INVENTOR:
J. S. Palovaara

ATTORNEYS
PRESSURE ROLL BEAM IN A LATERAL SHEET CUTTER

Jaanko Severs Pahvavaara, Jyväskylä, Finland, assignor to Valmet Oy, Helsinki, Finland, a corporation of Finland

Filed Mar. 13, 1968, Ser. No. 712,667

Claims priority, application Finland, Mar. 14, 1967, 750/67

Int. Cl. B65h 17/12, 35/02

U.S. Cl. 242—66

7 Claims

ABSTRACT OF THE DISCLOSURE

A mechanical, hydraulic or pneumatic device acts upon the pressure roller beam of a longitudinal sheet cutter either above, or below its neutral axis—or both above and below—to cancel at least partly the deflection of the pressure roller beam caused by its own weight, action above the neutral axis producing a longitudinal tensile stress in the beam, while action below the neutral axis produces longitudinal compression in the beam.

The present invention concerns a pressure roller beam in a longitudinal sheet cutter.

On the lower part of the pressure roller beam in a longitudinal sheet cutter pressure rolls are mounted, which serve to press down on the paper rolls which are being formed, so that the rolls will have an appropriate firmness. As the rolls increase in size, the load imposed by the pressure rolls on the paper rolls must be reduced because the weight of the paper rolls themselves continuously increases. The load of the pressure rolls is caused by the weight of the rolls themselves and by that of the pressure roller beam. The required relief of the load is accomplished by supporting the pressure roller beam at its ends by an appropriate force, which is increased as the diameter of the paper rolls increases. Since the pressure roller beam is supported by its ends, a downward deflection of the beam is caused by its own weight. This deflection increases with increasing support of the pressure roller beam at its ends, which increases with increasing relief of the load.

The deflection of this beam is detrimental for the paper roll-forming process because the pressure rolls exert greater pressure on the paper rolls near the central line of the sheet cutter than on its sides. At the final stage of rolling, when the greatest amount of relief is applied (when the paper rolls have their greatest size) it frequently happens that the deflection of the beam reaches such magnitude that the pressure rolls farthest from the center have no contact at all with the paper rolls which are being formed. Owing to the deflection of the pressure roller beam the firmness of the paper rolls cannot be sufficiently well controlled: the outermost paper rolls will be softer than those in the center. The harder rolling of the rolls in the center also implies that their diameter will be smaller than that of the rolls on the sides, and correspondingly also their peripheral velocity will be smaller than that of the outermost rolls, a circumstance which may cause wrinkling of the paper during the sheet cutting process.

The object of the present invention is to eliminate the above-mentioned difficulties encountered in the re-rolling of the cut paper in a longitudinal sheet cutter. The invention is accordingly characterized in that in order to cancel the deflection of the pressure roller beam caused by its own weight, either entirely or in part, there has been provided to act on the part of the pressure roller beam above its neutral axis a mechanical, hydraulic or pneumatic device which produces in the part of the pressure roller beam above said neutral axis a longitudinal tensile stress and/or that there has been provided to act on the part of the pressure roller beam below its neutral axis a similar device which produces longitudinal compression in this part of the beam. Since with the aid of the invention the deflection due to the proper weight of the beam can be entirely or partly cancelled, it follows that the pressure rolls exert uniform pressure on the paper rolls over the entire width of the sheet cutter. The paper rolls produced will then have equal hardness and equal diameters both in the center of the sheet cutter and on its sides and consequently the peripheral velocity is also the same over the entire width, nor will there be any tendency of wrinkling. In one of the embodiments of the invention, the pressure roller beam may be supported by mechanical devices belonging to it. The mechanical devices may then consist of bell cranks attached to it, one arm of each bell crank engaging a rod which is parallel to the pressure roller beam and is carried in guide brackets attached to it, while the other arms are connected to the chains supporting the pressure roller beam. In another embodiment of the invention the mechanical device consists of a hydraulic or pneumatic cylinders at the ends of the pressure roller beam, the piston rods of which engage a rod parallel to the beam and carried in guide brackets attached to it. The other details of the invention are more clearly illustrated by the subsequent description of the invention, with reference to the embodiments presented in the attached drawings.

In the drawings:

FIG. 1 shows a previously known longitudinal sheet cutter in a frontal view, and FIG. 2 shows the same, viewed from one end. FIG. 3 shows a pressure roller beam according to one of the embodiments of the invention. FIG. 4 shows a pressure roller beam according to another embodiment of the invention. FIG. 5 shows a pressure roller beam according to a third embodiment of the invention. FIG. 6 shows a pressure roller beam according to a fourth embodiment of the invention. The reference numeral 1 in FIGS. 1 and 2 indicates the pressure roller beam with which this invention is concerned. The pressure roller beam 1 moves in vertical direction along its guides on the bed pylons 2, supported by chain 3. On the lower part of the beam, 1 the bearing housing for the pressure rolls 5, 4, have been mounted. The rolls formed by the paper after cutting, revolve, driven by the drive rolls 6. The revolving paper rolls 5 are kept in their proper position by the center dowe 7, which move vertically in guides on the pylons 2. Cutting of the full-width paper web into strips of the widths specified by the customer takes place by means of rotating disk blades 8 on the cutting table 9.

In a device shown in FIG. 3 there is above the pressure roller beam 1 a rod 10 extending parallel to said beam and which is carried in guide brackets 11 attached to the pressure roller beam 1. The rod 10 is free to move in the brackets 11 in its longitudinal direction, but the rod 10 may be immovably fixed to the central bracket 11. In the part of the pressure roller beam above its neutral axis a, close to its either end, bell cranks 12 pivoted on pivot pins fixed to the beam and turning in the vertical plane have been mounted. Their arms 12 pointing upward press against the rod 10 above the pressure roller beam because to the outward-pointing arms of the bell cranks there have been attached the chains 3 supporting the pressure roller beam with its accessory equipment. As a result of this arrangement the pressure roller beam exerts pressure, by virtue of its proper weight, through the vertical bell crank arms on the ends of the rod 10, which in its turn causes a force to act on the pivot pins of the bell cranks 12 on the pressure roller beam, this force tending to draw these pivot points apart. The result is that a stress is set
What is claimed is:

1. A longitudinal sheet cutter, a pressure roll beam, at least one elongated pressure transmitting device carried by said pressure roll beam, said device extending substantially between opposite ends of the pressure roll beam, and means connected with said device and said pressure roll beam and actuating said device to produce a longitudinal tension in at least a part of the pressure roll beam.

2. In a cutter in accordance with claim 1, comprising supporting chains, said means being mechanical means and being connected with said chains, said means being actuated by the weight of said pressure roll beam.

3. In a cutter in accordance with claim 1, wherein said pressure transmitting device comprises an elongated rod and guiding brackets mounted upon said pressure roll beam and carrying said rod, and wherein said means comprise two bell cranks having pivots mounted in said pressure roll beam, said bell cranks being located adjacent opposite ends of said rod, each bell crank having an arm engaging a separate end of said rod and another arm connected to a separate supporting chain.

4. In a cutter in accordance with claim 3, wherein the pivots of said bell cranks are located above the neutral axis of said pressure roll beam and below said rod, the first-mentioned arms of said bell cranks extending upwardly, said bell cranks producing a longitudinal tensile stress in the part of the pressure roll beam located above its neutral axis.

5. In a cutter in accordance with claim 3, wherein the pivots of said bell cranks are located below the neutral axis of said pressure roll beam and above said rod, the first-mentioned arms of said bell cranks extending downwardly, said bell cranks producing a longitudinal compression in the part of the pressure roll beam located below its neutral axis.

6. In a cutter in accordance with claim 1, wherein said pressure transmitting device comprises an elongated rod and guiding brackets mounted upon said pressure roll beam and carrying said rod, and wherein said means comprise two hydraulic cylinders mounted upon said pressure roll beam and adjacent opposite ends thereof, said hydraulic cylinders having piston rods engaging opposite ends of said elongated rod.

7. In a cutter in accordance with claim 1, wherein said pressure transmitting device comprises two rods having pivotally interconnected ends, the opposite ends of said rods being pivoted upon said pressure roll beam adjacent opposite ends thereof, said two rods extending at an obtuse angle to each other, and wherein said means comprise a hydraulic cylinder mounted upon said pressure roll beam and having a piston rod engaging the interconnected ends of said two rods.

References Cited

UNITED STATES PATENTS

3,060,843 10/1962 Moore et al.
3,206,134 9/1965 Printz et al. 242-66
3,236,471 2/1966 Hornbostel 242-66
3,282,526 11/1966 Daly 242-66
3,328,866 7/1967 Robertson 29-116

STANLEY N. GILREATH, Primary Examiner
W. H. SCHROEDER, Assistant Examiner

U.S. Cl. X.R.

29—116; 242—56.2