while methionine is coded for by only one codon, the other amino acids can be coded for by up to six codons (e.g. serine), as is apparent from Table 1. Thus there is considerable ambiguity in predicting the nucleotide sequence from the amino acid sequence.

In sum, prior to the present invention, very little was known about the structure of AHF, and, despite substantial work over many years, those skilled in this art were unable to determine the structure of AHF, or of its gene, or provide any procedure by which AHF could be produced in substantially pure form in substantial quantities.

The method described herein by which the gene for human AHF is cloned and expressed includes the following steps:

1. Purification of porcine AHF;
2. Determination of the amino acid sequence of porcine AHF;
3. Formation of oligonucleotide probes, and use of those probes to identify and/or isolate at least a fragment of the gene which codes for porcine AHF;
4. Use of the porcine AHF gene fragment to identify and isolate human genetic material which codes for human AHF;
5. Using the previously described AHF DNA fragments to determine the site of synthesis of AHF from among the various mammalian tissues;
6. Producing cDNA segments which code for human and porcine AHF, using messenger RNA obtained from the tissue identification in step 5;
(7) Constructing full length human and porcine cDNA clones from the cDNA segments produced in step 6, e.g. by ligating together cDNA segments which were cut by the same restriction enzymes;

(8) Forming DNA expression vectors which are capable of directing the synthesis of AHF;

(9) Transforming a suitable host with the expression vectors bearing the full length cDNA for human or porcine AHF;

(10) Expressing human or porcine AHF in the host; and

(11) Recovering the expressed AHF.

In the course of this work, a new technique of screening a genomic DNA library has been developed utilizing oligonucleotide probes based on the amino acid sequences contained in the AHF molecule.

The invention includes the above methods, along with the various nucleotides, vectors, and other products made in connection therewith.

Brief Summary of The Drawings

Figure 1 is a depiction of the amino acid sequence (A) determined for the amino terminal sequence of the 69,000 dalton thrombin cleavage product described in Example 1. The first residue was not identifiable. This sequence is compared with sequence (B) deduced from the nucleotide sequence of the porcine AHF exon described in Example 3, and with the human AHF exon sequence (C) described in Example 4.

Figure 2 illustrates the amino acid sequence, shown in single letter code, of bovine thrombin digestion fragments of (A) the amino terminus and (B) a 40 Kd thrombin cleavage product of the 166 Kd porcine AHF fragment isolated by Fass et al., infra.

Figure 3 illustrates the design of an oligonucleotide
probe for the identification and isolation of at least a portion of the porcine gene which codes for AHF.

Figure 4 illustrates the DNA sequence for a Sma I DNA fragment (34-S1) which contains a porcine AHF exon, derived from bacteriophage PB34 described in Example 3.

Figure 5 is a representation of the DNA sequence of the Hae III insert 34-H1 bearing the exon for porcine AHF, as described in Example 3. This sequence is included within the longer sequence shown in Figure 4 and corresponds to nucleotides 250-615 of the sequence in Figure 4.

Figure 6 is a representation of the DNA sequence along with the deduced amino acid sequence for nucleotides 34-84 for a portion of the Sau 3AI insert of clone 25-S1, showing a portion of the exon for human AHF, as described in Example 4.

Figure 7 illustrates the DNA nucleotide sequence (shown in one strand only) which contains the entire sequence coding for human AHF, along with the deduced amino acid sequence for human AHF.

Detailed Description of the invention

The following definitions are supplied in order to facilitate the understanding of this case. To the extent that the definitions vary from meanings circulating within the art, the definitions below are to control.

Amplification means the process by which cells produce gene repeats within their chromosomal DNA.

Cotransformation means the process of transforming a cell with more than one exogenous gene foreign to the cell, one of which confers a selectable phenotype on the cell.

Downstream means the direction going towards the 3' end of a nucleotide sequence.

An enhancer is a nucleotide sequence that can potentiate the transcription of genes independent of the identity of the gene, the position of the sequence in relation to the gene, or
the orientation of the sequence.

A gene is a deoxyribonucleotide sequence coding for a
given mature protein. For the purposes herein, a gene shall not
include untranslated flanking regions such as RNA transcription
initiation signals, polyadenylation addition sites, promoters or
enhancers.

A selection gene is a gene that confers a phenotype on
cells which express the gene as a detectable protein.

A selection agent is a condition or substance that
enables one to detect the expression of a selection gene.

Phenotype means the observable properties of a cell as
expressed by the cellular genotype.

Genotype means the genetic information contained within a
cell as opposed to its expression, which is observed as the
phenotype.

Ligation is the process of forming a phosphodiester bond
between the 5' and 3' ends of two DNA strands. This may be
accomplished by several well known enzymatic techniques,
including blunt end ligation by T4 ligase.

Orientation refers to the order of nucleotides in a DNA
sequence. An inverted orientation of a DNA sequence is one in
which the 5' to 3' order of the sequence in relation to another
sequence is reversed when compared to a point of reference in the
DNA from which the sequence was obtained. Such points of
reference can include the direction of transcription of other
specified DNA sequences in the source DNA or the origin of
replication of replicable vectors containing the sequence.

Transcription means the synthesis of RNA from a DNA
template.

Transformation means changing a cell's genotype by the
cellular uptake of exogenous DNA. Transformation may be detected
in some cases by an alteration in cell phenotype. Transformed
cells are called transformants. Pre-transformation cells are
referred to as parental cells.
Translation means the synthesis of a polypeptide from messenger RNA (mRNA).

The present invention permits, for the first time, the identification and isolation of porcine Factor VIII:C gene by recombinant DNA techniques. It also permits, for the first time, the isolation and identification of the gene which encodes human factor VIII:C by recombinant DNA techniques, by taking advantage of the homology between porcine AHF DNA and human AHF DNA in order to locate and isolate the human gene for AHF. This route to cDNA clones for producing AHF via homology with the porcine AHF gene avoids the tedious time consuming and expensive need to purify human AHF, which is highly expensive and essentially unavailable.

Porcine AHF is first highly purified, most preferably by a monoclonal antibody purification technique such as that disclosed by David Fass et al., "Monoclonal Antibodies to Porcine AHF Coagulant and Their Use in the Isolation of Active Coagulant Protein," Blood 59: 594-600 (1982), and Knutsen et al., "Porcine Factor VIII:C prepared by affinity Interaction with Von Willebrand Factor and Heterologous Antibodies," Blood, 59: 615-24 (1982), the disclosures of both of which are incorporated herein by reference. Porcine factor VIII:C polypeptides are bound to anti-VIII:C monoclonal antibodies which are immobilized on a suitable affinity chromatography column. Two large molecular weight polypeptides, having molecular sizes of about 166 and 130 Kd, are eluted with ethylenediamine tetraacetic acid. Another protein segment having a molecular weight of about 76 Kd, is then eluted from the column, utilizing about 50% ethylene glycol. The partial amino acid sequences of these polypeptides, and/or of fragments of these polypeptides obtained in a known manner, e.g. from enzymatic digestion of the proteins, using bovine thrombin or other suitable agents to break up the proteins, are then determined by known methods of analysis. Based on the amino acid sequence of these materials, oligonucleotide probes are
synthesized, at least some of which will hybridize with DNA segments which code for the corresponding segment of AHF. These oligonucleotides are then used to screen for segments of the gene which code for porcine AHF.

Once a portion of the porcine gene for AHF is obtained, that recombinant material is used to screen a human genomic DNA library to locate and isolate the gene which codes for human AHF. In this procedure, it is established that there are substantial similarities between human AHF and porcine AHF, and advantage is taken of those similarities to isolate and identify the human factor VIII:C gene or gene segments.

The similarities in the porcine and human proteins are attributable to corresponding similarities in the DNA sequences which code for the amino acid sequences. The genetic materials coding for the AHF proteins in humans and pigs are identical at a high percentage of positions, and thus exhibit hybridization when subjected to the procedure of, for example, Benton and Davis, "Screening gt Recombinant Clones by Hybridization to Single Plaques In Situ," Science, 196:180 (1977), the disclosure of which is incorporated herein by reference.

The cloned segments of the gene for human AHF are then used to identify a source for AHF mRNA from among various human tissues. Similarly, one or more of the cloned segments for porcine AHF are used to screen potential tissue sources for porcine mRNA. This step is accomplished by conventional procedures involving RNA extraction, gel electrophoresis, transfer to nitrocellulose sheets, and hybridization to radiolabelled cloned DNA as described for example in Maniatis, et. al., Molecular Cloning, A Laboratory Manual, (Cold Spring Harbor Laboratory, 1982). Once this tissue source is identified, cDNA libraries are prepared (in either plasmid or preferably bacteriophage lambda vectors, both of which are generally available) and screened for AHF cDNA clones as described below. The process of cDNA library screening is repeated until a set of
cDNA clones is obtained which, by DNA sequence determination, is shown to comprise the entire DNA gene sequence encoding AHF.

Once the full length human or porcine AHF cDNA clone is obtained, known and appropriate means are utilized to express the AHF protein, e.g. insertion into an appropriate vector, and transfection into an appropriate host, selection of transformed cells (transformants), and culture these transformants, to express AHF activity.

Host-vector systems for the expression of AHF may be procaryotic, but the complexity of AHF makes the preferred expression system eucaryotic, preferably (at least for biologically-active AHF having clotting activity) a mammalian one. This is easily accomplished by eucaryotic (usually mammalian or vertebrate cells) transformation with a suitable AHF vector. Eucaryotic transformation is in general a well-known process, and may be accomplished by a variety of standard methods. These include the use of protoplast fusion, DNA microinjection, chromosome transfection, lytic and nonlytic viral vectors (For example, Mulligan et al., "Nature" (London) 277:108-114 (1979), cell-cell fusion (Fournier et al., "Proc. Nat. Acad. Sci." 74:319-323 (1977), lipid structures (U.S. patent 4,394,448) and cellular endocytosis of DNA precipitates (Bachetti et al., "Proc. Nat. Acad. Sci. 74:1590-1594 (1977). Other eucaryotic cells, such as yeasts or insect cells, may also be used to advantage.

Transformation which is mediated by lytic viral vectors is efficient but is disadvantageous for a number of reasons: The maximum size of transfected DNA is limited by the geometry of viral capsid packing, the exogenous genes are frequently deleted during viral replication, there is a requirement for helper virus or specialized hosts, host cells must be permissive, and the hosts are killed in the course of the viral infection.

Nonlytic transformations are based on the transcription and translation of virus vectors which have been incorporated
into a cell line as a stable episome. These systems generally require unique cell lines and suffer from a number of disadvantages. See "Trends in Biochemical Sciences", June 1983, pp. 209-212.

On the other hand, other transformation methods in which extrachromosomal DNA is taken up into the chromosomes of host cells have been characterized by low frequencies of transformation and poor expression levels. These initial difficulties were ameliorated by transformation with genes which inheritably confer selectable phenotypes on the small subpopulation of cells that are in fact transformed (selection genes). The entire population of transformed cells can be grown under conditions favoring cells having acquired the phenotype, thus making it possible to locate transformed cells conveniently. Thereafter, transformants can be screened for the capability to more intensely express the phenotype. This is accomplished by changing a selection agent in such a way as to detect higher expression.

Selection genes fall into three categories: Detectably amplified selection genes, dominant selection genes, and detectably amplified dominant selection genes.

Detectably amplified selection genes are those in which amplification can be detected by exposing host cells to changes in the selection agent. Detectably amplified genes which are not dominant acting generally require a parental cell line which is genotypically deficient in the selection gene. Examples include the genes for hydroxymethylglutaryl-CoA reductase (Sinensky, "Biochem. Biophys. Res. Commun" 78:863 (1977), ribonucleotide reductase (Meuth et al. "Cell":3:367 (1943), aspartate transcarbamylase; (Kemp et al. "Cell" 2:541 (1976), adenylyl deaminase (DeBatisse et al. "Mol and Cell Biol." 2(11):1346-1353 (1982) mouse dihydrofolate reductase (DHFR) and, with a defective promoter, mouse thymidine kinase (TK).

Dominant selection genes are those which are expressed in
transformants regardless of the genotype of the parental cell. Most dominant selection genes are not detectably amplified because the phenotype is so highly effective in dealing with the selection agent that it is difficult to discriminate among cell lines that have or have not amplified the gene. Examples of dominant selection genes of this type include the genes for procaroytic enzymes such as xanthine-guanine phosphoribosyltransferase (Mulligan et al. "Proc. Nat. Acad. Sci." 78[4]:2072-2076 (1981) and aminoglycoside 3' - phosphotransferase (Colbere-Garapin et al., "J. Mol. Biol.", 150:1-14 (1981).

Some dominant selection genes also are detectably amplified. Suitable examples include the mutant DHFR gene described by Haber et al., "Somatic Cell Genet." 4:499-503 (1982), cell surface markers such as HLA antigens and genes coding for enzymes such as specific esterases that produce fluorescent or colored products from fluorogenic or chromogenic substrates as is known in the art.

Detectably-amplified, dominant selection genes are preferred for use herein. It should be understood that a dominant selection gene in some cases can be converted to a detectably amplified gene by suitable mutations in the gene.

Selection genes at first were of limited commercial utility. While they enabled one to select transformants having the propensity to amplify uptaken DNA, most selection genes produced products of no commercial value. On the other hand, genes for products which were commercially valuable generally did not confer readily selectable (or even detectable) phenotypes on their transformants. This would be the case, for example, with enzymes or hormones which do not provide transformed cells with unique nutrient metabolic or detoxification capabilities. Most proteins of commercial interest fall into this group, e.g. hormones, proteins participating in blood coagulation and fibrinolytic enzymes.
Subsequently it was found that eucaryotic cells having the propensity to be transformed with and amplify the selection gene would do the same in the case of the product gene. By following the selection gene one could identify a subpopulation of transformant cells which coexpress and coamplify the product gene along with the selection gene. It has been the practice to culture the transformants in the presence of the selection agent and to conclude that transformants having increased expression of the selection gene will also show increased expression of the product gene. This is not always the case, as will be more fully explored below. Axel et al. (U.S. patent 4,399,216) use the term cotransformation to describe the process of transforming a cell with more than one different gene, whether by vector systems containing covalently linked or unlinked genes, and in the latter case whether the genes are introduced into host cells sequentially or simultaneously. Cotransformation should "allow the introduction and stable integration of virtually any defined gene into cultured cells" (Wigler et al. "Cell", 16:777-785, (1975), and "by use of the cotransformation process it is possible to produce eucaryotic cells which synthesize desired proteinaceous and other materials" (U.S. patent 4,399,216, column 3, lines 37-42).

Transformation Vectors

Vectors used in AHF cotransformation will contain a selection gene and the AHF gene. In addition there usually will be present in the transformation or cotransformation vectors other elements such as enhancers, promoters, introns, accessory DNA, polyadenylation sites and 3' noncoding regions as will be described below.

Suitable selection genes are described above. It is preferred that the selection agent be one that prevents cell growth in the absence of the selection gene. That way, revertant cells in large scale culture that lose the selection gene (and presumably the AHF gene as well) will not over-grow the
fermentation. However, it would be desirable in the commercial production of AHF to avoid the use of cell toxins, thereby simplifying the product purification steps. Thus, a desirable selection gene would be one that enables transformants to use a nutrient critical for growth that they otherwise would not be able to use. The TK gene described above is an example.

Two classes of vectors have been employed in cotransformation. The first class are the unlinked vectors. Here the selection gene and the AHF gene are not covalently bound. This vector class is preferred because the step of ligating or otherwise bonding the two genes is not required. This simplifies the transformation process because the selection and product genes usually are obtained from separate sources and are not ligated in their wild-type environment. In addition, the molar ratio of the AHF and selection genes employed during cotransformation can be adjusted to increase cotransformation efficiency.

The second class of cotransformation vectors are linked vectors. These vectors are distinguished from unlinked vectors in that the selection and AHF genes are covalently bound, preferably by ligation.

The vectors herein may also include enhancers. Enhancers are functionally distinct from promoters, but appear to operate in concert with promoters. Their function on the cellular level is not well understood, but their unique characteristic is the ability to activate or potentiate transcription without being position or orientation dependent. Promoters need to be upstream of the gene, while enhancers may be present upstream or 5' from the promoter, within the gene as an intron, or downstream from the gene between the gene and a polyadenylation site or 3' from the polyadenylation site. Inverted promoters are not functional, but inverted enhancers are. Enhancers are cis-acting, i.e., they have an effect on promoters only if they are present on the same DNA strand. For a general discussion of enhancers see Khoury et

Preferred enhancers are obtained from animal viruses such as simian virus 40, polyoma virus, bovine papilloma virus, retrovirus or adenovirus. Viral enhancers may be obtained readily from publically available viruses. The enhancer regions for several viruses, e.g., Rous sarcoma virus and simian virus 40, are well known. See Luciw et al., "Cell" 32:705-716 (1983). It would be a matter of routine chemistry to excise these regions on the basis of published restriction maps for the virus in question and, if necessary, modify the sites to enable splicing the enhancer into the vector as desired. For example, see Kaufman et al, "J. Mol. Biol.", 152:601-621 (1982) and "Mol. Cell Biol." 2(11):1304-1319 (1982) the disclosures of both of which are incorporated herein by reference. Alternatively, the enhancer may be synthesized from sequence data; the sizes of viral enhancers (generally less than about 150 bp) are sufficiently small that this could be accomplished practically.

Another element which should be present in the vector assembly is a polyadenylation splicing (or addition) site. This is a DNA sequence located downstream from the translated regions of a gene, shortly downstream from which in turn transcription stops and adenine ribonucleotides are added to form a polyadenine nucleotide tail at the 3' end of the messenger RNA. Polyadenylation is important in stabilizing the messenger RNA against degradation in the cell, an event that reduces the level of messenger RNA and hence the level of product protein.

Eucaryotic polyadenylation sites are well known. A concensus sequence exists among eucaryotic genes: The hexanucleotide 5'-AAUAAA-3' is found 11-30 nucleotides from the point at which polyadenylation starts. DNA sequences containing polyadenylation sites may be obtained from viruses in accord with published reports. Exemplary polyadenylation sequences can be obtained from mouse beta-globulin, and simian virus 40 late or early region genes, but viral polyadenylation sites are
preferred. Since these sequences are known, they may be synthesized in vitro and ligated to the vectors in conventional fashion.

A polyadenylation region must be located downstream from either the AHF and/or selection gene, but may be ligated to either gene. It may be ligated to the selection gene only, and not the product gene, and this will be the case whether the vectors are linked or unlinked. The sequence which separates the polyadenylation site from the translational stop codon is preferably an untranslated DNA oligonucleotide such as an unpromoted eucaryotic gene. Since such oligonucleotides and genes are not endowed with a promoter they will not be expressed. The oligonucleotide should extend for a considerable distance, on the order of up to about 1,000 bases, from the stop codon to the polyadenylation site. This 3' untranslated oligonucleotide generally results in an increase in product yields. The vector may terminate from about 10 to about 30 bp downstream from the consensus sequence, but it is preferable to retain the 3' sequences found downstream from the polyadenylation site in its wild-type environment. These sequences typically extend about from 200 to 600 base pairs downstream from the polyadenylation site.

The vectors described herein may be synthesized by techniques well known to those skilled in this art. The components of the vectors such selection genes, enhancers, promoters, and the like may be obtained from natural sources or synthesized as described above. Basically, if the components are found in DNA available in large quantity, e.g. components such as viral functions, or if they may be synthesized, e.g. polyadenylation sites, then with appropriate use of restriction enzymes large quantities of vector may be obtained by simply culturing the source organism, digesting its DNA with an appropriate endonuclease, separating the DNA fragments, identifying the DNA containing the element of interest and
recovering same. Ordinarily, a transformation vector will be assembled in small quantity and then ligated to a suitable autonomously replicating synthesis vector such as a procaryotic plasmid or phage. The pBR322 plasmid may be used in most cases. See Kaufman et al., op. cit.

The synthesis vectors are used to clone the ligated transformation vectors in conventional fashion, e.g. by transfection of a permissive procaryotic organism, replication of the synthesis vector to high copy number and recovery of the synthesis vector by cell lysis and separation of the synthesis vector from cell debris.

The resulting harvest of synthesis vector may be directly transfected into eucaryotic cells, or the transformation vector may be rescued from the synthesis vector by appropriate endonuclease digestion, separation by molecular weight and recovery of the transformation vector. Transformation vector rescue is not necessary so long as the remainder of the synthesis vector does not adversely affect eucaryotic gene amplification, transcription or translation. For example, the preferred synthesis vector herein is a mutant of the E. coli plasmid pBR322 in which sequences have been deleted that are deleterious to eucaryotic cells. See Kaufman et al., op. cit. Use of this mutant obviates any need to delete the plasmid residue prior to cotransformation.

Cotransformation, Selection and Detection of Amplification

The cells to be transformed may be any eucaryotic cell, including yeast protoplasts, but ordinarily a nonfungal cell. Primary explants (including relatively undifferentiated cells such as stem cells), and immortal and/or transformed cell lines are suitable. Candidate cells need not be genotypically deficient in the selection gene so long as the selection gene is dominant acting.

The cells preferably will be stable mammalian cell lines
as is discussed above. Cell lines that are known to stably integrate selection genes into their chromosomal DNA are best, for example Chinese hamster ovary (CHO) cell lines. Also useable are HeLa, COS monkey cells, melanoma cell lines such as the Bowes cell line, mouse L cells, mouse fibroblasts and mouse NIH 3T3 cells.

Cotransformation with unlinked vectors may be accomplished serially or simultaneously, (see U.S. patent 4,399,216). Methods for facilitating cellular uptake of DNA are described above. Microinjection of the vector into the cell nucleus will yield the highest transformation efficiencies, but exposing parental cells to DNA in the form of a calcium phosphate precipitate is most convenient. Considerably better cotransformation efficiencies result from cotransformation with a molar excess of product to selection gene, on the order of 100:1.

The population of cells that has been exposed to transforming conditions is then processed to identify the transformants. Only a small subpopulation of any culture which has been treated for cotransformation will exhibit the phenotype of the selection gene. The cells in the culture are screened for the phenotype. This can be accomplished by assaying the cells individually with a cell sorting device where the phenotype is one that will produce a signal, e.g. fluorescence upon cleavage of a fluorogenic substrate by an enzyme produced by the selection gene. Preferably, however, the phenotype enables only transformants to grow or survive in specialized growth media as is further discussed above.

Selection transformants then will be screened for ligation of the product gene into their chromosomes or for expression of the product itself. The former can be accomplished using Southern blot analysis, the latter by standard immunological or enzymatic assays.

Once the transformants have been identified, steps are taken to amplify expression of the product gene by further
cloning in the presence of a selection agent such as MTX. See U.S. Patent 4,399,216.

Cotransformants which may be produced in accordance with the processes described herein are suitable for in vivo transfections of higher organisms in accordance with known techniques. Primary explants or stable cell lines from a potential host animal are cotransformed and inoculated into the host or a substantially otherwise syngeneic host which is genotypically deficient in the product protein.

The invention will be further understood with reference to the following illustrative embodiments, which are purely exemplary, and should not be taken as limitive of the true scope of the present invention, as described in the claims.

Unless otherwise noted, restriction endonucleases are utilized under the conditions and in the manner recommended by their commercial suppliers. Ligation reactions are carried out as described by Maniatis et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory 1982) at 245-6, the disclosure of which is incorporated herein by reference, using the buffer described at page 246 thereof and using a DNA concentration of 1-100 µg/ml, at a temperature of 23°C for blunt ended DNA and 16°C for "sticky ended" DNA. "Phosphataseing" as described herein, refers to dephosphorylation of DNA, and is carried out in the manner described by Maniatis et al., supra, e.g. at page 133 et seq. "Kinasing" refers to phosphorylation of DNA. Electrophoresis is done in 0.5-1.5% Agarose gels containing 90 mM Tris-borate, 10 mM EDTA. "Nick-translating" refers to the method for labeling DNA with 32P as described by Rigby et al., J. Mol. Biol., 113:237 (1977). All radiolabeled DNA is labeled with 32P, whatever labeling technique was used.

By "rapid prep" is meant a rapid, small scale production of bacteriophage or plasmid DNA, e.g., as described by Maniatis et al., supra, at p. 365-373.

In accordance with another aspect of this invention,
there is provided a pharmaceutical preparation of AHF. A pharmaceutical preparation of human AHF produced in accordance with this invention may be prepared for parenteral administration in accordance with procedures well known in the art.

The pharmaceutical preparation for human use comprises sterilized AHF recovered from transformed cells. In addition to the AHF polypeptide or sufficient portion thereof which produces AHF activity, there may be included one or more acceptable carriers therefor and optionally other therapeutic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with other ingredients of the preparation and not deleterious to the recipient thereof. The preparation may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.

The pharmaceutical preparation of this invention, suitable for parenteral administration, may conveniently comprise a sterile lyophilized preparation of the AHF polypeptide which may be reconstituted by addition of sterilized solution to produce solutions preferably isotonic with the blood of the recipient. The preparation may be presented in unit or multi-dose containers, for example sealed ampoules or vials.

It should be understood that in addition to the sterile AHF or solution thereof, the pharmaceutical preparation of this invention may include one or more additional ingredients such as diluents, buffers, binders, surface active agents, thickeners, lubricants, preservatives (including anti-oxidants) and the like. Gelatine, lactose, starch, magnesium stearate, micronized silica gel, cocoa butter, talc, vegetabilic and animalic fats and oils, vegetabilic rubber and polyalkylene glycol and other known carriers for pharmaceuticals are all suitable for manufacturing the pharmaceutical preparations of the present invention. Preparations for parenteral use include an ampoule of a sterile solution or suspension with water or other pharmaceutically acceptable liquid as the carrier therefor, or an ampoule of
sterile solid AHF for dilution with a pharmaceutically acceptable liquid.

The pharmaceutical preparation of the present invention is useful in the treatment of Hemophilia A. These preparations also provide an important tool in the in vivo as well as the in vitro study of the processes involved in clotting and in the study of the immunological and biological characteristics of the AHF molecule.

Example 1. Protein Sequence Analysis

Porcine factor VIII:C was purified by Dr. David Fass according to published procedures, Knutsen and Fass (1982); Fass et al. (1982), supra. Amino acid sequence analysis is performed on a bovine thrombin digest product of the 76,000 dalton protein as described below.

Porcine AHF polypeptides bound to the anti-VIII:C monoclonal antibody column, can be successively eluted in two steps (Fass et al. 1982). The two larger molecular weight species, 166,000 and 130,000 daltons, can be eluted with EDTA. The remaining polypeptide, having a molecular weight of about 76,000 daltons, can then be eluted with 50% ethylene glycol.

The 76,000 dalton protein is digested with thrombin after extensive dialysis in 50 mM Tris-Cl (pH 7.5), 0.15 M NaCl. Bovine thrombin digests are performed at room temperature for 60 minutes using 1 unit/ml of bovine thrombin, followed by the addition of another 1 unit/ml thrombin and incubation for an additional 60 minutes. The thrombin digestions are terminated by heating for 10 minutes at 90°C in 0.01% SDS. The major thrombin digest product of the 76,000 dalton protein is a polypeptide, 69,000 daltons (69 Kd).

Less than 1 μg of the 69 Kd polypeptide species described above is iodinated to serve as a radioactive marker after SDS gel electrophoresis, in accordance with the procedure of U. K. Laemmli, Nature, 227:680 (1970), the disclosure of which is
incorporated herein by reference. The polypeptide, dissolved in TAS buffer (50 mM Tris-acetate (pH 7.8), 0.1% SDS) is added to 100 µl of the same buffer containing 5 mCi of carrier-free iodine-125. 50 µl of 2.5 mg/ml chloramine T (Baker) in TAS buffer are added and the solution agitated for 1 minute. The reactions are stopped by adding 50 µl 2.5 mg/ml sodium metabisulfate in TAS buffer followed by 1 minute agitation. Labeled protein is separated from unincorporated I125 by chromatography using a small volume Sephadex G-25 M column (PD-10, Pharmacia). The column is pre-equilibrated with several column volumes of TAS buffer containing 2.5 mg/ml sodium iodide. The void volume is collected and protein integrity analyzed by SDS gel electrophoresis in accordance with the procedures of Laemmli, (1970), supra.

The radioactively labeled 69 Kd protein is added to its unlabeled counterpart for subsequent monitoring. The protein is then individually electrophoretically concentrated. The protein solutions are adjusted to 0.1% SDS, 10 mM dithiothreitol and Coomassie brilliant blue (Serva) are added to make the solution a very pale blue.

The solutions are then dialyzed briefly (1-2 hours) in TAS buffer using Spectrapore dialysis tubing (made by Spectrum Medical Industries, Inc., with molecular weight cut off at about 14,000). The dialyzed protein samples are then placed in an electrophoretic concentrator, of the design suggested by Hunkapiller, et al. Meth. Enzymol., Enzyme Structures, Part I, 91:227 (1983), and electrophoretically concentrated in TAS buffer for 24 hours at 50 volts.

The 69 Kd AHF polypeptide, concentrated by the above procedure, is electrophoresed through an SDS-polyacrylamide gel in accordance with Laemmli, supra. The purified protein, identified by autoradiography of the radioactively labeled tracer polypeptide, is excised from the gel and electroeluted and concentrated as described by Hunkapiller et al., supra. The
concentrated sample is suitable for direct amino acid sequence analysis using the gas phase sequenator as described in Hewick et al., *J. Biol. Chem.* 256:7990 (1981).

The amino terminal sequence extending from the 2-42 residue of the 69,000 dalton thrombin cleavage product is as depicted in Figure 1. The first residue "X" was not identifiable. The amino acid sequences of (A) the amino terminus and (B) a 40 kd bovine thrombin digestion product from the 166 kd AHF fragment noted by Pass et al., *supra*, are shown in Figure 2. The amino acid sequence of the amino terminus of the 76 Kd polypeptide is: X-Ile Ser Leu Pro Thr Phe Gln Pro Glu Glu Asp Lys Met Asp Tyr Asp Asp Ile Phe.

Example 2

Chemical Synthesis of Oligonucleotide Probes for a Porcine AHF Gene

(a) Pentapeptide Probe Pool

The partial amino acid sequence of a fragment of porcine AHF having been determined allows porcine AHF oligonucleotide probes to be designed and synthesized. From the genetic code (Table 1) it is possible to predict the gene sequence that codes for this sequence of amino acids. Because the genetic code is degenerate, there are more than one possible DNA coding sequences for each amino acid sequence. Accordingly, a plurality of pool of complementary oligonucleotide probe sequences are provided for a region of the AHF molecule which required only a reasonable number of oligonucleotides to ensure the correct DNA sequence. Such regions are selected by searching for tracks of five to eight contiguous amino acids which have the lowest degeneracy. After the region is selected, a pool of oligonucleotides is synthesized, which would include all possible DNA sequences which could code for the five to eight amino acids in the selected region.

In the 69,000 dalton thrombin-cleavage fragment of porcine AHF there is a pentapeptide sequence running from the
18th through the 22nd amino acid from the amino terminus, which could be coded for by up to 16 different DNA sequences, each having five codons, for a length of 15 nucleotides.

\[
\begin{array}{cccc}
18 & 20 & 22 \\
Trp & Asp & Tyr & Gly & Met \\
UGG & GAA & UUA & GGU & AUG \\
or & or & or & \\
GAC & UAC & GCC & \\
or & \\
GGA & \\
or & \\
GGG & \\
\end{array}
\]

Possible mRNA Sequences

The probes are made by synthesizing a limited number of mixtures of oligonucleotides with two to eight or more oligonucleotides per mixture. These mixtures are referred to as pools. Enough pools are made to encompass all possible coding sequences.

These oligonucleotides can be synthesized manually, e.g., by the phospho-tri-ester method, as disclosed, for example in R. L. Letsinger, et al., J. Am. Chem. Soc. 98:3655 (1976), the disclosure of which is incorporated by reference. Other methods are well known in the art. See also Matteucci and Caruthers, J. Am. Chem. Soc. 103:3185 (1981), the disclosure of which is incorporated by reference.

Preferably, however, the synthetic oligonucleotide probes for the desired polypeptide sequences are prepared by identical chemistry with the assistance of the completely automatic Applied Biosystems DNA synthesizer, Model 380A, as indicated above.

The oligonucleotides thus prepared can then be purified on a reverse HPLC column, as described by H. Fritz, et al., Biochemistry, 17:1257 (1978), the disclosure of which is incorporated herein by reference. After detritylation with 80% HOAc, the resulting oligonucleotide is normally pure and can be
used directly as a probe. If there are any contaminants, the synthetic DNA can be further purified on the same HPLC column, preferably using a slightly different gradient system.

Oligonucleotides are labelled, e.g. by using [32p]ATP and T4 polynucleotide kinase, and their sequence checked either by two-dimensional homochromatography as described by Sanger et al., *PNAS U.S.A.* 70:1209 (1973) or by the Maxam-Gilbert method, *Meth. Enzymology*, 65:499 (1977), the disclosures of both of which are incorporated herein by reference.

(b) Forty Five Nucleotide Probes

A unique aspect of the present invention has been the use of oligonucleotide probes to screen a genomic DNA library for the AHF gene or fragments thereof. While oligonucleotides have been used for screening of cDNA libraries, see, e.g. M. Jaye, et al., *Nucleic Acids Research* 11:2325 (1982), the disclosure of which is incorporated herein by reference, genomic libraries have previously been screened successfully only with cDNA probes, i.e. probes which were generated only after the tissue source of the mRNA for a described protein had been identified and utilized to generate a cDNA clone which precisely matched the DNA sequence of the gene sought by the genomic search.

In the present case, it has been shown possible to use oligonucleotides to identify gene segments in a genomic library which code for the amino acid sequence of the proteins of interest, and identification of such gene segments provides an exact probe for use in mRNA, cDNA or further genomic screening techniques.

Preferably, as here, oligonucleotides corresponding to at least two segments of the amino acid sequence of the protein of interest are utilized. Preferably at least one of the oligonucleotide probes is used in the form of one or more pools of oligonucleotides which in the aggregate include every possible DNA sequence which could code for the amino acid sequences selected. Preferably one relatively short probe, e.g. 11 to 25
nucleotides, preferably 15 to 20 nucleotides is utilized in conjunction with a relatively long probe, e.g. 30 to 200 nucleotides, preferably 40 to 50 nucleotides. The second probe can be used for confirmation, and is not always necessary for identification of the DNA segment. Preferably at least one of the probes, and more preferably the longer of the probes is designed in accordance with the Rules 1 to 4 described below.

Rule 1. Codon Preference In the absence of other considerations, the nucleotide sequence was chosen which matched prevailing or similar sequences in similar mammalian genes. See Mechanisms of Ageing Dev., 18: (1982).

Rule 2. Advantageous G Pairing The nucleotide G, in addition to bonding to its compliment C, can also form weak bonds with the nucleotide T. See K. L. Agarwal et al., J. Biol. Chem. 256:1023 (1981). Thus, faced with a choice of G or A for the third portion of an ambiguous codon, it is preferable to choose G, since if the resulting hybridization would occur even if the actual nucleotide in the position is a T, rather than a C, the hybridization would still be stable. If an A were chosen incorrectly, the corresponding A:C incompatability could be enough to destroy the ability of the probe to hybridize with the genomic DNA.

Rule 3. Avoidance of 5'CG Sequences When selecting from among the possible ambiguities, select those nucleotides which will not contain the 5'CpG sequence, either intra codon or inter codon.

Rule 4. Mismatch Position In choosing the codon sequences to use, consideration was given to the postulation that mismatches near the ends of the molecule do not adversely affect the stability of the hybridization as do mismatches near the center of the molecule. Thus, for example, where substantial doubt occurred concerning the sequence of a particular codon, and that codon was close to the center of the probe, the tendency was to test a pool of possible nucleotide sequences for that codon,
whereas codon positions near the ends of the probe were more likely to be subject to determinations on the basis of codon preference.

The chosen sequence for the 45-mer probes, as well as the amino acid sequences, the possible DNA sequences, and the "Actual Probe Sequence", i.e. the complement of actual coding strand determined for the AHF exon, as shown in Figure 3.

Thus, out of nucleotide positions involving choices, three were covered by using pools containing both possible nucleotide alternatives, five were predicted correctly, one was predicted in a way to maintain neutrality though incorrect, and four others were in error.

Despite the approximately 11% mismatch (5/45) the pool of 45-mer oligonucleotides are adequate to strongly identify a porcine AHF gene fragment, as described below.

Example 3. Screening of Porcine Genomic Library

A porcine genomic library is constructed using the bacteriophage vector Lambda J1. Lambda J1 is derived from L47.1 (Loenen et al., Gene 20:249 (1980)) by replacement of the 1.37 kb and 2.83 kb Eco RI-Bam HI fragments with a 95 bp Eco RI-Hind III-Xba I-Bgl II-Bam HI polylinker. The 6.6 kb Bam HI fragment is then present as a direct repeat in reverse orientation relative to L47.1. The cloning capacity for Bam HI fragments is 8.6 - 23.8 kb. Bam HI cleaved porcine DNA (prepared as described by Piccini et al., Cell, 30:205 (1982)) is phenol extracted, ethanol precipitated and concentrated by centrifugation in a Microfuge. 0.67 ug of Bam HI porcine DNA is ligated to 2 ug of Lambda J1 Bam HI "arms", prepared as described in Maniatis, et al., supra, pp 275-279, in a volume of 10 ul ligation buffer with 10 units T4 DNA ligase (Maniatis et al., supra, p 474). The ligated DNA is packaged and plated as described in Maniatis et al., supra, p 291.

Approximately 4 x 10^5 pfu are plated on E. coli stain C600 on 15 cm plastic petri plates containing NZCYM agarose, at
8,000 pfu/plate. These recombinant phage are screened by the method of Woo (1979) using the 45-mer probe described above, radioactively labeled with 32p as described above, as a probe. Filters are then hybridized in 5xSSC, 5x Denhardt's, 0.1% SDS, and 5 x 10⁶ cpm/ml probe at 45°C for 16 hours, washed in 5 x SSC, 0.1% SDS at 50°C and subjected to autoradiography using intensifying screens (DuPont Lightning-Plus). Autoradiography reveals numerous phage which hybridized, to varying degrees, with the 45-mer. The filters are then denatured in 0.5M NaOH, neutralized in 1.0M Tris pH7.5, 1.5M NaCl and hybridized to the 15-mer as described for the 45-mer except the hybridization and washing temperature is 37°C. One phage which hybridized to both probes is picked from the original plate and 100 pfu plated and the plaques screened as described above using the 15-mer as probe.

A positive phage, named PB34, is picked as a plug and used to make a plate lysate as described in Maniatis et al., supra, pp 65-66. A small-scale isolation of PB34 DNA is achieved using the procedure described in Maniatis et al., supra, pp 371-372. 10μl of this DNA was cut with the restriction enzyme Hae III and then phosphatased using calf alkaline phosphatase (Boehringer-Mannheim). After phenol extraction, 20 ng of Sma I cut-M13mp8 DNA is added, the solution is made 0.2M NaCl and nucleic acid precipitated by the addition of 2 volumes ethanol. Precipitated DNA is pelleted by centrifugation and redissolved in 2 μl of a ligation mixture and the DNA is ligated for 30 minutes at 23°C, diluted to 50 μl with ligase buffer and ligated an additional 3 hours. 5 μl of this reaction is used to transform E. coli strain JM101/Tcl.

Cells are made competent for transformation by growing to an OD600 of 0.5 at 37°C in 50 ml SOEM media (SOEM is 2% tryptone, 0.5% yeast extract, 0.1M NaCl, 0.11g KCl per liter, 20mM MgSO4). Cells are pelleted by centrifugation at 2500 rpm for 10 minutes at 4°C. The cells are resuspended in 3.5 ml
100mM RbCl, 45mM MnCl2, 50mM CaCl2, 10mM potassium MES pH 6.4 (MES = methylethane sulfonic acid). 200μl of competent cells are transformed with the DNA contained in 5 ml of the ligation reaction at 0°C for 30 minutes. The cells are then heat-shocked at 42°C for 90 seconds after which 4 ml of 0.8% agarose/SDS containing 100 μl stationary JM101/TG1 cells are added and plated on 10 cm SOEM agar petri plates.

A subclone, containing a Hae III fragment from PB34, hybridizing to the 15-mer is identified by screening using the procedure of Benton and Davis, supra. This clone is isolated and prepared for use as a template. The DNA sequence of the Hae III fragment present in this clone, designated as 34-H1, is shown in Figure 5. M13 template DNA is prepared by growing 1.5 ml of infected cells 5 hours at 37°C. Cells are pelleted by centrifugation for 10 minutes in a Beckman microfuge. 1.0 ml of supernatant (containing virus) is removed and 200 μl of 20% polyethylene glycol, 2.5 M NaCl is added. This sample is then incubated at room temperature for 15 minutes followed by centrifugation for 5 minutes in a Beckman microfuge. The pellet is dissolved in 100 μl TE, 7.5 μl of 4M NaCHCOO pH 4.5 is added and the sample extracted twice with a 1:1 mixture of phenol-chloroform and once with chloroform. The single-stranded phage DNA is then precipitated by the addition of 2 volumes of ethanol. Precipitated DNA is pelleted by centrifugation in a Beckman microfuge and dissolved in 30 μl 1mM Tris pH 8.0, 0.1 mM EDTA. The DNA sequencing is performed by the dideoxy chain termination technique, see, e.g., Sanger et al., PNAS U.S.A., 74:5463 (1977), utilizing the 15-mer as a primer. The sequence observed, which is included in the sequences represented in Figs. 4 and 5, confirmed the subclone as containing a porcine AHF exon as it includes the identical 14 amino acids encompassed by the region phenylalanine2 to glutamine15 in the amino terminal sequence of the 69K fragment represented in Figure 1. Further confirmation came from sequencing from the 5' end of the Hae III
insert in the 34-H1 vector, by priming with the "Universal primer" (Bethesda Research Labs) at a point adjacent the polylinker in that vector. Also, the insert from this clone, named 34-H1, was recloned into M13mp9 by restricting the DNA with Eco RI and Hind III, phosphatasing with calf alkaline phosphatase, and ligating to Eco RI, Hind III cleaved M13mp9 DNA. This clone, which contains an inversion of the Hae III segment relative to the universal primer, was also sequenced as described above. The resulting sequence data for all of insert 34-H1 is shown in Figure 5. This sequence confirms that this subclone contains an exon of the porcine AHF gene that could encode, from nucleotides 169 to 267, at least the thirty amino acids from the phenylalanine to arginine of the 69K fragment (Fig. 1).

It appears likely that arginine borders an intron because termination codons can be found downstream from nucleotide 267 (Fig. 5) in all three reading frames, and a sequence similar to the consensus 5' splice site sequence is also found in that region between nucleotides 266-267. Further, the amino acid sequence which would be encoded by the downstream DNA differs completely from that observed in the 69 Kd fragment of porcine AHF.

PB34 DNA was cut with Bam HI and electrophoresed through an agarose gel and the bands visualized by ultraviolet light after staining the gel in 5 μg/ml ethidium bromide. Three inserts of approximately 6.6 kb, 6.0 kb, and 1.8 kb were observed. The DNA in the gel was transferred to nitrocellulose as described in Maniatis et al., supra, pp 383-386. Hybridization of the filter to the 15-mer and autoradiography were performed as described above. Autoradiography revealed that the 6.0 kb band contained an AHF gene fragment which hybridized to the 15-mer probe.

Thus, for the first time, a section of the gene coding for porcine AHF had been isolated and identified. The bacteriophage lambda recombinant clone PB 34 is on deposit at the
American Type Culture Collection under Accession Number ATCC 40087.

Example 4. Location of Human AHP Gene

The human genomic library described by Maniatis et al., Cell, 15:687 (1978) is screened for the human AHP gene by infecting E. coli strain LE392 (publicly available) with 6x10^5 pfu and plating on 15cm NZCYM agar plates at a density of 20,000 pfu/plate. These phage are screened using the procedure of Benton and Davis, supra with the 6.0 kb porcine AHP fragment described in Example 3, labeled with 32P by nick translation, as the probe. A phage exhibiting a strong hybridization signal is picked and plated at about 100 pfu/10cm plate and screened in duplicate as described above using the radioactively labeled 45-mer as one probe and the 6.0 kb Bam HI fragment of PB34 as the other. A phage, named HH25, which hybridizes to both probes is identified, a plate stock made and rapid prep DNA prepared as described above. The phage DNA is cut with Sau3A I, phosphatase with calf alkaline phosphatase phenol extracted, and co-precipitated with 20 ng of Bam HI cut M13 mp8 DNA. Precipitated DNA is pelleted by centrifugation and redissolved in 2 µl ligase buffer containing T4 DNA ligase. Ligation is performed for 2 minutes at 16°C, diluted to 50 µl in ligase buffer containing T4 DNA ligase and incubated an additional 3 hours at 16°C. 5 µl of this reaction mixture is used to transform E. coli strain JM101/T71 as described in Example 3 above.

The plaques are screened using the Benton and Davis procedure and probing with radioactively labeled 15-mer. A phage plaque, named 25-S1, exhibiting hybridization is isolated and single-stranded phage DNA prepared for use as a DNA sequencing template as described above. Sequencing is performed using the dideoxy chain termination technique described by Sanger et al., supra, utilizing the 15-mer as primer, and gives the information
strand DNA sequence shown in Figure 6. 84 nucleotides sequenced in this manner demonstrated 85% homology with the homologous region of porcine AHF. There is also only one amino acid difference between the porcine AHF 69K region 2-16 as shown in Figure 1 and the corresponding region which was deduced from the human nucleotide sequence of Figure 6. This high degree of homology shows that the DNA of the recombinant phage HH-25 emanates from the AHF gene.

Thus, for the first time, an exon for the human AHF gene has been isolated and identified. A bacteriophage lambda recombinant H1 25 is on deposit at the American Type Culture Collection under the Accession Number ATCC 40086.

Example 5 Identifying Cells Actively Transcribing AHF

The porcine and human AHF exons described above are useful for a variety of functions, one of which is as a screening agent which permits identification of the tissue which is the site of synthesis of AHF in vivo. A number of screening methods are available, based on the use of the exon as an exact complement to the mRNA which is produced during the course of natural expression of AHF. In the screening procedures, tissue from various parts of the body is treated to liberate the mRNA contained therein, which is then hybridized to a DNA segment containing the exon for AHF, and if a molecule of mRNA does hybridize to that exon, the tissue which is the source of that mRNA is the source of AHF.

1. Screening Procedure

Porcine or human tissue from various organs, including kidneys, liver, pancreas, spleen, bone marrow, lymph nodes, etc., is prepared by guanidine hydrochloride extraction as described by Cox Methods Enzymol. 12B:120 (1968), the disclosure of which is incorporated herein by reference, with some modifications. Briefly, tissue is explanted into 8 M guanidine hydrochloride (or 4M guanidine isothiocyante as proposed by Chirgwin, et al.,
Biochemistry 18: 5294 (1979), the disclosure of which is incorporated herein by reference, see also Maniatis, et al., supra, at 189 et seq.), 50 mM Tris (pH 7.5), 10 mM EDTA and homogenized in an Omnimixer (Sorvall) at top speed for 1 minute. The homogenate is clarified at 5000 rpm for 5 minutes in a Sorval HB-4 rotor and the RNA is precipitated by the addition of 0.5 volumes of ethanol. The RNA is dissolved and precipitated 3 more times from 6 M guanidine hydrochloride before being dissolved in H2O.

Messenger RNA from this pool is enriched by chromatography on oligo (dT) cellulose (Collaborative Research).

This mRNA is then subjected to electrophoresis through an agarose gel containing formaldehyde, as described by Maniatis et al., supra, at 202-3. The mRNA in the gel is then transferred to a nitrocellulose filter (Maniatis et al., supra, at 203-4).

The thus obtained mRNA is hybridized with the radiolabeled porcine or human exon DNA obtained as described above, and the existence of hybrids detected by autoradiography. A radioactive signal indicates that the tissue source of the mRNA is a source of synthesis of AHF in the body.

Alternatively, mRNA can be screened using the S1 protection screening method.

S1 nuclease is an enzyme which hydrolyzes single stranded DNA, but does not hydrolyze base paired nucleotides, such as hybridized mRNA/DNA. Thus the existence of a radioactive band after acrylamide gel electrophoresis and autoradiography shows that the single stranded DNA corresponding to the AHF exon has been protected by the complementary mRNA, i.e. the mRNA for AHF. Thus the tissue which was the source of that mRNA is a site of synthesis of AHF in vivo. That tissue can be used as a source for AHF mRNA. This method of screening can be somewhat more sensitive than screening method described above.

A probe consisting of single stranded radioactively labeled DNA complementary to the mRNA is synthesized using the
universal primer of M13 to prime DNA synthesis of the porcine genomic subclone 34-H1. The reaction is performed in a 100 μl solution of 50 mM Tris pH 7.4, 5 mM MgCl₂, 1 mM 2-mercaptoethanol, 50 mM NaCl, 40 mM dGTP, dATP, dCTP, 60 μCi of 32p-dATP (400Ci/m mole), 10 ng universal primer, 200-400 ng of 34-53 template DNA, and the Klenow fragment of DNA polymerase I (E. coli). The reaction is incubated at 23° C for 60 minutes, 10 minutes at 70° C, 50 units of PstI added and incubated an additional 60 minutes.

The reaction is terminated by phenol/chloroform extraction, NaCl added to 0.2M and then precipitated with two volumes 100% ethanol. The precipitated DNA is pelleted by centrifugation, redissolved in 20% sucrose, 50 mM NaOH, 0.1% cresol green and then electrophoresed through 2% agarose in 50 mM NaOH, 10 mM EDTA. The resulting single stranded fragment is localized by autoradiography, the band excised and DNA isolated by electroelution in dialysis tubing.

Sample mRNA is prepared from liver, spleen, etc. tissue by the guanidine hydrochloride method described above.

The probe is then hybridized to sample mRNA (obtained from the oligo (dT) chromatography enriching step) in 50% formamide, 0.4M NaCl, 40 mM PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] pH 6.5, 1 mM EDTA, 5-50 μg mRNA, 2 μg labeled DNA in a volume of 15 μl. The hybridization is terminated by the addition of 200 μl cold S1 nuclease buffer (0.25 M NaCl, 0.3 M NaCH₃COO[pH 4.5], 1 mM ZnSO₄, 5% glycerol, and 1000 units S1 nuclease. The reaction is incubated at 45° C for 30 minutes. Samples are phenol extracted, ethanol precipitated with 10 μg yeast tRNA carrier and subjected to analysis by electrophoresis through 5% polyacrylamide sequencing gels as described in Maxam-Gilbert, *PNAS USA*, 74:560 (1977).

Example 6 Use of AHF Exon DNA to Obtain AHF mRNA From Tissue

Once a tissue which is a source of mRNA is identified,
AHF mRNA from that tissue is extracted and used to construct a cDNA library. The cDNA library is then utilized for identifying and constructing a full length cDNA clone which encodes the amino acid sequence for AHF, without the introns contained in the genomic clone, as described below. Thereafter, the cDNA which encodes the AHF protein is inserted into an appropriate expression vector, in an appropriate host, for expression of AHF.

Since human AHF is in great demand for treatment of hemophilia and other uses, the preparation of human AHF cDNA is described.

1. Obtaining mRNA for Human AHF

mRNA from the human tissue responsible for AHF synthesis is prepared by the guanidine hydrochloride extraction method as described by Cox and modified by Chirgwin, et al. as disclosed above.

Further fractionation of mRNA obtained from the oligo (dT) cellulose chromatography column is obtained by sedimenting on 5-20% sucrose gradients containing 10 mM Tris-HCl (pH 7.4), 1 mM EDTA and 0.2% SDS by centrifugation for 24 hours at 22,000 rpm in a Beckman SW28 rotor. Fractions (1.0 ml) are collected, sodium acetate was added to 0.2M, and the fractions are ethanol precipitated twice before dissolving in water. The size distribution of the fractionated RNA is determined by electrophoresis through 1.4% agarose gels containing 2.2 M formaldehyde.

mRNA sedimenting with an S (Svedberg) value greater than 28 is pooled for the synthesis of double stranded cDNA. 10 µg of this RNA is denatured at room temperature in 10 µl of 10 mM methylmercuryhydroxide. 140 mM 2-mercaptoethanol is added to inactivate the methylmercuryhydroxide. The RNA is then diluted to 50 µl containing 140 mM KCI, 100 mM Tris-HCl (pH 8.3 at 42°C), 1 mM of each deoxynucleotide triphosphate, 200 µg/ml oligo(dT)12-18, 10 mM MgCl2, and 0.1 µCi 32P-CTP/ml. These reactions are performed at 42°C for 1 hour after the addition of
3 µl of 17 units/µl AMV reverse transcriptase (Life Sciences). The reaction is terminated by the addition of 0.25 M EDTA (pH 8.0) to 20 mM. The resulting mixture is extracted once with an equal volume of phenol/chloroform (1:1) followed by one chloroform extraction. The sample is then chromatographed on a 5 ml Sepharose CL-4B column (Pharmacia) equilibrated in 10 mM Tris-HCl (pH 8.00, 100 mM NaCl, 1 mM EDTA. The void volume is collected and the nucleic acids (including any RNA/cDNA hybrids) are precipitated by the addition of 2.5 volumes of ethanol.

Preferably in conjunction with the above procedures an AHF exon oligonucleotide segment is also used in place of oligo dTR to prime the reverse transcription, as described in Ullrich et al., *Nature*, 303:821 (1983).

The RNA-cDNA hybrids are dissolved in 35 µl of deionized H2O, made 100 mM potassium cacodylate (pH 6.8), 100 µM dCTP, 1 mM 2-mercaptoethanol, 1 mM cobalt chloride and enzymatically "tailed" by the addition of 10 units of deoxytidylic terminal transferase (pH Biochemicals) and incubating the reaction for 30 seconds at 37°C. The reaction is terminated by adding 0.25 M EDTA to 10 mM. Tris-HCl (pH 8.0) is added to 300 mM and the sample extracted once with an equal volume of phenol-chloroform (1:1) and then with an equal volume of chloroform. Nucleic acids are precipitated from this product by the addition of 2.5 volumes of ethanol.

The dC tailed hybrid molecules are then annealed with 170 µg/ml oligo (GG)14-18 cellulose in 10 mM KCl, 1 mM EDTA for 10 minutes at 43°C and then an additional 10 minutes at 23°C. This reaction product is then diluted to 100 µl containing 100 mM ammonium sulfate, 1 mM 2-mercaptoethanol, 100 mM MgCl2, 100 µg/ml bovine serum albumin (Sigma, Cohn fraction V), and 100 µM nicotinamide adenine dinucleotide. Second strand cDNA synthesis is initiated by the addition of 1 unit RNase H (P-L Biochemicals), 1 unit of E. coli DNA ligase, and 10 units of DNA polymerase I and incubated at 16°C for 12 hours.
The sample is then chromatographed over Sepharose CL-4B as described above. Double stranded DNA is ethanol precipitated and dC tailed as described for the RNA-cDNA hybrid tailing.

2. Screening for Human AHF DNA

dC tailed double stranded cDNA obtained as described above is annealed with an equimolar amount of dG tailed PBR322 (New England Nuclear) in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 100 mM NaCl at 37°C for 2 hours. The annealed chimeric molecules are then frozen at -20°C until use in bacterial transformation.

Bacterial transformation is done using the MC1061 strain of E. coli (source). Cells (50 ml) are grown to an optical density of 0.25 at 600 nm. Cells are concentrated by centrifugation at 2,500 rpm for 12 minutes, washed in 10 ml of sterile 100 mM CaCl₂, and again pelleted by centrifugation as described above. Cells are resuspended in 2 ml of sterile 100 mM CaCl₂ and kept at 4°C for 12 hours. The annealed chimeric molecules are incubated at a ratio of 5 ng of double stranded cDNA per 200 µl competent cells at 4°C for 30 minutes. The bacteria are then subjected to a two minute heat pulse of 42°C. 1.0 ml of LB-broth is then added and the cells incubated for 1 hour at 37°C. Cells are then plated onto LB-agar plates containing 5 µg/ml tetracycline.

Human AHF clones are identified using the colony hybridization procedure of Grunstein and Hogness PNAS USA, 72:3961 (1975), the disclosure of which is incorporated herein by reference. The cDNA library is plated onto a nitrocellulose filter (Schleicher and Schuell) overlaying LB-broth/ 5 µg/ml tetracycline agar plates. Colonies are grown overnight at 37°C and then the filter placed on sterile Whatman 3 M paper. A pre-moistened nitrocellulose filter is then pressed against the master filter and the filters keyed using an 18 gauge needle. The replica filter is then grown on LB-tetracycline plates at 37°C until the colonies reached a diameter of 1-2 mm. The filters are then transferred to LB plates containing 150 µg/ml
chloramphenicol and incubated at 37°C for 16-24 hours.

Filters are then removed and placed onto Whatman 3 M paper saturated with 0.5 M NaOH for 5 minutes at room temperature. Filters are then neutralized by placing onto Whatman 3 M saturated with 1 M Tris-HCl (pH 7.5), 1.5 M NaCl, and then Whatman 3 M saturated with 2x standard saline citrate (SSC). SSC (1x) is 0.15 M NaCl, 0.015 M sodium citrate.

Filters are air dried and baked in vacuo at 80°C for 2 hours. Prehybridization of filters is done at 65°C for 30 minutes in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.1% SDS followed by 30 minutes in 7x SSC, 5x Denhardt's (1x Denhardt's is 0.02% polyvinylpyrrolidone, 0.02% ficolI, 0.02% bovine serum albumin), 100 µg/ml denatured salmon sperm DNA, and 0.1% SDS. 32p-labelled human exon DNA, prepared as described above, are added to 106 cpm/ml and the hybridization performed 12-16 hours at 37°C.

Filters are then washed in several changes of 7x SSC, 0.1% SDS for 1-2 hours at 37°C. Filters are then air-dried and subjected to autoradiography with Kodak XAR film and a Dupont Lightning Plus intensifying screen.

Those colonies showing a hybridization signal above background are grown in L-broth containing 50 µg/ml tetracycline for rapid prep purification of plasmid DNA. Plasmid DNA is purified by the method of Holmes et al., Anal. Biochem., 114:193 (1981), the disclosure of which is incorporated herein by reference. An aliquot of this DNA is cleaved with restriction endonuclease Pst I and the fragments electrophoresed through 1% agarose/TBE gels and blotted according to the procedure of E. Southern, J. Mol. Biol. 98:503 (1975), Methods Enzymol. 69:152 (1980), the disclosure of which is incorporated herein by reference. The nitrocellulose filters are hybridized with radiolabeled human AHF exon DNA as described for colony hybridization. Those plasmids which contained Pst I inserts hybridizing to the AHF exon DNA are used for DNA sequencing analysis.
For sequencing, plasmid DNA, (purified from 0.75 ml of culture by the procedure of Holmes, et al., supra), is digested to completion with the restriction endonuclease Sau 3AI. The resulting DNA segment, identified as 34-S1, has a DNA sequence which is depicted in Figure 4. The DNA is ethanol precipitated after extraction with phenol-chloroform and redissolved in 10 \mu l TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA). 5 \mu l of the DNA solution is ligated with 20 ng of Bam HI cleaved M13 mp 9 replicative form DNA in 100 \mu l of 50 mM Tris-HCl (pH 7.4), 10 mM MgCl2, 10 mM dithiothreitol, 1 mM ATP and an excess of T4 DNA ligase.

Ligations are done at 15°C for 2-4 hours.

5 \mu l of the ligation reactions are used to transform 200 \mu l of E. coli strain JM101/T71 as described above. Recombinants are identified as white plaques when grown on LB-agar plates containing X-gal as an indication for beta-galactosidase activity as described by Davies, et al., J. Mol. Biol. 36:413 (1968).

Recombinant phage harboring sequences hybridizing to the human exon are identified by the procedure of Benton, et al., Science 196:180 (1977), the disclosure of which is incorporated herein by reference, using radioactively labelled human AHF exon as a probe. Plaques showing a hybridization signal are picked and grown in 1.5 ml cultures of L-broth. Single-stranded phage DNA prepared from these cultures is used as template in oligonucleotide-primed DNA synthesis reactions. Sequencing is done using the deoxy chain-termination procedure, see, e.g., Sanger et al., PNAS U.S.A. 74:5463 (1977).

Human AHF recombinants are identified by comparing their nucleotide sequence with that which is known from the human exon sequence of human AHF.

3. Porcine AHF mRNA

Human AHF recombinants are used to screen a porcine tissue library constructed exactly as described for the human tissue cDNA library. Prospective porcine AHF recombinant DNA clones are identified by the Grunstein-Hogness procedure using
the porcine 32p labeled exon fragment as a probe as described above. The probe is the porcine AHF exon segment labelled with 32P by nick-translation as described by Rigby et al., J. Mol. Biol., 113:237 (1977), the disclosure of which is incorporated herein by reference.

Colonies exhibiting hybridization signals are grown for rapid prep plasmid purification purposes as described above. Plasmid DNA is cleaved with the restriction endonuclease Pst 1, electrophoresed through 1% agarose/TBE gels, and blotted according to the procedure of E. Southern (1975). The blots are hybridized with nick-translated porcine AHF recombinant DNA labelled with 32p.

Full-length clones may be constructed in a conventional manner, such as by ligation of DNA fragments from overlapping clones at restriction enzyme sites common to both clones as is well known in the art ("gene walking").

4. Identifying full-length clones from steps 2 or 3

The distance between the 5' end of an existing clone and the 5' end of the mRNA can be analyzed by the primer-extension technique described in Agarwal et al., "J.B.C." 256(2):1023-1028 (1981) utilizing an oligonucleotide primer whose sequence comes from the 5' (amino-terminal) region of the existing AHF clone. If gels developed using this procedure show more than one transcript one should consider the most intense band as representing the full mRNA transcript.

There are, however, many mRNAs which contain a long region of 5' untranslated sequence. Thus, expression of human AHN DNA may not be contingent upon the acquisition of a complete cDNA clone. For example, a clone may be obtained which by DNA sequencing analysis demonstrates the existence of a methionine codon followed by a sequence which is analogous to or identical to a known eucaryotic protein secretion signal and which is in frame with the remaining codons. Transformation and expression should be conducted for a clone which contains the met-secretion
signal sequence, which is of the expected size and which contains a poly (T) 3' terminus.

5. **Alternative Procedure**

As an alternative to the methods in Sections 1-3 described above, it is preferred that the cDNA clones for porcine or human AHF be identified using a bacteriophage vector in the following manner.

mRNA from human fetal liver tissue responsible for AHF synthesis was prepared by the guanidine hydrochloride method as described by Cox and modified by Chirgwin, et al. as set forth above in Example 5, Section 1. First strand cDNA was synthesized from 10 μg of poly(A) fetal liver RNA by the procedure described in Example 6, Section 1, supra. Specifically, 10 μg of this RNA was denatured at room temperature in 10 μl of 10 mM methylmercuryhydroxide. 140 mM 2-mercaptoethanol was added to inactivate the methylmercuryhydroxide. The RNA was then diluted to 50 μl containing 140 mM KCl, 100 mM Tris-HCl (pH 8.3 at 42 °C), 1 mM of each deoxynucleotide triphosphate, 200 μg/ml oligo(dT)12-18, 10 mM MgCl₂, and 0.1 μCi 32p-dCTP/ml. These reactions were performed at 42°C for 1 hour after the addition of 3 μl of 17 units/μl AMV reverse transcriptase (Life Sciences).

For the first strand synthesis of a primer-extended library, 200 picomoles of a unique complimentary 38mer was included in the CH₃H₂O₇ denaturation step, and after 10 minutes at 23°C, the reaction was made 140mM beta-mercaptoethanol, 0.7M KCl, 1mM EDTA, 20mM Tris-HCl (pH 8.3 at 42°), 1 unit/μl of RNasin (Biotec) and incubated at 50°C for 2 minutes and at 42°C for 2 minutes. This was then diluted to 50 μl containing 140 mM KCl, 100 mM Tris-HCl (pH 8.3 at 42°C), 1 mM of each deoxynucleotide triphosphate, 10 mM MgCl₂, and 0.1 μCi 32p-dCTP/μl. The reaction was incubated at 42 °C for 1 hour after the addition of 3 μl of 17μl/μl AMV reverse transcriptase.

After first strand synthesis the reactions were diluted to 150μl containing 10mM MgCl₂, 50mM Tris pH 7.4, 5mM
2-mercaptoethanol, 7.5 mM NH₄SO₄, 250 μM of each deoxynucleotide triphosphate, and second strand synthesis initiated by the addition of 1 unit of RNase H (E. coli) and 45 units of DNA polymerase I. Reactions were incubated at 16°C for 8 hours and then terminated by the addition of EDTA to 20 mM and brought to a final volume of 200 μl with H₂O. EcoRI methylation was then performed by addition of S-adenosyl methionine to 50 μM and 40 units of EcoRI methylase. These reactions were incubated for 1 hour at 37°C, terminated by phenol-chloroform extraction, and chromatographed using Sephadex G50 equilibrated in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.1 M NaCl. The void volume was pooled and precipitated by ethanol addition.

cDNA molecules were blunt-ended in 200 μl containing 50 mM Tris pH 8.3, 10 mM MgCl₂, 10 mM 2-mercaptoethanol, 50 mM NaCl, 50 μM of each deoxynucleotide triphosphate, 100 μg/ml ovalbumin and 5 units of T4 polymerase. The reaction was incubated at 37°C for 30 minutes and then terminated by phenol-chloroform extraction. Nucleic acids were then precipitated by ethanol addition.

EcoRI "linkers" (Collaborative Research) were then ligated to the blunt cDNA molecules under standard conditions, Manitis, et al., supra, at 243, in a total volume of 45 μl. The reactions were terminated by the addition of EDTA to 15 mM and extracted with phenol-chloroform. Nucleic acids were precipitated by ethanol and pelleted by centrifugation. The linked cDNA was redissolved in 200 μl of 100 mM Tris-HCl (pH 7.2), 5 mM MgCl₂, 50 mM NaCl and digested with 300 units of EcoRI for 2 hours at 37°C. The reaction was then extracted with phenol-chloroform and chromatographed over Sepharose CL-4B equilibrated with 10 mM Tris (pH 8.0), 1 mM EDTA, 0.1 M NaCl. cDNA in the void volume was collected, precipitated by ethanol and pelleted by centrifugation.

cDNA was redissolved in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA and ligated to EcoRI cleaved, phosphatased lambda Charon 21A DNA at various ratios of cDNA to vector DNA using standard ligation
conditions. Ligated DNA was packaged and titered using established procedures, Manitis, et al., supra, at 64, 256. The library was plated and screened using 32P-labelled human exon DNA under conditions described in Benton and Davis, supra. Overlapping clones which spanned approximately 10,000 base pairs were obtained and a substantial portion thereof was sequenced to reveal one long open reading frame encoding human AHF. The recombinant DNA nucleotide sequence obtained therefrom coding for human AHF is shown in Fig. 7 along with the deduced amino acid sequence for human AHF. The overlapping clones were assembled into vector pSP64 (Promega Biotec) using conventional techniques well known in the art, i.e. by ligation of DNA fragments from overlapping clones at restriction enzyme sites common to both clones. A pSP64 recombinant clone containing the nucleotide sequence depicted in Figure 7, designated as pSP64-VIII, is on deposit at the American Type Culture Collection under Accession Number ATCC ______.

EXAMPLE 7
Expression of human or porcine AHF

This example contemplates expression of AHF using the full length clone obtained by the method of Example 6 in a cotransformation system.

1. Preparation of Transformation Vector

A direct method for obtaining the AHF transformation vector is described below. The pCVSVL plasmid is partially digested with Pst I, the digest separated on gel electrophoresis. After visualization, the linear DNA fragment band corresponding to full length plasmid is isolated as pCVSVL-B1.

The cDNA for AHF is rescued from the Example 5 cloning vectors by partial digest with Pst I. The partial digest is separated on gel electrophoresis, and the band corresponding to the molecular weight of the full length cDNA is isolated. pCVSVL-B1 is annealed with this DNA fragment, ligated with T4
ligase at 15°C, transfected into \textit{E. coli} strain HB101 and transformants selected for tetracycline resistance. The selected \textit{E. coli} transformants are grown in the presence of tetracycline. Plasmid pCVSVL-Bla is recovered in conventional fashion. Proper orientation of the cDNA in the plasmid may be determined in conventional fashion by assymetric digestion with an appropriate endonuclease(s).

2. Cotransformation: Selection and Amplification

Plasmid pCVSVL-Ala or pCVSVL-Bla and pAdd265Vpa\#3 (Kaufman et al., op. cit.) are mixed together (50 μg HP and .5 μg pAdd265Vpa \#3) and precipitated by the addition of NaOAc pH 4.5 to .3M and 2.5 vols. of ethanol. Precipitated DNA is allowed to air dry, is resuspended in 2X HEBSS (.5ml) and mixed vigorously with .25 M CaCl$_2$ (.5ml) as described (Kaufman et al., op. cit.). The calcium-phosphate-DNA precipitate is allowed to sit 30' at room temperature and applied to CHO DUKX-B1 cells (Chasin and Urlaub, 1980, available from Columbia University). The growth and maintenance of these cells has been described (Kaufman et al., op. cit., Chasin and Urlaub 1980).

The DUKX-B1 cells are subcultured at 5x105/10cm dish 24 hr. prior to transfection. After 30 minutes incubation at room temperature, 5ml of a media with 10% fetal calf serum is applied and the cells are incubated at 37° for 4.5 hr. The media is then removed from the monolayer, 2ml of a-media with 10% fetal calf serum, 10μg/ml of thymidine, adenosine, and deoxyadenosine, and penicillin and streptomycin. Two days later the cells are subcultured 1:15 into a-media with 10% dialyzed fetal calf serum, and penicillin and streptomycin, but lacking nucleosides. Cells are then fed again with the same media after 4-5 days.

Colonies appear 10-12 days after subculturing into selective media. Methotrexate (MTX) selection and detection of AHF gene and selection gene amplification are conducted in accordance with Axel et a., U.S. Patent 4,399,216, or Kaufman et al., op. cit.
AHF yields may be improved by cotransforming the permanent cell line EA.hy 926 (Edgell et al., "Proc. Natl. Acad. Sci" 80:3734-3737 (1983) in place of DUXK-81 cells. In this case the cotransforming selection gene should be the dominant DHFR gene disclosed by Haber et al., "Somatic Cell Genetics" 4:499-508 (1982). Otherwise, the cotransformation and culture will be substantially as set forth elsewhere herein.

3. Production of AHF

AHF-producing CHO transformants selected in Section 2 are maintained in seed culture using standard techniques. The culture is scaled up to 10 liters by cell culture in conventional media. This medium need not contain MTX and will not contain nucleosides so as to exclude selection gene revertants.

The culture supernatant is monitored for clotting activity following standard assays for use with blood plasma samples (reduction in clotting time of Factor VIII-deficient plasma). The supernatant may be purified by conventional techniques such as polyethylene glycol and glycine precipitations (as are known for use in purifying AHF from blood plasma) in order to increase the sensitivity of the FACTOR VIII assays.

When FACTOR VIII activity has reached a peak the cells are separated from the culture medium by centrifugation. The Factor VIII is then recovered and purified by polyethylene glycol and glycine precipitations. Clotting activity is demonstrated in Factor VIII deficient plasma.

4. Alternative Procedure for Production of AHF

A full length cDNA containing the entire AHF coding region was constructed from the exon in HH-25 described above, two cDNA clones which overlapped the extreme 5' and 3' regions of that exon, and a third clone which overlapped the 3' cDNA clone and continued past the termination codon. This was constructed such that synthetic Sal I sites were placed just 5' to the initiator methionine and at a position 3' to the translational stop signal at the end of the AHF coding sequences. This allowed
the placement into and excision from the polylinker Sal I site of pSP64. The Sal I fragment from this clone (pSP64-VIII) was purified and ligated to pCVSVL2. pCVSVL2 is a plasmid which is identical to the expression vector pCVSVL (Kaufman, et al., Mol. Cell Biol., 2:1304 (1982) the disclosure of which is incorporated herein by reference), except that it has deleted the Pst I site located 3' of the SV40 polyadenylation sequence which is accomplished by conventional procedures and that it contains a duplication of the SV40 Ava II "D" fragment upstream from the adenovirus major late promoter (MLP). pCVSVL2 was derived from pAdD26SVpA(1) (See Kaufman et al., supra) by adding XhoI linkers at each end of two SV40 Ava II "D" fragments, and inserting them into the XhoI site in pAdD26SVpA(1). The Ava II "D" fragments are both inserted such that the SV40 late promoter is in the same orientation as the Ad2 major late promoter. For plasmids pCVSVL and pAdD26SVpA(3), see Kaufman et. al., supra. To insert the Sal I fragment of pSP64-VIII into pCVSVL2, the unique Pst I site in pCVSVL2 was converted to a Sal I site by the procedure described in Rothstein et al., Methods Enzym., 69:98 (1980), and the Sal I fragment excised from pSP64-VIII was inserted to yield pCVSVL2-VIII. pCVSVL2-VIII contains the correct 5' to 3' orientation which allows transcription of the AHF coding sequence from the adenovirus MLP of the vector. pCVSVL2-VIII is on deposit at the American Type Culture Collection under Accession Number ________.

The pCVSVL2-VIII was introduced into monkey COS-7 cells (Mellon et al., Cell 27:279 (1981) using the DEAE dextran transfection protocol described by Sampayrac and Danna, PNAS U.S.A. 78:7575 (1981). The cells were cultured in serum-free medium which was assayed for AHF activity 3 days after transfection.

Factor VIII:C activity was determined by the chromogenic substrate assay, described by Didisheim, Science 129:389 (1959), which confirmed that human Factor VIII:C expression had been
achieved at a level of about 0.05 units/ml.
CLAIMS:

1. A DNA sequence coding for human factor VIII:C substantially free of other human genes.

3. A transformed host containing a gene for human factor VIII:C, said host being selected from bacteria, yeasts, and mammalian cells.

4. Isolated DNA coding for human factor VIII:C, comprising a polydeoxyribonucleotide having the sequence:

\[
5'\text{OGC AGC TTT CAG AAG AAA ACA GCA CAC TAT TTT ATT GCT GCA GIG GAG AGG 3'}
\]

5. The DNA of claim 4, excised from human genomic DNA.

6. The DNA of claim 4, linked directly or indirectly to DNA from a non-human source.

7. A cloning vector comprising the DNA segment of claim 4.

9. A transformed microorganism containing the expression vector of claim 7.

10. A transformed cell line containing the expression vector of claim 7.
11. A screening agent for identifying deoxyribonucleotide sequences and ribonucleotide sequences which encode for at least a portion of the human gene factor VIII:C, comprising a deoxyribonucleotide having at least a ten nucleotide portion of the sequence or its inverse complement:

5'TTT CAG AAG AGA ACC CGA CAC TAT TTC
ATT GCT GCG GTG GAG CAG CTC TGG GAT
TAC GGC ATG AGC GAA TCC CCC GGG GGG
CTA AGA AAC AGG 3'

12. The DNA of claim 11, excised from porcine genomic DNA.

13. The DNA of claim 11, linked to DNA from a non-porcine source.

14. A cloning vector comprising the DNA segment of claim 11.

15. A DNA sequence coding for porcine factor VIII:C substantially free of other porcine genes.

17. A transformed host containing a gene for porcine factor VIII:C, said host being selected from bacteria, yeasts and mammalian cells.

18. Isolated DNA coding for porcine factor VIII:C, comprising a polynucleotide having the sequence:

5' TTT CAG AAG AGA ACC CGA CAC TAT TTC
ATT GCT GCG GTG GAG CAG CTC TGG GAT
TAC GGC ATG AGC GAA TCC CCC GGG GGG
CTA AGA AAC AGG 3'
19. An expression vector for porcine factor VIII:C, comprising the DNA segment of claim 18.

20. A transformed microorganism containing the expression vector of claim 19.

21. A method of isolating a gene fragment which encodes for at least a portion of a protein, comprising forming a genomic DNA library of an organism that produces the protein, forming at least one oligonucleotide probe whose sequence was selected solely based on the amino acid sequence contained in the protein, contacting the genomic library with the oligonucleotide under conditions favoring DNA/DNA hybridization, identifying the genomic DNA which hybridizes to the oligonucleotide, and isolating a segment of the genomic DNA which contains the oligonucleotide-hybridizing DNA.

22. A method of in accordance with claim 21, wherein at least one oligonucleotide probe comprises a plurality of oligonucleotides which contain differing DNA sequences, each of which corresponds in DNA sequence to the amino acid sequence.

23. The method according to claim 22, wherein at least one oligonucleotide probe contains a plurality of oligonucleotides, one of which contains each possible DNA sequence which corresponds with a selected amino acid sequence in the protein.

24. The method of claim 22, wherein the oligonucleotide probe has a length of from about 10 to 200 nucleotides.

25. The method of claim 22, wherein the oligonucleotides have a length of from 10 to 20 nucleotides.
26. The method of claim 22, wherein the oligonucleotides have a chain length of from about 30 to 200 nucleotides.

27. The method of claim 22, wherein the oligonucleotides have a chain length of about 40 to 50 nucleotides.

28. A method in accordance with claim 22, wherein at least two oligonucleotide probes are formed corresponding in DNA sequence to amino acid sequences in the protein, and each oligonucleotide probe is contacted with the genomic DNA under hybridizing conditions.

29. The method of claim 28, wherein one oligonucleotide probe comprises a plurality of oligonucleotides having a length of 11 to 20 nucleotides, and another oligonucleotide probe comprises at least one oligonucleotide having a length of 40 to 200 nucleotides.

30. The method of claim 28, wherein one nucleotide probe comprises at least one oligonucleotide having a length of 40 to 90 nucleotides.

31. A method of isolating a gene which encodes for human factor VIII:C, comprising screening a cRNA library with a probe which corresponds to at least a ten nucleotide sequence of the following sequence or its inverse complement:

```
5' CGC AGC TTT CNA AAG AAA ACA CGA CAC
   TAT TTT ATT GCT GCA GIG GAG AGG 3'
```

constructing a cDNA library from the mRNA which hybridizes with the probe, and forming a gene which encodes for human factor VIII:C by ligating AHF cDNA segments from the cDNA library.

32. A method for producing AHF, comprising
 (a) preparing one or more oligonucleotide probes which
hybridize with human DNA which encodes AHF, or which hybridize with the complement of such DNA;

(b) using at least one such probe to identify cells containing mRNA transcripts having nucleotide sequences corresponding to AHF;

(c) preparing cDNA from the step (b) mRNA;

(d) assembling the step (c) cDNA into a replicable cDNA sequence encoding at least the amino acid sequence of mature human AHF;

(e) cloning the step (d) sequence;

(f) transforming a parental cell which does not express AHF with the step (e) sequence;

(g) culturing the step (f) transformed cell; and

(h) recovering AHF from the culture.

33. The method of claim 32 wherein the cell is a mammalian cell.

34. The method of claim 33 wherein the cell is cotransformed with a selection gene.

35. Substantially pure human factor VIII:C, made by the process of claim 32.

36. The DNA sequence of claim 1, wherein said sequence comprises one or more DNA sequences selected from the DNA nucleotide sequence depicted in Figure 7 or one or more DNA sequences which hybridize to the DNA nucleotide sequence depicted in Figure 7 and which on expression codes for a polypeptide which exhibits factor VIII:C activity.

37. The DNA sequence of claim 1, wherein said sequence comprises the DNA sequence shown in Figure 7.
38. The DNA sequence of claim 1, wherein said sequence codes for a polypeptide having the amino sequence shown in Figure 7.

39. A recombinant DNA sequence which codes for a polypeptide which produces factor VIII:C activity.

40. The DNA sequence of claim 39, wherein the polypeptide comprises at least a major portion of the amino acid sequence of Figure 7.

41. A polypeptide expressed by DNA which exhibits human factor VIII:C activity comprising amino acid sequences selected from the amino acid sequence depicted in Figure 7 or amino acid sequences expressed by DNA sequences which hybridize to the DNA nucleotide sequence depicted in Figure 7.

42. The polypeptide of claim 41, wherein said polypeptide comprises amino acids corresponding to a segment of the amino acid sequence of Figure 7 sufficient to provide factor VIII:C activity, substantially free of human fibrinogen and fibronectin.

43. The polypeptide of claim 41, wherein said polypeptide is substantially free from other human polypeptides.

44. The polypeptide of claim 43, wherein said other human polypeptides are human factor VIII:vWF, fibrinogen and fibronectin.

45. A vector comprising a DNA sequence coding for a number of amino acid groups in the sequence depicted in Figure 7 sufficient to produce factor VIII:C activity.

46. A transformed host containing exogenous DNA coding
for a number of amino acid groups in the sequence depicted in Figure 7 sufficient to produce factor VIII:C activity.

47. The transformed host of claim 46, wherein the host is selected from bacteria, yeast, insect or mammalian cells.

48. A method of making human factor VIII:C, comprising transforming a host with a DNA sequence which codes for a polypeptide having a number of amino acid groups depicted in Figure 7 sufficient to produce factor VIII:C activity, and expressing polypeptides from that sequence.

49. The method of claim 48, wherein the polypeptide has the amino acid sequence depicted in Figure 7.

50. The method of claim 48, wherein the DNA segment has the sequence depicted in Figure 7.

51. The method of claim 48, further comprising recovering human factor VIII:C from said transformant.

52. A glycosylated polypeptide consisting essentially of a number of amino acids in the sequence shown in Figure 7 sufficient to provide factor VIII:C activity.

53. A pharmaceutical preparation useful for therapeutic treatment of Hemophilia A comprising a sterile preparation of the polypeptide of claim 41.

54. A method of treating Hemophilia A comprising administering an effective dose of the polypeptide of claim 41.
<table>
<thead>
<tr>
<th>FIG.</th>
<th>Amino Acid Sequence of 69 kD Porcine AFP Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pho</td>
</tr>
<tr>
<td>B</td>
<td>Ser</td>
</tr>
<tr>
<td>C</td>
<td>Arg</td>
</tr>
</tbody>
</table>

BUREAU

OMPI

WIFO

INTERNATIONAL
FIG. 2

A. Amines Terminus of 166Kd Polypeptide

XIRRYLYGAVELSWDYQRSELLRELHVDTFPAA

B. Fragment of 166Kd Polypeptide

XVAKHPKTWHYISAEEDWDYAPAUPSPSDRS/TYKSL
FIG. 3

<table>
<thead>
<tr>
<th>Amino Acid No.</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acid Sequence</td>
<td>His</td>
<td>Tyr</td>
<td>Phe</td>
<td>Ile</td>
<td>Ala</td>
<td>Ala</td>
<td>Val</td>
<td>Glu</td>
<td>Gln</td>
<td>Leu</td>
<td>Trp</td>
<td>Asp</td>
<td>Tyr</td>
<td>Gly</td>
<td>Met</td>
</tr>
<tr>
<td>Possible mRNA Sequences</td>
<td>CAU</td>
<td>UAU</td>
<td>UUC</td>
<td>AUU</td>
<td>GCU</td>
<td>GCC</td>
<td>GCC</td>
<td>GUG</td>
<td>GAA</td>
<td>CAA</td>
<td>CGG</td>
<td>UGG</td>
<td>CAU</td>
<td>UAU</td>
<td>GGU</td>
</tr>
<tr>
<td></td>
<td>CAC</td>
<td>UAC</td>
<td>UUC</td>
<td>AUC</td>
<td>GCC</td>
<td>GCC</td>
<td>GCC</td>
<td>GUG</td>
<td>GAA</td>
<td>CAG</td>
<td>CUC</td>
<td>CUC</td>
<td>CUG</td>
<td>UUA</td>
<td>GGA</td>
</tr>
<tr>
<td>Guessed Probe Sequence</td>
<td>GTG</td>
<td>ATG</td>
<td>AAA</td>
<td>TAA</td>
<td>CGA</td>
<td>CGA</td>
<td>CAC</td>
<td>TCT</td>
<td>GTC</td>
<td>GAC</td>
<td>ACC</td>
<td>CTA</td>
<td>ATA</td>
<td>CCG</td>
<td>TAC</td>
</tr>
<tr>
<td>Actual Probe Sequence</td>
<td>GTG</td>
<td>ATA</td>
<td>AAG</td>
<td>TAA</td>
<td>CGA</td>
<td>CGA</td>
<td>CAC</td>
<td>CTC</td>
<td>GTC</td>
<td>GAG</td>
<td>ACC</td>
<td>CTA</td>
<td>ATG</td>
<td>CCC</td>
<td>TAC</td>
</tr>
</tbody>
</table>
FIG. 4

```
AAA ACA CGG GCC ACC TGT TAA CCT 27
CAA AGT AAA TAG ACC TGG AAG GAC 54
CTC CAA GCT TCT GGG TCC CCC GAT 81
CAA AGA GTG GGA ATC CCT AGA GAA 198
GTC
ACC AAA AAG CAA AGC TCT CAG GAC 135
AGA CAT CAT CAG TTT ACC CCT GGA 162
GGG
TCA CGA AAG CAA TCA TTC AAT AGC 189
AAA AAA TGA AGG ACA AGC CGA GAC 216
AGA AGA AGC CGC CTG GAC GAA GCA 243
GGA GGCC TGG AAG GCT GTG CGC TTC 270
AAA
GCC TCC GTT CCT GCG ACG GCA TCA 297
GGA CAT AAG CCT TCC TAC TTT TJA 324
CCC
GGA GGA AGA CAA AAT GGA CTA TGA 351
GGA
TAT CTT CTA ACT GAA ACG AAG GGA 378
GAT TTT GAC ATT TAC GGT GAG GAT 405
GAA
AAT CAG GAC CCT CGC AGC TTT CAG 432
AGA ACC CGA CAC TAT TTC ATT GCT 459
GGA
AGC GAA TCC CCC CGG GCG CTA AGA 486
ATG
AGG TAT GGC TAC GTT GGC TAC TCC 513
GTC
AGT GGG AGG ATG TCC TTG TTG 540
AGC
GCA GGT GCC GAA GCC ATG GGA AAG 567
AGC
CAA GCA GTC TGG GGG TGG AGA GGC 594
AGC
AGT GGG AGG ATG TGG TTG TTG 621
GGA
ACA GCG TGG TCG GCC AGG GAA GAG 648
AGC
ACC GAC CTG AGG AGA G

* J Indicates an ambiguity, in accordance with the Stanford code.
```
FIG. 5

5' TGG AAG GCT GTG CGC TCC AAA GCC TCC GGT CCT

36 GCG ACG GCA TCA GAG GGA CAT AAG CCT TCC TAC

72 TTT TGA CCC GGA GGA AGA CAA AAT GGA CTA TGA

108 TGA TAT CTT CTA ACT GAA ACG AAG GGA GAA GAT

135 TTT GAC ATT TAC GGT GAG GAT GAA AAT CAG GAC

171 CCT CCC AGC TTT CAG AAG AGA ACC GGA CAC TAT

207 TTC ATT GCT GCG GTG GAG CAS CTC [TGG CAT TAC

234 GGG ATG] AGC GAA TCC CCC CGG GCG CTA AGA

261 AAC AGG TAT GGC TAC GTT GCC TAC TCC TCT

GTC CTA CCC TGG GGA CCT TAC TCT TGA GCA

GGT GCC GAA GCC ATG GGA AAG GCA CAA GCA

GTC TGG GGG TGG AGA (3')
FIG. 6

HUMAN SEQ. DATA (Complement of 15 mer desired sequence)

5' CAC ATT TAT GAT GAG GAT GAA
ATT CAG AGC CCC CGC AGC TTT
CAG AAG AAA ACA CGA CAC TAT
TTT ATT GCT GCA GTG GAG AGG
<table>
<thead>
<tr>
<th>FIG. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/14</td>
</tr>
</tbody>
</table>

```
5' GAATTCCCGAGCTGGTAAAGTCCTTTAATGCTGAAAGAATAATCCGGACATTTTCATTAAATCACAGAAATTT
TTACCTTTTCCCTCCTCGGAGCTAAGATAATTATTAAGAAGAATTAACTTTTGGCTTCCCAAGTAAATTGCAAAATG

<table>
<thead>
<tr>
<th>MET</th>
<th>Cln</th>
<th>Ile</th>
<th>Glu</th>
<th>Leu</th>
<th>Ser</th>
<th>Thr</th>
<th>Cys</th>
<th>Phe</th>
<th>Phe</th>
<th>Leu</th>
<th>Cys</th>
<th>Leu</th>
<th>Arg</th>
<th>Phe</th>
<th>Cys</th>
<th>Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATG</td>
<td>CAA</td>
<td>ATA</td>
<td>CAC</td>
<td>TGG</td>
<td>ACC</td>
<td>TCG</td>
<td>TTC</td>
<td>CCA</td>
<td>TCC</td>
<td>TGG</td>
<td>CCA</td>
<td>TCT</td>
<td>GCA</td>
<td>CCG</td>
<td>TCC</td>
<td>TTC</td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Thr</td>
<td>Arg</td>
<td>Tyr</td>
<td>Leu</td>
<td>Gly</td>
<td>Ala</td>
<td>Val</td>
<td>Glu</td>
<td>Leu</td>
<td>Ser</td>
<td>Thr</td>
<td>Arg</td>
<td>Tyr</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>GGC</td>
<td>ACC</td>
<td>AGA</td>
<td>AGA</td>
<td>ATT</td>
<td>CAC</td>
<td>CTG</td>
<td>CCA</td>
<td>CAC</td>
<td>CCA</td>
<td>CAG</td>
<td>CTC</td>
<td>GCA</td>
<td>CCA</td>
<td>AGA</td>
<td>TCT</td>
<td>CCA</td>
</tr>
<tr>
<td>Gin</td>
<td>Ser</td>
<td>Asp</td>
<td>Leu</td>
<td>Gly</td>
<td>Glu</td>
<td>Leu</td>
<td>Pro</td>
<td>Val</td>
<td>Asp</td>
<td>Leu</td>
<td>Ser</td>
<td>Thr</td>
<td>Arg</td>
<td>Phe</td>
<td>Pro</td>
<td>Pro</td>
</tr>
<tr>
<td>CAA</td>
<td>AGT</td>
<td>GGT</td>
<td>TTC</td>
<td>GCT</td>
<td>GAG</td>
<td>CTG</td>
<td>GGT</td>
<td>GAC</td>
<td>GCA</td>
<td>GCA</td>
<td>TAT</td>
<td>CTT</td>
<td>GAT</td>
<td>TAT</td>
<td>CTT</td>
<td>GAT</td>
</tr>
<tr>
<td>Lys</td>
<td>Ser</td>
<td>Pro</td>
<td>Leu</td>
<td>Phe</td>
<td>Asn</td>
<td>Thr</td>
<td>Ser</td>
<td>Val</td>
<td>Val</td>
<td>Tyr</td>
<td>Lys</td>
<td>Lys</td>
<td>Thr</td>
<td>Leu</td>
<td>Phe</td>
<td>Val</td>
</tr>
<tr>
<td>AAA</td>
<td>TCT</td>
<td>TTC</td>
<td>CCA</td>
<td>TTC</td>
<td>AAC</td>
<td>ACC</td>
<td>TCA</td>
<td>CTG</td>
<td>CTG</td>
<td>TAC</td>
<td>CCA</td>
<td>AAA</td>
<td>AAC</td>
<td>ACT</td>
<td>TTC</td>
<td>GGA</td>
</tr>
<tr>
<td>Pro</td>
<td>Thr</td>
<td>Val</td>
<td>His</td>
<td>Leu</td>
<td>Phe</td>
<td>Pro</td>
<td>Asn</td>
<td>Ile</td>
<td>Ala</td>
<td>Lys</td>
<td>Pro</td>
<td>Arg</td>
<td>Pro</td>
<td>Pro</td>
<td>Trp</td>
<td>MET</td>
</tr>
<tr>
<td>TGA</td>
<td>ACC</td>
<td>GTT</td>
<td>CTT</td>
<td>AAC</td>
<td>TAC</td>
<td>CTG</td>
<td>GAC</td>
<td>CCA</td>
<td>ACC</td>
<td>CCT</td>
<td>AAC</td>
<td>ACC</td>
<td>CCC</td>
<td>TCC</td>
<td>GTC</td>
<td>TTC</td>
</tr>
<tr>
<td>Leu</td>
<td>Gln</td>
<td>Pro</td>
<td>Thr</td>
<td>Ile</td>
<td>Gin</td>
<td>Ala</td>
<td>Glu</td>
<td>Val</td>
<td>Tyr</td>
<td>Asp</td>
<td>Thr</td>
<td>Val</td>
<td>Val</td>
<td>Ile</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>GCT</td>
<td>GCT</td>
<td>CCA</td>
<td>CCT</td>
<td>ACC</td>
<td>TCC</td>
<td>CAT</td>
<td>CAC</td>
<td>CCA</td>
<td>ACC</td>
<td>ACT</td>
<td>CAC</td>
<td>TGG</td>
<td>CAT</td>
<td>GCT</td>
<td>GAT</td>
<td>CCA</td>
</tr>
<tr>
<td>Asn</td>
<td>Ser</td>
<td>His</td>
<td>Pro</td>
<td>Val</td>
<td>Ser</td>
<td>Val</td>
<td>Ser</td>
<td>Leu</td>
<td>His</td>
<td>Val</td>
<td>Asp</td>
<td>Leu</td>
<td>Ser</td>
<td>Tyr</td>
<td>Trp</td>
<td>Lys</td>
</tr>
<tr>
<td>TTC</td>
<td>GCT</td>
<td>CCA</td>
<td>ATG</td>
<td>CCG</td>
<td>TCT</td>
<td>GTC</td>
<td>TGC</td>
<td>CCA</td>
<td>CAC</td>
<td>CCA</td>
<td>CAC</td>
<td>CCA</td>
<td>CCA</td>
<td>CCA</td>
<td>GCA</td>
<td>CCA</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Glu</td>
<td>Gin</td>
</tr>
<tr>
<td>Asp</td>
<td>Asp</td>
<td>Pro</td>
<td>Gin</td>
</tr>
<tr>
<td>CAT</td>
<td>GAT</td>
<td>AAA</td>
<td>GCT</td>
<td>TCC</td>
<td>GCT</td>
</tr>
<tr>
<td>Asn</td>
<td>Gln</td>
<td>Pro</td>
<td>Val</td>
<td>Lys</td>
<td>Gin</td>
</tr>
<tr>
<td>GCT</td>
<td>GGG</td>
<td>AGG</td>
<td>AAT</td>
<td>CAC</td>
<td>AAG</td>
<td>AAC</td>
</tr>
<tr>
<td>TTC</td>
<td>AAG</td>
<td>GAG</td>
<td>AGA</td>
<td>GGC</td>
<td>CCA</td>
<td>CAC</td>
<td>CAT</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Asp</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>CTG</td>
<td>GAC</td>
<td>CCT</td>
<td>CCA</td>
<td>CAC</td>
<td>CCA</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Asp</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>GCT</td>
<td>CCA</td>
<td>CAG</td>
<td>CCA</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Asp</td>
<td>Glu</td>
<td>Ser</td>
<td>Leu</td>
<td>Val</td>
<td>Val</td>
<td>Glu</td>
<td>Ser</td>
<td>Leu</td>
<td>Val</td>
<td>Val</td>
<td>Val</td>
<td>Val</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>ATG</td>
<td>CCG</td>
<td>CAT</td>
<td>CAA</td>
<td>AAG</td>
<td>ACC</td>
<td>AGA</td>
<td>ACC</td>
</tr>
<tr>
<td>Phe</td>
<td>Lys</td>
<td>Gin</td>
</tr>
<tr>
<td>TTC</td>
<td>CCA</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>8/14</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile</td>
<td>Ser</td>
</tr>
<tr>
<td>TTC</td>
<td>CTA</td>
</tr>
<tr>
<td>Phe</td>
<td>Leu</td>
</tr>
<tr>
<td>TTT</td>
<td>GTA</td>
</tr>
<tr>
<td>Val</td>
<td>Lys</td>
</tr>
<tr>
<td>GTC</td>
<td>AAA</td>
</tr>
<tr>
<td>Glu</td>
<td>Ala</td>
</tr>
<tr>
<td>GAA</td>
<td>GCG</td>
</tr>
<tr>
<td>Phe</td>
<td>Asp</td>
</tr>
<tr>
<td>TTT</td>
<td>CAT</td>
</tr>
<tr>
<td>His</td>
<td>Pro</td>
</tr>
<tr>
<td>CAT</td>
<td>AAT</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
</tr>
<tr>
<td>GCT</td>
<td>CCC</td>
</tr>
<tr>
<td>Asn</td>
<td>Gly</td>
</tr>
<tr>
<td>AAT</td>
<td>GCC</td>
</tr>
<tr>
<td>Thr</td>
<td>Asp</td>
</tr>
<tr>
<td>ACA</td>
<td>CAT</td>
</tr>
<tr>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>GGA</td>
<td>CCT</td>
</tr>
<tr>
<td>Glu</td>
<td>Ala</td>
</tr>
<tr>
<td>CAA</td>
<td>GCC</td>
</tr>
<tr>
<td>Leu</td>
<td>Tyr</td>
</tr>
<tr>
<td>TTT</td>
<td>CAT</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td>CGU</td>
<td>CCA</td>
</tr>
<tr>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>ACT</td>
<td>AAA</td>
</tr>
<tr>
<td>Glu</td>
<td>Arg</td>
</tr>
<tr>
<td>GAC</td>
<td>AGT</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>TCT</td>
<td>GTA</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
</tr>
<tr>
<td>TTT</td>
<td>TCT</td>
</tr>
<tr>
<td>Phe</td>
<td>Lou</td>
</tr>
<tr>
<td>TTT</td>
<td>TCT</td>
</tr>
<tr>
<td>Asn</td>
<td>Ile</td>
</tr>
<tr>
<td>AAC</td>
<td>ATC</td>
</tr>
</tbody>
</table>

BUREAU

OMPI

WIPO

INTERNATIONAL
Leu Phe Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala 1,008
TTA TTT AAA GGG AAA AGA GCT CAT GCA GCT TTC TGG ACT AAA GAT AAT GCG
Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Ser 1,026
TTA TTC AAA GGT AGC ATC TTC TGG TTA AAG ACA AAG AAA ACT TCC AAT TCA
Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Lys Ille Glu Asn Ser 1,044
CAA ACT AAT AGA AAG ACT CAC ATT GAT GCC CCA TCA TTA TTA ATT GAG AAT
Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu Phe Lys Lys Val Thr 1,062
CCA TCA GTC TGG CAA AAT ATA TTA GAA AGT GAC ACT GAC TGT AAA AAA
Pro Leu Ile His Asp Arg MET Leu MET Asp Lys Asn Ala Thr Ala Leu Arg Leu 1,080
CCT TTG ATT CAT GAC AGA ATG GTC GTG GAC AAA AAT GCT ACA GCT TGG AGG
Asn His MET Ser Asn Lys Thr Thr Ser Ser Lys Asn MET Glu MET Val Gln Gln 1,098
AAT CAT ATG TCA AAT AAA ACT ACT TCA TCA AAA ACC ATG GAA ATG GTC CAA
Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Cln Asn Pro Asp MET Ser Phe Phe 1,116
AAA AAA GAG GGC CCC ATT CCA CCA GAT GCA CAA AAT CCA ATG TGG TGG
Lys MET Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile Gln Arg Thr His Gly Lys 1,134
AAG ATG CTA TTC TGG CCA GAA TCA GCA AGG TGG ATG TCA GAA AAG ACT CAT GCA
Asn Ser Leu Asn Ser Gly Cln Gly Pro Ser Pro Ser Pro Lys Gln Leu Val Ser Leu 1,152
AAC TCT CTG AAG TCT TGG CCA GGC CCC ACT CCA AAG CAA TTA TTA GTA TCC
Pro Glu Lys Ser Val Cln Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val 1,170
CCA GAA AAA TCT CTG GCA GGT CAG AAT TTC TGG TGG CAG AAA AIC AAA UCC GCA
Val Gly Lys Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu MET Val Phe Pro 1,188
GTA GCA AAG CGA TAA TTA ACA AAG GAC GTA CGA CTG AAA ACG ATG TTC GCA
Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu Asn Asn Thr 1,206
AGG AGG AGA GAT CTA TTC CTC ACT ACT CAC CAA AAA AAT CAT GTA GAT AAT ACA
His Asn Cln Glu Lys Lys Ile Gln Glu Glu Ile Glu Lys Glu Thr Leu Ille 1,224
CAC GAT AAA AAG AAA AAG AAA AAT CAC GAA AAA AAG GAG ACA TTA ATC
Gln 'Glu Asn Val Val Leu Pro Gin Ile His Thr Val Thr 'Gly Thr Lys Asn Phe 1,242
CAA GAG AAT GAT GTC TTA CTG GAC ACT ACT GAG AAT GTA GAA GCT TCA TTC
MET Lys Asn Leu Phe Leu Leu Ser Thr Arg Gin Gin Val Glu Gly Ser Tyr Glu 1,260
ATG AAG ACG AAC ATG TCT TAA CTG ACC ACT ACC AAG CAT GTA GCA GCC ACT
Gly Ala Tyr Ala Pro Val Leu Glu Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn 1,278
GCG GCA TAT CCT CCA GCT TTA AAG TTT AGC TGA TTA TTA CAT TCA ACA AAT
Arg Thr Lys His Thr Ala His Phe Ser Lys Lys Gly Glu Glu Asn Leu 1,296
AGA ACA AAA AGC AAC ACT CAT TTC TCA AAA AAA CGG CAG GAA ACA AAT
Glu Gly Leu Gly Asn Gin Thr Lys Ala Val Gln Lys Tyr Ala Cys Thr Thr 1,314
GAA GCC TGG CGA AAT ACC AAG ATT TAA GAG AAA TAT GCA TGG ACC ACA
Arg Ile Ser Pro Asn Thr Ser Gin Gin Asn Phe Val Thr Gin Arg Ser Lys Arg 1,332
AGC ATA TCT CCT AAT ACA ACC CAG CAG AAT TTC GTC AGG CAA CGT AGT AAC ACA
Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu MET Lys 1,692
CAG TCA CAT GCA GAG GAA ATT GAC TAT GAT CAT ACC ATA TCA GTT GAA AAG
Lys Glu Asp Phe Asp Ile Tyr Asp Glu Asp Glu Asn Glu Ser Pro Arg Ser Phe 1,710
AAC GAA GAT GAT CAT GAT CAT GAA GAT CAT GAA AAT CAG CCG CCG GGC AGG TTT
Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr 1,728
CAA AAA AAA ACA CGA CAT GAC TAT TTT ATT GCT GCA GCT GAC GAG CTC TGG CAT TAT
Gly Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser Val 1,746
GGG ATG GCT GAC TCC GCA CTT GAT GCT TAT GTA AAT AAG ACC CCG ACG GCT TGC
Pro Gln Phe Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe Thr Gln 1,764
CCT CAC TTC AAG AAA GCT TTC TAC CAG GAA ATT GCT CAT GCC TCC TTT ACT GAG
Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu Leu Gly Pro Tyr Ile 1,782
CCC TTA TAC CTT GGA GAA CTA AAT GAA CAT TGC GCT CTC GCG GGC CCA TAT ATA
Arg Ala Gln Val Gln Asn Ile MET Val Thr Phe Arg Asn Gln Ala Ser Arg 1,800
AGA GCA GAA GCT GAA GAT AAT ATC ATG GTA ACT TCC AGA AAT CAG GCC TCT GCT
Pro Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Glu Gly 1,818
CCC TAT TCC TTC TCT AGC ATT ATT TAT GAT GAA GAT CAG CAG AAA GGA
Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Thr 1,836
GCA GAA CCT AGA AAA AMC TTT GTC AAG CCT TAT GAA AGC AAA GAT GAG TCT TGG
Lys Val Gln His His MET Ala Pro Thr Lys Asp Glu Phe Asp Asp TYS Lys Ala Thr 1,854
AAA GTC CAA CAT CAT ATG GCA CCC ACT AAT AAA GAT GAG TTT TAC TGC AAA GCC TGG
Ala Tyr Phe Ser Ser Asp Val Asp Leu Glu Lys Val Asp Val His Ser Gly Leu Ile Gly 1,872
GCT TAT TTC TCT CAT GGT CAT GAC CGG GAA AAA GTG CAT GTC TCA GCC CTC CAT
Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Glu Val 1,890
CCC GCT GTC GTC TGC CAC ACT AAG ACA TCG AAG CCA TGT CAC ACC ACA CAC GCT
Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Thr 1,908
ACA GTA CAG GAA TTT TAC TTA GGC ACC TTG CCC TGG AAC AAA AGG TGG
Thr Phe Thr Glu Asn MET Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Glu MET 1,926
TAC TTG ACT ACT CAT GAT AAA AAT ATG GAA AGA AAC TGC AGC CCT CCC TGC AAT CAC ATO
Glu Asp Pro Thr Phe Lys Gly Val Thr Arg Phe His Ala Ile Asn Gly Tyr Ile 1,944
GAA GAT CCC CAT TCT AAA GAG AAT TAT CCC TTT CAT GTA AIG CAG GAT GAA AAG TCA GAA
MET Asp Thr Leu Pro Gly Val MET Val Glu Asp Glu Ile Arg Arg Arp Tyr 1,962
ATG CAT ACA CTA CCT GCG TGA TAA GAA AAC GTT CAT CAT TAT AAG ATT CAG TGG CAT
Leu Leu Ser MET Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His 1,980
CTC ACC AAC GGG GCG ACC AAT GAA ACC ATC TAT GAT CAT TAC TAT TAC GGA CAT
Val Phe Thr Val Arg Lys Glu Glu Tyr Lys MET Ala Leu Tyr Asn Leu Tyr 1,998
GTC ACT TGT GTA CGG AAA AAA CAG GAG TAT AAA AAG GTC GCA GTC TAC AAT AGC
Pro Gly Val Phe Glu Thr Val Glu MET Leu Pro Ser Lys Ala Gly Ile Trp Arg 2,016
CCA GCT CTT TTT CAG GAC GGC GAA ATG TTA CCA TCC AAA GCT URA ATT TGG CCG

BUREAU
OMPI
INTERNATIONAL
Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly MET Ser Thr Leu Phe Leu
GTG GAA TGG CTT ATT GCC GAG CAT CTA CAT GCG GGG ATG AGC ACA GCT TTT CTG
Val Tyr Ser Asn Lys Gln Thr Pro Leu Gly MET Ala Ser Gly His Ile Arg
GTG TAC ACC AAT AAG TCT CAG ACT CCC CTT GCA ATG GCT TCT GGA CAC ATT AGA
Asp Phe Glu Ile Thr Ala Ser Gly Gin Tyr Gly Gin Trp Ala Pro Lys Leu Ala
GAT TTT CTT CAT ATT AGA GCT TCA GCA CAA TAT GGA CAG TGG GCC CCA AAG CTG GCC
Arg Leu His Tyr Ser Ser Ile Asn Ala Trp Ser Thr Lys Gin Pro Phe Ser
AGA CTT CAT TAT TCC GGA TCA ATC AAT GCC TGG AGC ACC AAA GAG CCG TTT TCT
Trp Ile Lys Val Asp Leu Leu Ala Pro MET Ile Ile His Gly Ile Lys Thr Gin
TGG ATC AAG GTC GAT CTT TGG GCA CCA ATG ATT ATT CAC GGC ATC AAG ACC CAC
Gly Ala Arg Gin Lys Phe Ser Ser Leu Tyr Ile Ser Gin Phe Ile Ile MET Tyr
GCT GCC GTT CAG AAG TGC TCC ACC CTC TAC ATC TTC TTA AAT AGC TAT GCA
Ser Leu Asp Gly Lys Lys Trp Gin Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu
AGT CTT GAT TAT ATG TGG CAG ACT ATC TAT GGA GGA TGC TCC ACT GGA ACC TTA
MET Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn
ATG GTC TTC TTT GGC AAT GTC GAT TCA TCT GGG ATA AAA CAC AAT ATT TTT AAG
Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg
GCC CCA ATT ATT ATT CCT GGA CAC AGC TGG TAC CAC CCA CTC CCA GCA ATT AGC TAT
Ser Thr Leu Arg MET Glu Leu MET Gly Cys Asp Leu Asn Ser Cys Ser MET Pro
AGC ACT CTT GCC AAG GAG TGG ATG GCC TCT GAT TTA AAT AGT TGC ACC AGC ATG
Leu Gly MET Glu Ser Lys Ala Ile Ser Asp Ala Gin Ile Thr Ala Ser Ser Tyr
TTG GGA ATG GAG AGT AAA GCA ATA TCA GAT GCA GAG ATT ACT GCT TCA TAC
Phe Thr Asn MET Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gin
ITT ACC GAT ATG TGG ACG GCC ACC TTC GCT TCA AAA AAT GCA CAA CCC CTC CAA
Gly Arg Ser Asn Ala Trp Arg Pro Gin Val Asn Asn Pro Lys Gin Trp Leu Gin
GCC AGC ACT AAT GCC TGG AGA CCT CAG GTC AAT AAT CCA AAA CAG TGG TTC CAA
Val Asp Phe Gin Lys Thr MET Lys Val Thr Gly Val Thr Gin Val Lys
GTC GAC TCC CAG AAG ATG AAA GCA ATG CTA GCA GCT GAT ACT CAG GGA GTA AAA
Ser Leu Leu Thr Ser MET Tyr Val Lys Gin Phe Leu Ile Ser Ser Ser Gin Asp
TCT CTC CTT ACC AGC TAT GTC AAG GAG TTC CTC ATC TTC ACC CAT GCA
Gly His Gin Thr Trp Leu Phe Thr Pro Gin Val Gin His Ile Lys Val Lys Val Phe Gin Gly
GCC CAT CAG TGG ACT CTT TTC GAG AAG AAA GCA AAG CTA AAG CTT TTT CAG GCA
Asn Gin Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Pro Leu Leu Thr
AAT CAA GAC CAC TTC TCC ACA CTT GTG GTG AAC TCT CTA GAC CCC CCG TTA CTG ACT
Arg Tyr Leu Arg Ile His Pro Gin Ser Trp Val His Gin Ile Ala Leu Arg MET
GCG TAC CTT GGA ATT CAC CCC CAG AGT TCG GTC CAG CCC ATG AAT
Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr End
GAG GTT CTG GCC TGC GAG GCA CAG GAC CTC TAC TGA GGTTGCCCAGTCAGGAGACCTGAGT
CCGGTCACTCTCTCTCAAGTGGTCTCTCCCTGTGCTGGCTCTCCTCTTTTGCTCTCTAGAGAGCTCACTCCCTTG
AAGCCTGGATTAACTATACATCAATGCTGCTGATTGGTCGGGGGACAAGGGGGGATCATCTGTTATTATTTTTTTTATCTTTCTAGTTTTCTCTATT
TTCTGGAGCTGCTTCCAGA
INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 3

According to International Patent Classification (IPC) or to both National Classification and IPC

Int. Cl.: C12Q 1/68; C12P 21/00, 21/02; C12N 15/00, 5/00, 1/20, 1/16, 1/18, 1/00; C07H 15/12; C07G 7/00; A61K 37/00

II. FIELDS SEARCHED

Minimum Documentation Searched 4

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>435/6, 68, 70, 172.3, 240, 253, 255, 256, 317; 536/27; 260/112R; 424/177</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched 4

Computer Data Bases: Biosis Files 5, 55 and 255, Chemical Abstracts

III. DOCUMENTS CONSIDERED TO BE RELEVANT 14

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 16 with indication, where appropriate, of the relevant passages 17</th>
<th>Relevant to Claim No. 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N, Jaye et al., Nucleic Acids Research, Vol. 11, No. 8, pp. 2325-2335, 1983</td>
<td>1-54</td>
</tr>
<tr>
<td>Y</td>
<td>N, Maniatis et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, pp. 224-228, 1982</td>
<td>1-54</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 15
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 "A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search 3
18 December 1984

Date of Mailing of this International Search Report 3
10 JAN 88

International Searching Authority 1
ISA/US

Signature of Authorized Officer
Alvin E. Tanenholz

Form PCT/ISA/2/10 (second sheet) (October 1981)