A guide-sheet such as a guide-leaf, a guide-card or the like comprises a thin and easy-flexible sheet having round holes along a margin thereof, and a stub which is anchored to the sheet in an arbitrary position along the margin by two hooks formed by the stub at two opposite edges thereof. These hooks are each separated from the associated edge by a notch the inner end of which is defined by a curved edge portion. The stub has a tight fit between the holes and the round transition to provide a wedging action and pressures against the edge of the hole, the sheet being elastically yieldable in relation to the stub.

2 Claims, 3 Drawing Figures
GUIDE-SHEET SUCH AS A GUIDE-LEAF, A
GUIDE-CARD, OR THE LIKE HAVING A
DETACHABLE STUB

Guide-leaves and guide-cards are used for dividing a quantity of documents which are stored in a file, a folder or a card box, and have a member projecting from the quantity of documents to facilitate search and division. The projecting members of several leaves or cards are usually displaced stepwise in one and the same quantity of documents to form a stepped arrangement whereby reading of occurring text or symbols on the members is facilitated. Depending on its construction, the said member is called a flap, an ear, or a stub.

Flaps and ears are similar in the sense that they are made of the same material as the sheet forming the guide-leaf or guide-card since they are formed by partially cutting off a projecting marginal portion of the sheet. Both of them form a stepped arrangement but the flap is stronger due to the fact that one part only of the projecting marginal portion has been cut off; the flaps in one and the same set of guide-leaves or guide-cards thus are of different length the first flap being a very short one while the last flap extends along the total length of the projecting marginal portion. Ears in one and the same set of guide-leaves or guide-cards are of the same size since the sheet has been cut off at the projecting marginal portion at both sides of the ear. Therefore, ears may be red from both sides while flaps can be red from one side only in a set of guide-leaves or guide-cards.

Ears and stubs are of the same appearance but while the ears are formed integrally with the guide-leaf or guide-card the stubs are fitted as separate members to the leaf and card, respectively, and thus may be formed of another material than the sheet forming the leaf or card, i.e., of a material having other properties than such sheet.

The advantages of detachable stubs may be summarized as follows:

the guide-leaf or guide-card proper is of the same form irrespective of the position or purpose thereof in the document quantity; thus, it is not necessary to depend on sets of guide-leaves or guide-cards;
the guide-leaves or guide-cards as well as the stubs may be rearranged;
the properties of the guide-leaves or guide-cards and the stubs may be adapted to the respective functions thereof;
the guide-leaves or guide-cards may be arranged in sets mechanically and the stubs may be attached later manually;
several stubs may be attached to one and the same guide-leaf or guide-card;
there are no established predetermined positions of the stubs.

The principle of detachable stubs is already adopted in a prior art guide-leaf system. In this system there are provided for anchoring the stubs to the guide-leaf two mutually parallel slots for each stub position, and this necessitates that the guide-leaves are individually punched. Moreover, in the prior art system the stubs are small and insignificant since the width thereof corresponds to the length of the slots. This system provides all of the advantages listed above but the objection has been raised that the stubs are difficult to co-ordinate visually with the headings of register sheets and that the stubs due to their small size do not function very well as colour signals and do not provide space for other markings than very small ones; as a matter of fact they are not intended to be provided with any marking.

It is also already known to connect large stubs detachably to a guide-card by means of three lappets or hooks one of which points in the opposite direction or perpendicularly to the other two, these lappets being inserted into holes in the guide-card, which holes are formed as slots arranged in two rows. These prior art stubs are cumbersome to attach in their position due to the fact that three lappets have to be introduced into a corresponding number of slots.

The invention relates to detachable stubs and provides a guide-sheet, such as a guide-leaf, a guide-card or the like comprising a sheet having a number of individual holes regularly spaced along a margin of the sheet, and at least one stub attached to the sheet in an arbitrary position along the margin by means of two hooks provided one at each of two opposite edges of the stub in the same plane as the rest of the stub these hooks being inserted into two holes and each of the hooks being separated from the associated edge by a notch the inner end of which is defined by a curved edge portion forming a round transition between the hook and the rest of the stub, and being inclined towards an imaginary extension of one of two opposite edges of the stub.

In order to overcome the drawbacks of the prior art systems and to further improve and develop the principle of detachable stubs a guide-sheet of the kind referred to above is characterized in that the sheet comprises a thin and easy-flexible sheet of a material which is elastically yieldable in relation to the stub, such as a polyester film, having round holes along said edge, and that the hooks are arranged adjacent the other one of said other two opposite edges the distance between the inner ends of the notches and the width of the hooks being matched to the spacing of the holes in the sheet such that the stub when the hooks thereof are inserted into said holes has a tight fit between the holes and the round transition, providing a wedging action and pressures against the edge of the hole.

By the arrangement according to the invention it is achieved primarily that the stub is easy to attach to the guide-sheet and to detach therefrom and that the stub when attached to the sheet is well anchored in the intended position while the stub may be folded inwardly from the operative position thereof to an inoperative position without the necessity to detach the stub from the guide-sheet. Furthermore, the guide-sheets are easy to manufacture since it is not necessary to cut the different sheets individually; the holes provided therein may be bored simultaneously in several sheets arranged in a stack.

Further advantages of the invention will be apparent from the following description of an embodiment of the invention with reference to the attached drawing, in which

Fig. 1 is a plan view of a guide-leaf having a detachable stub according to the invention;
FIG. 2 is an enlarged plan view of the stub only; and
FIG. 3 is a further enlarged fragmentary plan view of the guide-leaf and the stub showing the specific anchoring according to the invention.
In FIG. 1 there is shown a guide-leaf 10 which may be of the standardized form A4 and which has at the left margin thereof a conventional punching 11 for fastening the leaf in a file or by means of a separate fastener. The guide-leaf consists of a sheet of a suitable material which may be opaque or transparent. However, according to the invention there is the requirement that the sheet shall be thin and tough and shall be of great strength. A material which satisfies this requirement is a polyester film marketed by Du Pont under the registered trade mark MYLAR, type B, with a thickness of 50μ. Also paper such as paper coated with a plastics material may be used for the guide-leaf but in that case it must be considered that the guide-leaf will be less durable than if it is made for example of the polyester film mentioned above. Along the right margin of guide-sheet 10 there is provided a row of circular holes 13 equally spaced along the edge which holes in the embodiment described are arranged in a number of 15 to allow attachment of stubs 14 in fourteen different positions along the margin.

Stubs 14 the form of which is more clearly shown in FIG. 2 are made of a material which is stiff or rigid in relation to the material of guide-leaf 10. For use in combination with the polyester film mentioned above a stub of rigid polystyrene plastic having a thickness of 0.3 mm has turned out to be suitable. The stub is of substantially rectangular form having two opposite parallel edges 15 and two opposite parallel edges 16. The transition between each of edges 15 and one of edges 16, the right one in FIG. 2, is gently rounded. From each edge 15 there projects a hook 17 located adjacent the other edge 16, the left one in FIG. 2, and directed obliquely towards an imaginary extension of the right edge 16. The hook is defined by two edges 18 and 19 which are mutually parallel and of which edge 18 joins the left edge 16 by a rounded transition. Edge 19 defines a notch 20 in edge 15, which notch separates hook 17 from the rest of the stub. The inner end of this notch comprises a substantially circularly curved edge portion 21 which connects edge 19 with the opposite edge 22 of the notch said edge 22 being parallel to edge 19 as will be seen especially in FIG. 3. The hook has at the free end thereof a rounded end edge 23 interconnecting edges 18 and 19. Edges 18, 19, and 22 which are mutually parallel form in the embodiment disclosed an angle of substantially 45° with the associated edge 15 such that the main direction of hook 17 extends in an angle of 45° to said edge 15 and the hooks form an interangle of 90°. This angle forms an important aspect of the embodiment disclosed and has been found to contribute to an optimal anchoring of the stub described to the guide-leaf as is shown in FIG. 1 and now will be explained in more detail.

As will be seen from FIG. 1 stub 14 is inserted with the two hooks 17 thereof into two adjacent holes 13 in guide-sheet 10. Since holes 13 are equally spaced along the right margin of the guide-leaf any pair of adjacent holes 13 may be arbitrarily chosen for the attachment of the stub in the desired position along the margin of the guide-leaf. The attachment of the stub is managed as follows: the stub is grasped between the thumb and the forefinger at the opposite edges 16 and is bent around an axis substantially perpendicular to said two edges such that hooks 17 are moved towards each other the distance between the ends of the hooks thus being reduced. Now, one of the hooks is first introduced into one of holes 13 and then the other one in an adjacent hole at the desired position. Thereafter the stub is released and the stub will now be securely fitted in the holes but it is suitable to flatten the stub in order to straighten it out after the bending whereby the stub will be fitted even more securely in the position on the guide-leaf. Due to the fact that the stub is dimensioned in relation to the distance between holes 13 in such a manner that the stub when flattened will have a tight fit between the holes, the rounded edge 21 at the inner end of notches 20 will press into the material of the guide-leaf by some kind of wedge action such that the guide-leaf will be deformed slightly at the two holes, i.e., the holes will match to the stub which requires, however, that the material of the guide-leaf is sufficiently thin to yield in relation to the material of the stub and is of sufficient strength and also has some elasticity in order not to rupture when the stub is brought to a tight fit between the holes when flattened. Some elasticity of the material in the guide-leaf thus is a requisite for the arrangement to operate as intended but as mentioned above also paper may be used for the guide-leaf. This provides the inherent disadvantage, however, that the stubs when once located on the guide-leaf can hardly be rearranged without the risk that the material of the guide-leaf will rupture at holes 13.

The wedge action obtained at marginal portion 21 will take place at the edge portion of hole 13 near the adjacent margin of the guide-leaf, as will be seen from FIG. 3, whereby the best anchoring of the stub is obtained. Although a very reliable anchoring of the stub to the guide-leaf will be obtained by the disclosed form of the hooks there are, of course, possibilities to modify the form, direction, and location of the hooks within the scope of the invention. However, as mentioned above hooks in an angle of about 45° to edge 15 are preferred since an optimal anchoring action will be obtained thereby. If the stub is T-formed, i.e., if hooks 17 extend linearly in opposite directions substantially in parallel to edges 16 the stub will still be well anchored to the guide-leaf but it will not be fixed in the same plane as the guide-leaf. It can turn in holes 13 around an axis parallel to edges 16 which means that it will be difficult to make a search or to turn the leaves in a document quantity having such stub. On the other hand, if the hooks are made more closed so that they extend nearly in parallel to edges 15 it will be very difficult to attach the stubs to the guide-leaves. As mentioned above the form disclosed is the optimal form, and an interesting aspect in this connection is that the stubs despite the safe anchoring may be turned around under some snap-action from the operative position disclosed in the drawing to an inoperative folded-in position. There must be a minimum of material between the hooks in the stub surface proper whereby there will be a limit for the dimensioning of the stubs in the longitudinal direction of the guide-leaf but for the rest there is the possibility to make the stubs as large as desired and to modify the form thereof, i.e., the form of the projecting part of the stub without interfering with the operation of the stub. The stub is as easy, if not easier, to detach from the guide-sheet as it is to attach to said sheet since it is sufficient to lift the stub by a finger tip at the left edge 16 and to draw simultaneously in an outward direction. Then, hooks 17 due to their direction and form will slide easily out of holes 13.
The occurring deformation of the guide-leaf at hooks 17 allows a certain tolerance range at the manufacture of stubs and guide-leaves, which will provide more or less deformation of the guide-sheet material but will not provide such a fit of stub and guide-leaf that the stub will engage too loosely the holes in the guide-leaf. The stubs are easy to manufacture under low wastage of material, and the holing of the guide-leaves may be rationally made by boring a stack of sheets which is substantially cheaper than to punch each sheet individually.

What I claim is:

1. In a guide-sheet comprising a sheet having a number of individual holes regularly spaced along a margin of the sheet, and at least one stub of substantially rectangular form attached to the sheet in an arbitrary position along the margin by means of two hooks provided one at each of two opposite edges of the stub in the same plane as the rest of the stub, said hooks being inserted into two holes and each of the hooks being separated from the associated edge by a notch, the inner end of which is defined by a curved edge portion forming a round transition between the hook and the rest of the stub, and being inclined towards an imaginary extension of one of two other opposite edges of the stub, the improvement that the sheet comprises a thin and easy-flexible sheet of a material which is elastically yieldable in relation to the stub, having a row of round holes along said edge, and that the two hooks of said stub are arranged adjacent the other one of said other two opposite edges, the distance between the round transitions of the notches of the hooks being slightly greater than the spacing of any two selected holes in the sheet such that the stub when the hooks thereof are inserted into two of said selected holes has a tight fit between the holes and the round transition which causes the hooks to press into the sheet to slightly deform the sheet at the selected holes, providing a wedging action of said hooks which exerts pressure against the edge of each of the holes, said stub being adapted to rotate about each of said hooks inwardly toward said sheet from an exposed position thereof to an unexposed position wherein said stub is spaced from the edge of the sheet without the necessity of detaching the stub from said sheet, rotation of said stub being accomplished by a snap-action created by movement of said hooks as they press against each of said selected holes of said sheet.

2. The guide-sheet as defined in claim 1 wherein said thin and easy-flexible sheet comprises a polyester film.

* * * * *