ABSTRACT: A flexible bracelet construction comprised of a plurality of interconnected links, each of the links being bent substantially at the midpoint thereof to define angularly directed end portions. A channel is formed in the body portion of each link and openings are formed in the end portions thereof. A tab is joined to the end portions of each link and is initially bent so as to be received in the opening of an adjacent link and is thereafter bent inwardly within the channel of the body portion of the adjacent link, the adjacent links thereby being fixedly and flexibly interconnected to form the flexible bracelet construction.
FLEXIBLE BRACELET CONSTRUCTION

BACKGROUND OF THE INVENTION

The present invention has application as an ornamental band and is particularly of the type that may be used as a bracelet for personal adornment or as a watch bracelet. Flexible bracelet constructions normally comprise links that are interconnected in edge-to-edge relation or that are interconnected through spring elements that provide for stretching of the band if such stretching is a requirement of use. Although these prior known bracelets have been found to be satisfactory in the use thereof and have found favor in the trade because of their ornamental characteristics or because of the stretch features, the assembly of the links of the bracelet was somewhat difficult to achieve and special machinery was required that was not only costly but was difficult to maintain. Moreover, the flexible bracelet constructions known heretofore incorporated several parts in each link and this further contributed to the cost of the finished bracelet.

SUMMARY OF THE INVENTION

The present invention represents a departure from the prior known flexible bracelet constructions in that each link of the bracelet is of a one-piece construction and is assembled to an adjacent link with a minimum of effort and requiring relatively uncomplicated automatic machinery to effect.

The flexible bracelet construction of the present invention comprises a plurality of interconnected links, each of the links being defined by a body portion that is bent substantially at the midpoint thereof to form a longitudinally direct end portions. A channel is formed in the body portion of each link and extends substantially the length thereof, openings being formed in the end portions of the links adjacent to the outer ends thereof. A reduced tab is joined to the end portions of each link and projects outwardly therefrom, the tabs being initially bent in a first direction and extending through the openings of an adjacent link and thereafter being bent inwardly in a second direction so as to be received in concealed relation in the channel of the body portion of the adjacent link. The adjacent links are thereby fixed by the tabs in flexible interconnected relation.

Accordingly, it is an object of the invention to provide a plurality of links of relatively simple construction that are interconnected to each other by tabs, the tabs providing for flexible interconnection of the links.

Another object of the invention is to provide a flexible bracelet construction comprised of a plurality of one-piece links, each of the links including end tabs that are bent into a channel of an adjacent link, the tabs fixedly and flexibly interconnected the links together.

Still another object is to provide a bracelet construction that comprises a plurality of one-piece link members that enable the bracelet to be quickly constructed at a relatively low cost.

Other objects, features and advantages of the invention shall become apparent as the description thereof proceeds when considered in connection with the accompanying illustrative drawing.

DESCRIPTION OF THE DRAWING

In the drawing which illustrates the best mode presently contemplated for carrying out the present invention:

FIG. 1 is a top plan view with parts shown in section of a portion of the bracelet embodied in the present invention showing the links of the bracelet being interconnected in nested relation;

FIG. 2 is a side elevational view of the assembled bracelet construction illustrated in FIG. 1;

FIG. 3 is an enlarged perspective view with parts shown in section of an individual link prior to the bending of the body portion and the tabs thereof to the position for assembly; and

FIG. 4 is a perspective view showing one of the links in the bent position and prior to the assembly with an adjacent link.

DESCRIPTION OF THE INVENTION

Referring now to the drawing, the bracelet construction embodied in the present invention is generally indicated at 10 and, as shown, is comprised of a plurality of interconnected links, each of which is generally indicated at 12. As will be described, each of the links 12 is formed in a one-piece construction and is interconnected to an adjacent link without the requirement of external fastening elements or springs, the interconnected links having a degree of flexibility that provides for ornamental use of the bracelet.

Referring to FIG. 3, one of the links 12 is illustrated in the form it is constructed prior to the shaping thereof for connection to an adjacent link. As illustrated in FIG. 3, the link 12 includes a body portion 14 through which a longitudinally extending channel 16 extends, the channel 16 projecting substantially the length of the body portion 14. Located adjacent to the ends of the body portion 14 are openings 18 and 20, the lateral dimensions of which are predetermined for receiving a reduced end tab as formed on an adjacent link. In this connection, each of the links as illustrated in FIG. 3 is formed with end tabs 22 and 24, the lateral dimensions of which are reduced in size for being received in a corresponding opening of an adjacent link.

Prior to the interconnection of a link 12 with an adjacent link, it is first bent to the configuration as illustrated in FIG. 4. As shown in FIG. 4, the body portion 14 is bent approximately at the midpoint thereof to define angularly extending legs 26 and 28, the channel 16 as extending through the body portion defining the interior of the bent link. The tabs 22 and 24 are also initially bent in a first direction so as to be located substantially at right angles with respect to the legs 26 and 28 respectively. With a link 12 disposed in the position as illustrated in FIG. 4, it is then ready for assembly with an adjacent link.

In the assembly of each link 12 to an adjacent link, the links are nested as illustrated in FIG. 1, the tabs 22 and 24 of one link extending through the openings 18 and 20 respectively of an adjacent link. The outermost ends of the tabs 22 and 24 that are received through the openings 18 and 20 of the adjacent link are then bent inwardly in a second direction into the channel 16 as illustrated in FIG. 1, the bent portions being indicated at 30 and 32. Thus the bent portions 30 and 32 of the tabs 22 and 24 are concealed within the channel 16 and provide for snug nesting of the adjacent links in the assembled position thereof. As further shown in FIG. 1, the width of the tabs 22 and 24 is slightly less than the longitudinal dimension of the openings through which the tabs extend so as to create a space therein. The spaces provide for a certain degree of flexibility of the links in the interconnected position and enable the completed bracelet to be flexed in accordance with the use thereof.

As each of the links 12 is connected to its adjacent link, the tabs 22 and 24 are received in the corresponding openings 18 and 20 of the adjacent link and are then bent over to form the bent portions 30 and 32, the bent portions being received in the channel 16 of the adjacent link. The links are built one upon the other in nested relation as illustrated in FIG. 1 until the required length of chain or bracelet is obtained. Any suitable catch construction can be secured to the free ends of the bracelet, or the free ends of the bracelet can be joined to the end connectors of a watch casing as desired.

Although, as stated above, the assembled bracelet does have a certain degree of flexibility or may be deformable, and sometimes necessary, to forcibly bend the completed bracelet so that it will assume a sufficient curvature to properly drape around the wearer’s wrist, it should also be noted that the links 12 may be formed from channel stock, this being desirable in that fewer raw edges are present.

While there is shown and described herein certain specific structure embodying the invention, it will be manifest to those skilled in the art that various modifications and rearrangements of the parts may be made without departing from the spirit and scope of the underlying inventive concept and that
the same is not limited to the particular forms herein shown and described.

What I claim is:

1. In a flexible bracelet construction, a plurality of interconnected links, each of said links having a body portion that is bent substantially at the midpoint thereof to define angularly directed end portions, a channel being formed in the body portion of each link and extending substantially the length thereof, openings formed in the end portions of each link adjacent to the outer ends thereof and a reduced tab joined to the end portions of each link and projecting outwardly therefrom, the tabs of each link extending through the openings of an adjacent link and being bent inwardly so as to be concealingly received in the channel of the body portion of the adjacent link, wherein said adjacent links are freely but flexibly interconnected.

2. In a flexible bracelet construction as set forth in claim 1, the openings in the end portions of each link being formed such that when a tab of an adjacent link is received therein and bent into the channel of the corresponding body portion, a space is created that provides for the flexible interconnection of the adjacent links.

3. In a flexible bracelet construction as set forth in claim 1, the angle as defined by the end portions of each link providing for firm engagement of the tabs as they extend through the openings of an adjacent link and are bent into the channel of the corresponding body portion.

4. In a flexible bracelet construction as set forth in claim 3, the openings in the end portions of each link being formed such that when a tab of an adjacent link is received therein and bent into the channel of the corresponding body portion, a space is created that provides for the flexible interconnection of the adjacent links.

5. In a flexible bracelet construction as set forth in claim 4, the end portions of each link defining substantially a right angle in the bent position thereof, whereby when the links are interconnected through the tabs thereof they nest to define a herringbone design.

6. In a flexible bracelet construction as set forth in claim 4, the width of the tabs of each link being slightly less than the lateral dimension of the channel as formed in an adjacent link, wherein the tabs are snugly received in the channel after insertion through the end openings of the corresponding body portion and bending of the tabs to the locking position.