EXERCISING DEVICE FOR BIRDS

Filed June 21, 1962

FIG. 1

FIG. 2

FIG. 3

INVENTOR.
GERALD F. STORTZ

By:
Talbot Dick & Garby
ATTORNEYS.
All domesticated birds are in need of exercise and some species of birds, parakeets in particular, are adapted for systematic exercises other than the normal flying activities expected of all birds. Heretofore, bird exercising devices known to me have either been adapted for use within the confined space of a bird cage, or have been limited to simple movable objects which fail to take full advantage of the exercising abilities of certain birds.

Therefore, the principal object of my invention is to provide an exercising device which will require an optimum in effort and coordination for the bird using the device whereupon the bird will receive maximum benefit from the exercise expended in using the device.

A further object of my invention is to provide an exercising device for birds which includes exercising elements employing different types of movement.

A still further object of my invention is to provide an exercising device for birds which will be amusing and entertaining to the spectator as it is being used by a bird.

A further object of my invention is to provide an exercising device for birds which will be intricate enough to keep the interest and attention of the bird for long periods of time.

A still further object of my invention is to provide an exercising device for birds that is economical of manufacture, durable in use, and refined in appearance.

These and other objects will be apparent to those skilled in the art.

My invention consists in the construction, arrangement, and combination, of the various parts of the device, whereby the objects contemplated are attained as hereinafter more fully set forth, specifically pointed out in my claims, and illustrated in the accompanying drawings, in which:

FIG. 1 is a perspective view of my device mounted on the top of a bird cage or like;

FIG. 2 is an enlarged sectional view through the vertical steel rod supporting means of my device as viewed on line 2—2 of FIG. 1; and

FIG. 3 is an enlarged partial elevational view of the clamp means of my device which tends to provide a means of support.

I have used the numeral 10 to generally designate a cage structure which includes vertical bars 11 and a horizontally disposed angle member 12. A vertically disposed spring steel rod 14 is substantially rigid but can be deflected in a lateral direction by the weight of a bird clinging to the rod at any point above its lower end. A horizontal perch 15 is secured in any convenient manner to the upper end of rod 14 and the lower end of the rod is rigidly secured to clamp element 16. The connection between the clamp element 16 and the rod 14 is effected by bracket 17 which, in turn, is rigidly secured to a bracket 18. Bracket 17 frictionally clutches the rod 14 to clamp element 16. Bracket 15 includes a top vertical portion 20, a center horizontal portion 22, and a lower vertical portion 24. The top vertical portion 20 of bracket 18 is frictionally received within the bracket 17. It is obvious that the bracket 18 and the rod 14 could be secured together other than by the bracket 17. A nut and bolt assembly 25 extends through the lower vertical portion 24 of bracket 18 and oppositely disposed plates 26 are movably mounted with respect to the nut and bolt assembly. As depicted in FIG. 3, the plate 26 can be positioned on adjacent sides of a vertical flange on angle member 13 and the tightening of the nut and bolt assembly 25 will force the plates into rigid connection with the angle member. It should be noted that the lower end of the rod 14 rests on the center horizontal portion 23 of bracket 18 which limits the vertical movement of the rod in the event that the connection between the rod and bracket 17 should become loosened. The downward forces exerted on the cage structure 10 by the weight of a bird on rod 14 are in part absorbed by the horizontal center portion 22 of the bracket 16. Similarly, the lateral forces exerted on the cage by a bird moving on the rod 14 are transferred to the cage through the lower vertical portion 24 of the bracket 18. Thus, the clamp element 16 is able to provide both lateral and vertical support for the rod 14.

A lower horizontal beam 27 is secured in any convenient fashion by one of its ends to the lower portion of vertical rod 14. An upper horizontal beam 28 is similarly secured to the upper portion of rod 14 and extends from the rod in the same direction that the lower horizontal beam 27 extends from the rod. The portion of rod 14 between the upper and lower beams can be wrapped with masking tape 29 or the like to provide an improved gripping surface for a bird clinging to the rods. Eyelets 30 can be secured to the top and bottom of beams 27 and 28, respectively. A continuous line 32 is threaded through the eyelets 30 and the length of line 32 should be such that it is loose enough to have relative movement with respect to the beams 27 and 28, as well as to the eyelets 30, but that it is tight enough to have some frictional engagement with these components so that its movement with respect to these components will not be completely uninhibited. A flag element 34 is secured to line 32 and serves to limit the upward or downward movement of the line with respect to the beams 27 and 28.

An elongated spring element 36 is secured in any convenient fashion to the upper portion of rod 14 and extends outwardly therefrom in a direction opposite to that direction that the beams 27 and 28 extend away from the rod. A clip element 38 is rigidly secured to the outward end of spring element 36 and a rectangular swing structure 40 is detachably and movably secured to the clip 38. The connection between clip 38 and spring element is effected by the clip extending through an eyelet on the outer end of the spring element. A flexible line 42 is secured in any convenient fashion to the lower horizontal portion of rectangular swing 40. Line 42 is permitted to extend downwardly to the level of the lower horizontal beam 27 and a ball 44 is secured to the lower end of the line 42 in any convenient fashion.

The normal operation of my device is as follows: the rod 14 is disposed in a vertical position by utilizing the clamp element 16 as described above. The structure of clamp element 16 is particularly applicable to conven-
tional bird cages and a plurality of other supporting devices which are commonplace in the normal household. Although my device can be used in the confines of a cage, it is preferably used when the bird has been let out of its cage for exercising purposes. When the rod 14 is disposed in a vertical position in the manner described, the bird can be placed on the perch 15 or on any of the components of the unit. In most cases, the bird can be released from its cage and will naturally be attracted to my device. As the bird alights on any component of my device from flight, it will immediately note a sensation of movement of the unit because every component of my device is designed to give this sensation to the bird. For example, if the bird alights from flight on the perch 15 or on any portion of the rod 14, the spring characteristics of the rod 14 will permit the weight of the bird to cause the rod to vibrate back and forth in a lateral direction. If the bird should alight on the spring element 36, the spring action of the element 36 and the combined spring action of the rod 14 will be experienced by the bird. A swinging sensation of movement will be experienced by the bird as it alights upon the rectangular swing 40 or the flexible line 42 extending downwardly from the swing. If the bird should alight on the lines 32, it will experience the spring action of rod 14 and in addition, its weight will cause the line to rotate through the eyelets 30 and this rotation will continue until the bird comes to the lower beam 27, or until the flag element 34 reaches the upper beam. This sensation is described by the bird regardless of where it alights on my unit. My device taxes the maximum exercising potential of the bird by providing different types of movable components. It is seen that the flag structure comprised of line 32 and its supporting components permits vertical displacement of the bird. The rod 14 through its spring-like characteristics provides a lateral movement as the bird is clinging thereto. The swing 40 and the lines 32 will afford the bird a swinging movement as distinguished from the vertical and lateral movements afforded by the flag structure and the rod 14, respectively.

The attention of the bird is captured by the different components of my device and parakeets will often spend hours on this unit moving from component to component. The birds will move continually from one component of my structure to another and the difference in the motion provided by each of the components is a determining factor in keeping the bird's attention. It is seen that the bird can transfer his swinging motion on swing 40 to a transverse motion by moving quickly to the upper portion of rod 14. A rapid downward movement is then experienced by the bird as it quickly moves to line 32 whereupon its weight will cause it to descend as the line 32 rotates upon its supporting structure. This variety of movements captivates the attention of parakeets and the like and they will play on my structure for hours without the owner having to worry about the birds having become lost. The movement of the birds from component to component of my device provides an interesting spectacle. This varied type of exercise is obviously extremely beneficial to the birds. Therefore, it is seen that my device will accomplish at least all of its stated objectives.

Some changes may be made in the construction and arrangement of my exercising device for birds without departing from the real spirit and purpose of my invention, and it is my intention to cover by my claims any modified forms of structure or use of mechanical equivalents which may be reasonably included within their scope.

1. In an exercising device for birds, a vertical elongated rod, securing means on the lower end of said rod to secure said rod to a supporting surface, a first beam secured to a lower portion of said rod and extending outwardly therefrom,

2. In an exercising device for birds, a vertical elongated rod, securing means on the lower end of said rod to secure said rod to a supporting surface, a first beam secured to a lower portion of said rod and extending outwardly therefrom, a second beam secured to said rod above said first beam and extending outwardly from said rod, and a flexible continuous line movably secured to and extending between said first and second beams and including first and second line portions, said line adapted to be moved between said beams when a bird perches on one of said line portions, the weight of said bird being sufficient to cause said line portion upon which said bird is perched to move downwardly and to cause the other line portion to move upwardly.

3. In an exercising device for birds, a vertical elongated rod, securing means on the lower end of said rod to secure said rod to a supporting surface, a first beam secured to a lower portion of said rod and extending outwardly therefrom, a second beam secured to said rod above said first beam and extending outwardly from said rod, a wrapping material on said rod to provide a frictional surface for birds alighting thereon, and a flexible continuous line movably secured to and extending between said first and second beams and including first and second line portions, said line adapted to be moved between said beams when a bird perches on one of said line portions, the weight of said bird being sufficient to cause said line portion upon which said bird is perched to move downwardly and to cause the other line portion to move upwardly.

4. In an exercising device for birds, a vertical elongated rod, securing means on the lower end of said rod to secure said rod to a supporting surface, a first beam secured to a lower portion of said rod and extending outwardly therefrom, a second beam secured to said rod above said first beam and extending outwardly from said rod, and a flexible continuous line movably secured to and extending between said first and second beams and including first and second line portions, said line adapted to be moved between said beams when a bird perches on one of said line portions, the weight of said bird being sufficient to cause said line portion upon which said bird is perched to move downwardly and to cause the other line portion to move upwardly, and a flexible stop means on one of said line portions for limiting the relative movement of said line with respect to said beams.

5. In an exercising device for birds, a vertical elongated rod, securing means on the lower end of said rod to secure said rod to a supporting surface, a first beam secured to a lower portion of said rod and extending outwardly therefrom, a second beam secured to said rod above said first beam and extending outwardly from said rod, and a flexible continuous line movably secured to and extending between said first and second beams and including first and second line portions, said line adapted to be moved between said beams when a bird perches on one of said line portions, the weight of said bird being sufficient to cause said line portion upon which said bird is perched to move downwardly and to cause the other line portion to move upwardly, and a flexible stop means on one of said line portions for limiting the relative movement of said line with respect to said beams.
and a flexible continuous line movably secured to and extending between said first and second beams and including first and second line portions, said line adapted to be moved between said beams when a bird perches on one of said line portions, the weight of said bird causing that line portion upon which said bird is perched to move downwardly and to cause the other line portion to move upwardly, said rod being of a resilient material adapted to be deflected outwardly and downwardly with respect to its normal position by the weight of a bird perching thereon.

References Cited by the Examiner

UNITED STATES PATENTS

D. 153,272 4/49 Forner 119—26 X
D. 175,292 8/55 Austgen 119—26 X
1,194,489 8/16 Earle 116—174
2,675,781 4/54 Bielefeld 119—25
2,707,936 5/55 Kiehl 119—26

T. GRAHAM CRAVER, Primary Examiner.
CARL W. ROBINSON, ARNOLD RUEGG, Examiners.