TELESCOPIC CONTAINER MEMBERS

Inventors: Herman D. Beck, Los Angeles; Thomas H. Cook, La Puente, both of Calif.

Assignee: Owens-Illinois, Inc., Toledo, Ohio

Filed: June 10, 1974

Appl. No.: 477,628

U.S. Cl......... 229/23 BT; 229/32; 229/51 DB

Int. Cl.2................................. B65D 13/04

Field of Search ........... 229/23 BT, 32, 33, 35, 229/51 DB, 23

References Cited

UNITED STATES PATENTS

1,827,593 10/1931 Lupton........................... 229/34 B
2,210,443 8/1940 Bergstein.......................... 229/DIG. 9
2,251,565 8/1941 Forman........................... 229/16 R
3,195,800 7/1965 Cote............................. 229/33

3,469,761 9/1969 Howell.......................... 229/32

Primary Examiner—William I. Price
Assistant Examiner—Bruce Hale Bernstein
Attorney, Agent, or Firm—A. J. Steger; E. J. Holler

ABSTRACT

A telescoping container is formed by utilizing a one-piece corrugated paperboard blank which is scored and slotted in a predetermined pattern and severable into two blanks which are adapted to be folded into telescoping cover and body members. Longitudinal pairs of offset fold lines are formed in the blank by the use of male-to-male offset scoring heads on the corrugator. The blank is then scored to form fold lines in the transverse direction by the use of male-to-female or male-to-flat scoring heads. Two connected portions are thereby adapted to be separated from each other and folded to form matching cover and body members for a telescoping carton.

4 Claims, 4 Drawing Figures
TELESCOPIC CONTAINER MEMBERS

BACKGROUND OF THE INVENTION

This invention generally relates to boxes and container forms from corrugated paperboard material and, more particularly, it relates to telescopic containers in which an outer cover member is formed to matingly slide over an inner body member to form a telescoping container.

It has generally been the practice to form such telescoping containers from cover and body members which are formed from separate blanks. The blanks utilized to form the cover member have been of slightly different dimensions than those utilized to form the body member, so that when folded, the cover member is sized to fit over the body member. The utilization of different sized blanks to form the cover and body members has required a separate inventory of each size blank. The required maintenance of duplicate inventories creates the possibility that imbalance in the quantity of available cover or body blanks may cause a termination of the packaging operation until the supply of deficient blanks can be replenished.

A solution to the problem of forming telescopic containers from different sized cover and body blanks is taught by U.S. Pat. No. 3,469,761 (J. R. Howell). The Howell patent discloses a universal blank which is adapted through the use of longitudinal and transverse pairs of score lines to be folded to form either a cover or a body member. With the utilization of the structure taught by the Howell patent, it is necessary to inventory only one style of blank, as this blank is adapted to be folded to form either a cover or a body portion of a telescopic container. While the universal blank of the Howell patent has been quite successful in commercial operations, it has resulted in two shortcomings. First, it requires the use of male-to-male offset scoring heads to form the pairs of fold lines in both the longitudinal and transverse directions. These male-to-male offset scoring heads are not usually standard equipment on printer-slotter equipment and frequently have to be specially ordered. Further, the reversibly folding universal blank of the Howell patent has created a problem in the area of printing in that the printing intended for the outer surface of the blank when it is folded into a cover member is located on the inside surface of the blank when it is folded to be a body member. In the packaging of some products, for example food and other perishables, the presence of the printing ink on the inside surface of the body member can be quite undesirable.

SUMMARY OF THE INVENTION

With the foregoing in mind, there is provided in accordance with this invention, a corrugated paperboard blank which is formed and scored so as to be severable into two portions which form telescoping cover and body members. Since the mating cover and body members are formed as part of a single blank, the use of this invention avoids the inventory problems associated with the different sized blanks of the prior art. In addition, since the concept of this invention utilizes male-to-male offset scores in only one direction, it eliminates the need for the use of this specialized type of scoring apparatus in the other direction. Since the cover and body portions are formed as part of the same total blank, printing may be accomplished on only a portion of the total blank, so as to eliminate the presence of the undesirable printing ink on the interior of the body member. Other features and advantages of this invention will become obvious upon reference to the following detailed description of a preferred embodiment of the invention and the drawings thereof.

IN THE DRAWINGS

FIG. 1 is a plan view of a blank in accordance with the subject invention which may be severed into portions which form telescoping cover and body members;

FIG. 2 is a sectional view of male-to-male offset scoring heads as they are utilized to form longitudinal score lines in the blank of FIG. 1;

FIG. 3 is a sectional view of male-to-flat scoring heads which are utilized to form transverse fold lines in the blank of FIG. 1; and

FIG. 4 is a perspective view of the telescoping cover and body members formed from the blank of FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENT

As used herein, the term "fold line" shall be used to designate a line of weakness in a sheet of corrugated paperboard material, whereby the sheet may be conveniently bent or folded along this line. Typical examples of such fold lines include scores, creases and perforations, all of which are well known in the art. For purposes of this description, scoring heads are used to impress the fold lines into the blank.

Referring to the drawings, FIG. 1 shows a blank 10 of foldable sheet material, such as corrugated paperboard which is provided with fold lines and slotted edges in accordance with this invention. Blank 10 is generally rectangular in configuration and is divided into two separable portions 12 and 14 by means of a severance line 16 which may be formed by any suitable means, such as slitting. As will become apparent, the portion 12 is scored and slotted so as to be adapted to form a cover member and portion 14 scored and slotted so as to be adapted to form a body member.

The blank 10, minus the transverse slots and fold lines, will exit the corrugating apparatus in which it was formed in the longitudinal direction as viewed in FIG. 1. The corrugating apparatus may be provided with belts of male-to-male offset scoring heads indicated by the numerals 18 and 20 in FIG. 2. As viewed in FIG. 2, the scoring heads 18 will form the fold lines 22 in the top surface of the blank 10 and the scoring heads 20 will form the fold lines 24 in the lower surface of blank 10. These fold lines 22 and 24 extend the full length of blank 10. The blank 10, once it has been removed from the corrugating apparatus, may be fed to a suitable apparatus, such as a printer-slotter, for the formation of the remaining slots and fold lines. As shown in FIG. 3, the blank 10 is being fed through a series of male-to-flat scoring heads. The male scoring heads 26 coat with flat scoring heads 28 to result in fold lines 30 in the undersurface of the blank 10. Similarly, male scoring heads 32 coat with flat scoring heads 34 to form fold lines 36 in the top surface of blank 10. Cover portion 12 of blank 10 includes four slots 38 which are formed therein and extend inwardly approximately to the fold lines 22 in the upper surface of blank 10. Similarly, body portion 14 includes four slots 39 which are formed therein and extend inwardly to the fold lines 24 in lower surface of blank 10. Slots 38 and 39 may be formed into the blank 10 by any suitable slotting equipment compatible with the press that includes the scor-
3,926,362

3

ing heads 26, 28, 32 and 34. Thus, through the provision of the previously described fold lines, cover portion 12 now includes a top panel 40, four sidewall panels 42 and four side closure flaps 44. Similarly, body portion 14, through the provision of fold lines 24 and 30, now includes a bottom panel 46, four sidewall panels 48, and four side closure flaps 50.

Thus, the blank 10, as it appears in FIG. 1, may be shipped as one piece to a customer, thereby affording him the opportunity to inventory only this blank for the formation of telescopic containers. The blank 10 may be severed along slit or separation line 16 to form separate portions 12 and 14 which are adapted to form cover member 52 and body member 54, as shown in FIG. 4. Cover member 52 may be formed from cover portion 12 by folding the four sidewall panels 42 upwardly along the fold lines 22 and 36 and folding sidewall closure flaps 44 into contact with the adjacent sidewall panels 42. The sidewall closure flaps 44 may be positioned on either the inside or the outside of the adjacent sidewall panels 42. The body member 54 may be formed from body portion 14, as shown in FIG. 4, by folding the sidewall panels 48 downwardly along fold lines 24 and 30 and simultaneously folding the sidewall closure flaps 50 into contact with the adjacent sidewall panels 48. As was the case with cover member 12, the sidewall closure flaps 50 in body member 14 may be folded into contact with either the inside or the outside surfaces of the adjacent sidewall panels 48. Thus, as can be seen in FIG. 4, the cover member 12 is sized so as to be slightly larger than body member 14, so that it can be telescopingly positioned over the body member 14 to form a telescopic container.

Therefore, this invention, as embodied in the blank of FIG. 1, enables the user to form a telescopic container through the utilization of only a single blank member. This eliminates the disadvantages associated with prior art concepts wherein two separate and distinct blank members were utilized to form the cover and body members of the telescopic container. This invention also eliminates the disadvantages associated with the structure of the afore-described Howell patent, in that double-fold lines, as created by male-to-male offset scoring heads, are necessary in only one direction on the blank. Standard male-to-female or, as illustrated here, male-to-flat scoring heads may be utilized to form the remaining fold lines. Since the blank contains separate and distinct portions which are predetermined to form the resulting cover and body members of the telescopic container, desired portions of this blank may be printed without the possibility of the printing resulting on the interior surface of the body member. The use of a single blank which may be severed to form mating cover and body members also assures the ultimate user of an equal number of cover and body members. It should be apparent that, if desired, the blank may be severed so that the cover and body members are shipped and stocked separately prior to their utilization.

What we claim is:

1. A blank of foldable material adapted to be separated into two portions which may be folded to form separate, complementary body and cover members of a telescopic container, said blank having a pair of outer longitudinal fold lines formed on a first side thereof and a pair of inwardly offset longitudinal fold lines formed on a second side thereof, said longitudinal fold lines terminating at the longitudinal extremities of said blank, a transverse separation means formed therein and terminating at the transverse extremities of said blank for separating the blank into body-forming and cover-forming portions, opposed transverse slots extending inwardly at least to said inwardly offset longitudinal fold lines and interrupting the continuity of said outer longitudinal fold lines in the body-forming portion of said blank, transverse fold lines disposed intermediate the inner margins of said opposed transverse slots in said body-forming portion and formed on said second side of said blank, opposed transverse slots extending inwardly at least to said outer longitudinal fold lines in the cover-forming portion of said blank and transverse fold lines disposed intermediate the inner margins of said opposed transverse slots in said cover-forming portion and formed on said first side of said blank, whereby when said body-forming portion is separated from said cover-forming portion along said transverse separations means and is folded about said inwardly offset longitudinal fold lines and said transverse fold lines, respectively, on said second side of said blank a body member is formed, and when said cover-forming portion is folded about said outer longitudinal fold lines and said transverse fold lines, respectively, on said first side of said blank, a complementary cover member is formed.

2. A blank of foldable material as set forth in claim 1, wherein said transverse separation means is a slit formed in said blank.

3. A telescopic container including separate, complementary body and cover members, each of which is formed from the same blank of foldable material, said blank having a pair of outer longitudinal fold lines formed on a first side thereof and a pair of inwardly offset longitudinal fold lines formed on a second side thereof, said longitudinal fold lines terminating at the longitudinal extremities of said blank, a transverse separation means formed therein and terminating at the transverse extremities of said blank for separating the blank into body-forming and cover-forming portions, opposed transverse slots extending inwardly at least to said inwardly offset longitudinal fold lines and interrupting the continuity of said outer longitudinal fold lines in the body-forming portion of said blank, transverse fold lines disposed intermediate the inner margins of said opposed transverse slots in said body-forming portion and formed on said second side of said blank, opposed transverse slots extending inwardly at least to said outer longitudinal fold lines in the cover-forming portion of said blank and transverse fold lines disposed intermediate the inner margins of said opposed transverse slots in said cover-forming portion and formed on said first side of said blank, whereby when said body-forming portion is separated from said cover-forming portion along said transverse separations means and is folded about said inwardly offset longitudinal fold lines and said transverse fold lines, respectively, on said second side of said blank a body member is formed, and when said cover-forming portion is folded about said outer longitudinal fold lines and said transverse fold lines, respectively, on said first side of said blank, a complementary cover member is formed.

4. A telescopic container as set forth in claim 3, wherein said transverse separation means is a slit formed in said blank.

** * * * *