An example of a ceiling constructed in accordance with the invention is illustrated in the accompanying drawings, in which:

FIGURE 1 is a vertical section through the frame of the ceiling;
FIGURE 2 is a cross-section of one border for the sheet of plastic foil in its unstressed condition and prior to fixing to the edge of the sheet;
FIGURE 3 is a section similar to FIGURE 2 but showing the border welded to the edge of the sheet;
FIGURE 4 is a cross-section of a second border shown in its unstressed condition in solid lines, and bent into a U-section as shown in dotted lines ready to be pushed into the channel of the frame;
FIGURE 5 is a vertical section through the frame when the border has been placed in position in the channel of the frame by means of a blade indicated by dotted lines; and,
FIGURE 6 is the same section as FIGURE 5 but showing a pointed tool such as an awl inserted into the end of the thicker flange of the border to raise it out of engagement with the shoulder of the channel.
A wooden moulding 1 providing the appearance of a cornice from below is stuck, nailed or otherwise secured to the existing wall 2 and ceiling surfaces 3 of a room.
The false ceiling proper consists of a sheet of P.V.C or other plastic foil 4 the edges of which are secured to the frame 1 by means of a border as shown in FIGURE 5.
The border which is an extrusion of a flexible plastic material has a thinner flange 5 welded to an edge of the sheet and a thicker flange or blocking bar portion 6 which is several times as thick as the flange 5. The thicker flange 6 tapers from its free edge 7 towards the region 8 where it merges into the thinner flange 5. In the modification shown in FIGURE 4 these is a crease line 9 to indicate where the border shall be bent during erection as indicated by dotted lines.
The frame 1 has a horizontal channel facing into the room with an upper flat wall 10 and a lower wall 11. The height H of the mouth of the channel is very slightly greater than the maximum thickness of the border, that is the sum of the maximum thicknesses a and b of the thinner and thicker flanges 5 and 6 respectively and the thickness of the foil. The bottom wall 11 of the channel is formed with a longitudinal recess 12 the front of which provides a rearwardly facing shoulder 13. Alternatively, the bottom of the recess may form the bottom wall behind the shoulder as indicated by dotted lines in FIGURE 1.
During erection of the ceiling in a rectangular room the frame 1 is fixed to all four walls of the room and the border is welded to all four edges of the sheet 4. The border at each edge of the sheet in turn is then forced into a corresponding channel, using a tool in the form of a metal blade 14 (FIGURE 5), until the edge 7 engages behind the shoulder 13. The tension in the sheet 4 rocks the border in the channel so that, as shown in FIGURE 5, the flanges of the U spread apart and the border wedges in compression in the channel with the base of the U in contact with the wall 10. To obtain this action the width L of the blocking bar or thicker flange 6 must be greater than the height A between the upper wall 10 and the bottom of the recess 12 and so that the blocking bar will take an oblique position in the channel as shown.
A particular advantage is obtained by a more or less gradual tapering of the border from the edge 7 through the region 8 to the thinner flange 5. This is that when a pull is exerted on the flange 5 by the sheet 4, the rounded outside surface of the region 8 of the U rolls against the upper wall 10 causing a thicker portion of the border to form the base region 8 of the U and come into contact with the upper wall 10 of the channel. As a result, the
flange 6, which acts as a blocking bar, will be wedged more tightly between the shoulder 13 and the wall 10.

As will be seen from FIGURES 5 and 6 the height H of the shoulder 13 is less than the thickness 8 of the free end of the thicker flange 6 so that the exposed end surface of the portion 6 may be reached by a pointed tool such as an awl or needle 15, as shown in FIGURE 6, when the end portion 7 can be raised out of engagement with the shoulder for dismantling the ceiling. This is easily done by bending the needle 15 downwardly in the direction of the arrow 16.

I claim:

1. In a false ceiling supported from the permanent structure of a room and comprising a surrounding frame, means securing said frame to said permanent structure, a sheet of plastic foil, and coupling means adapted to hold the edges of said plastic foil to said frame with said foil stretched within said frame; the improved coupling means which comprises upper and lower wall parts of said frame defining a channel therein facing into said room, a shoulder on said lower wall part facing back into said channel, a resilient plastic border of U-shaped cross-section removably located within said channel and extending around the edge of said sheet, said U including a base, a first upper thinner flange, and a second lower thicker flange which diverges from said base toward a free edge, means securing said first flange to said edge of said sheet with said base innermost within said channel, and the free edge of said second flange engaging behind said shoulder whereby said base is held against said upper wall part and said second flange is wedged in said channel in abutment with said shoulder under the tension in said sheet, the thickness of said free edge being greater than the height of said shoulder, whereby said second flange may be disengaged from said shoulder by applying an upward force to said free edge.

References Cited

UNITED STATES PATENTS

1,940,637 12/1933 Stubitz 5—353.3
3,177,501 4/1965 Kwake 160—392
3,186,129 6/1965 Blood 52—222
3,205,628 9/1965 Frisk 52—273

FOREIGN PATENTS

HENRY C. SUTHERLAND, Primary Examiner.