A. R. H. CAWOOD

TENT PEGS

Filed June 12, 1963

Fig. 1

Fig. 2

Fig. 3

BY

3,199,520
TENT PEGS

Allen Richard Hoekly Croward, Plot 232, Von Willigh Ave., Lyttelton Small Holdings, Transvaal, Republic of South Africa

Filed June 12, 1963, Ser. No. 287,427
Claims priority, application Republic of South Africa, June 29, 1962, 62/2,769
6 Claims. (Cl. 135—15)

This invention relates to improvements in tent pegs or like anchoring devices as used for securing the guy ropes and other parts of tents and like temporary structures, and for many other purposes.

It is well known that the usual tent peg presently in use consists of a straight shank having one end pointed and the other provided with a hooked or notched formation, is inserted into the earth to the extent that it tends to be pulled out of the ground, such as when a guy rope or tent flap contracts due to its absorbing moisture, or when the ground is wet or sandy.

An object of the invention is to provide a tent or anchor peg which will, at least to a large extent, overcome these shortcomings.

According to the invention a tent or anchor peg comprises an earth-penetrating shank part and a tension-resisting arm projecting at an angle from the shank part and being provided at its free end with a hook, eye or like formation for the attachment of a guy rope, tent flap or the equivalent thereto, and wherein the tension-resisting arm is capable of resilient displacement with respect to the shank part, whereby tension can be constantly applied to such guy rope, tent flap or the equivalent, notwithstanding normal variations in the effective length thereof due to varying weather or other conditions.

Preferably the angle at which the tension-resisting arm meets the shank part is acute. At least the tension-resisting arm is preferably made of resilient material.

According to a preferred construction, the improved peg is bent from a suitable length of resilient material such as spring steel or the equivalent of any suitable cross-sectional shape such as circular, square, triangular, oval or flat strip form. The angle between the tension-resisting arm and the shank part may be about 45 to 50 degrees. The free end of the tension-resisting arm is preferably bent in a downwardly directed hooked form so that the loop of a guy rope or the eyelet of a tent side or flap can be readily engaged therewith. Preferably the peg is bent from a suitable length of spring steel wire or rod stock of circular cross-section.

In use, the shank part, which is provided with a pointed end, is driven into the ground at such an angle that the tension-resisting arm lies substantially parallel with the ground surface and is thus touching or close to it, so as not to constitute any serious obstruction over which a person might be likely to trip. Due to the tension of a guy rope or the like acting in a line which can be arranged to be oblique or even at right angles to the centre line of the shank part of the peg, which results in the entire length of the shank resisting the strain, exceptional tension will be required to cause the shank part to be dislodged. Increased tension at the hooked end tends to force the shank part deeper into the ground.

These improved tent or anchor pegs are capable of being connected directly to the tent sides or flaps, by inserting the hooked ends of the tension-resisting arms thereof, through the usual eyelets provided along the bottom marginal edges of such sides or flaps.

To enable the invention to be more clearly understood and carried into practice, reference is now made to the accompanying drawings in which:

FIGURE 1 is a side elevation of a tent or anchor peg constructed according to one embodiment of the invention, shown in its operative position;

FIGURE 2 is a similar view, but showing another embodiment of the tent or anchor leg, likewise made according to the invention; and

FIGURE 3 is a broken shortened view similar to that of FIGURE 2, showing a further embodiment of the invention.

Referring to FIGURE 1, reference character 5 denotes the earth-penetrating shank part which is pointed at its end 6. Formed integrally with this shank part 5 is the tension-resisting arm 7 provided at its free end with a downwardly directed hooked formation 8 to which the end of a guy rope 9 can be readily attached. In use the shank part 5 is hammered into the ground 10 until the tension-resisting arm 7 lies in contact with and parallel with the ground surface.

The broken outline shows how the tension-resisting arm 7 will flex if the guy rope 9 shortens due to its becoming wet, or is subjected to extra stress due to wind pressure on the tent.

FIGURE 2 shows a modified construction in which, at the junction between the tension-resisting arm 7 and the shank part 5, the material is bent to provide a helical convolution 11, the axis of which is at right angles to the arm 7 which thereby gives increased resilient flexibility at such junction.

FIGURE 3 shows a further modified construction in which, at the junction between the tension-resisting arm 7 and the shank part 5, the material is bent to provide a plurality of helical convolutions 12, the axis of which is in line with the arm 7. This construction, besides providing increased resilient flexibility in a vertical direction, also provides resilient flexibility in line with the arm 7.

In all three embodiments the peg is bent from spring steel wire or rod stock, and the angle between the tension-resisting arm and the shank part is 45 degrees. Furthermore, the length of shank part 5 with respect to the length of tension-resisting arm 7 is such that the end 6 of shank part 5 lies substantially below hook formation 8 of tension-resisting arm 7, as shown in FIG. 2.

As has been seen above there is provided in accordance with the invention and for use with a tent part to maintain a restraining force thereon and connect the same to the ground, a tent peg consisting essentially of an earth-penetrating shank part adapted to be inserted at an angle in the ground, there being further provided a tension-resisting arm adapted to lie along the ground and including a free end, and as well, a further end coupled to the said shank part. The arm and shank part are integrally connected and hook means are provided on the free end for engaging the aforesaid tent part. This arm has a normal position of rest relative to the shank part and in said position of rest is at an acute angle relative to the shank part. Said arm is resiliently yieldable relative to the shank part and the hook means is adapted in all positions of the arm to engage the tent part with the aforesaid restraining force having a direction substantially coplanar with the shank part and the arm.

The shank part is at least as long as the arm and the hook means extends towards the shank part and projects from the arm towards the shank part such that with said arm lying on the ground, said hook means is resiliently urged against the ground to trap said tent part therein.

There will now be obvious to those skilled in the art many modifications and variations of the structure set forth above. These modifications and variations will not depart from the scope of the invention as defined by the following claims:

What is claimed is:

1. An improved anchoring peg for anchoring a portion
of a tent comprising an earth-penetrating shank part including a pointed free end and a tension-resisting arm integral with and projecting at an acute angle from said shank part, said arm including a free end having a tent portion engaging means, said tension-resisting arm being of a resilient material capable of bending when a force is applied along a line making an angle with the axis of said tension-resisting arm so that a constant resisting tension is applied to said tent portion, and said pointed free end lying substantially in a line vertically below said tent portion engaging means so that said shank portion resists dislodgement from the earth when forces including components in the plane defined by said shank part and said tension-resisting arm are applied to said tent portion engaging means, and a junction between said tension-resisting arm and said shank part including at least one helical convolution whose axis is parallel to the axis of said tension-resisting arm.

2. For use with a tent part to maintain a restraining force thereon and connect said tent part to the ground, a tent peg consisting essentially of an earth-penetrable shank part adapted to be inserted at an angle in said ground, a tension resisting arm adapted to lie along the ground and including a free end and a further end coupled to said shank part, said arm and shank part being integrally connected and hook means on said free end for engaging said tent part, said arm having a normal position of rest relative to said shank part and, in said position of rest, being at an acute angle relative to said shank part, said arm being resiliently yieldable relative to said shank part, said hook means being adapted in all positions of said arm to engage said tent part with said restraining force having a direction substantially coplanar with the shank part and said arm, said shank part being at least as long as said arm, said hook means opening towards said shank part and projecting from said arm towards said shank part such that with said arm lying on the ground said hook means is resiliently urged against the ground to trap said tent part thereagainst.

3. A tent peg as claimed in claim 2, wherein said arm is of resilient material adapting it for resilient displacement relative to said shank part and is disposed at an angle of about 45-50 degrees relative to said shank part.

4. A tent peg as claimed in claim 2, wherein said further end is in the form of a helical coil whereby said arm is resiliently yieldable.

5. A tent peg as claimed in claim 4, wherein said coil defines an axis parallel to said arm.

6. A tent peg as claimed in claim 4, wherein said coil defines an axis perpendicular to said arm.

References Cited by the Examiner

UNITED STATES PATENTS
2,748,438 6/56 Clark ----------------- 24—156
2,903,773 9/56 Pipack ----------------- 24—156

FOREIGN PATENTS
851,256 9/39 France.
412,729 7/34 Great Britain.

HARRISON R. MOSELEY, Primary Examiner.