VACUUM FILLING MACHINE

Edward J. McCarthy, Braintree, Mass., assignor to Pneumatic Scale Corporation, Limited, Quincy, Mass., a corporation of Massachusetts

Application June 9, 1955, Serial No. 514,297

18 Claims. (Cl. 141—51)

This invention relates to a vacuum filling machine for filling containers with finely divided or powdered solid materials.

The invention has for an object to provide a novel and improved vacuum filling machine of the character specified wherein provision is made for filling a container by vacuum with a preformed load of the finely divided material.

The invention has for a further object to provide a novel and improved vacuum filling machine of the character specified wherein provision is made for preforming predetermined loads of the material by the vacuum filling of a load forming chamber and then delivering the previously formed load into a container disposed within a shroud by a vacuum filling operation.

Another object of the invention is to provide a novel and improved vacuum filling machine of the character specified particularly adapted for vacuum filling containers and particularly irregularly-shaped containers, or relatively non-rigid or flexible containers, such as cartons or bags, with successive uniform loads of the material in a novel and highly efficient manner without the necessity of sealing the open mouth of the container.

With these general objects in view and such others as may hereinafter appear the invention consists in the vacuum filling machine and in the various structures, arrangements and combinations of parts hereinafter described and particularly defined in the claims at the end of the specification.

In the drawings illustrating the preferred embodiment of the invention:

Fig. 1 is a side elevation of a vacuum filling machine embodying the present invention;
Fig. 2 is a rear view of the machine shown in Fig. 1;
Fig. 3 is a plan view of the machine shown in Fig. 1;
Fig. 4 is a cross sectional plan view taken on the line 4—4 of Fig. 1;
Figs. 5 and 6 are side elevation views diagrammatically illustrating the cams for controlling the various operations of the machine to be described;
Fig. 7 is a cross sectional plan view of the machine as seen from the line 7—7 of Fig. 1;
Fig. 8 is a side elevation of clutch mechanism shown in Fig. 1 for controlling the operation of the machine;
Fig. 9 is a cross sectional view taken on the line 9—9 of Fig. 8;
Fig. 10 is a similar view taken on the line 10—10 of Fig. 8;
Fig. 11 is a detail view, partly in cross section, of elevating mechanism shown in Fig. 1;
Fig. 12 is a detail view, partly in cross section, of the load preforming and vacuum filling mechanism shown in Fig. 1;
Fig. 13 is a cross sectional view of pneumatic valve mechanism to be described;
Fig. 14 is a diagrammatic view of piping for the pneumatic control movement of which I am aware has been necessary to engage the vacuum filling head in airtight sealing engagement with the mouth of the container to be filled and with the bottom of the filling head extended below the mouth of the container. In such machines the position of the bottom of the filling head defines the filling height in the container, and this together with the walls of the container defines the volume of material deposited therein upon evacuation and filling of the container.

Thus, in practice in such prior vacuum filling machines the volume of the material in the vacuum filled container is limited by the filling level defined by the bottom of the filling head. In the filling of rigid containers of uniform size, uniform volumes of material in successive containers may be obtained by such prior filling practices. However, in the event that successive containers varied in size, the volumes in successive containers varied accordingly. In the filling of semi-rigid or non-rigid containers, such as flexible cardboard cartons or paper bags, difficulty is encountered in maintaining an airtight seal between the filling head and the mouth of the container. Accordingly, in filling non-rigid containers it is advantageous to avoid the necessity of sealing the mouth of the container during the filling operation.

In accordance with the present invention provision is made for assuring successive uniform loads in successive containers by first forming successive loads and then vacuum filling the preformed loads into the containers, and since preforming of the load eliminates the necessity for using the bottom of the filling head to limit the filling height or to define the volume, the container is preferably filled within a vacuum chamber or shroud and with the mouth thereof in non-sealing relation to the filling head, thus avoiding the necessity of attempting airtight sealing of the filling head with such non-rigid
and flexible containers and assuring uniform loads in successive containers irrespective of non-uniformity or irregularity in size and shape of the containers.

In the illustrated embodiment of the invention the container is placed on an elevator which is then elevated into sealing engagement with a vacuum filling head which is provided with a shroud enclosing the container within an airtight vacuum filling chamber, and upon operation of the machine the container is provided with a predetermined load of material previously formed in a receptacle immediately thereabove. In the embodiment of the invention illustrated in Fig. 1, the receptable is of a size such as to form successive uniform loads, preferably by vacuum, the material being withdrawn from a supply hopper disposed immediately thereafter.

In another embodiment of the invention illustrated herein provision is made for preforming a load by first weighing the load and depositing the weighed load into a receptable and then withdrawing the preformed load by a vacuum filling operation from the receptable depositing it in the container.

In still another embodiment of the invention provision is made for preforming successive loads by volumetric measuring devices adapted to deposit successive measured loads into a receptable to be subsequently withdrawn by vacuum and delivered into the container, thus assuring successive uniform loads in successive containers irrespective of the irregularity of such containers.

Another novel feature of the present invention embodies means for causing a flow of air about the exterior surfaces of the container within the shroud during the vacuum filling operation whereby to prevent accumulation of the preformed material on the exterior surfaces of the container in a novel and efficient manner.

Referring now to the drawings and particularly to Fig. 1, in general 10 represents a supply hopper containing a supply of material and which is mounted on the side frames 12 of the vacuum filling machine. The lower end of the supply hopper 10 is operatively connected to the inlet of a vacuum filling head 14 forming a part of a receptacle 16 defining a volumetric measuring chamber, and in operation material is withdrawn by vacuum from the supply hopper 10 to preform a predetermined volumetric load in the chamber 16. The lower end of the receptacle 16 is operatively connected to the inlet of a second vacuum filling head 18 having a depending shroud portion 20, the lower end of which is arranged for sealing engagement with the upper surface of a container supporting platform 22. The platform 22 is mounted on an elevating unit indicated generally at 24, and in operation a container placed on the platform is elevated into the shroud portion 20, and the platform moved into sealing engagement with the shroud to form an airtight vacuum filling chamber enclosing the container and with the mouth of the container free of sealing engagement with the filling head 18 as shown in Fig. 12. Normally closed expandable valve members 26, 28 are provided in the inlets 30, 32 respectively of the filling heads 14, 18, and in the operation of the machine provision is made for deflecting the upper valve member 26 to permit the material to flow into the receptacle 16 to preform a measured load, and thereafter the valve member 26 is again expanded to close the inlet 30, and the lower valve member 28 is deflected to open the inlet 32 to permit the preformed load to flow into the container supported within the shroud 20.

In the operation of the machine, during the initial period of a cycle of operation the elevating mechanism 24 is first operated to elevate the container into operative relation to the shroud 20 to effect vacuum filling of the container with a previously formed load contained in the measuring receptacle 16, the filled container being returned to its lowered position upon completion of the vacuum filling operation, and during a succeeding period in the cycle of operation the measuring receptacle 16 is again provided with a measured load in readiness for a succeeding filling operation. As shown in Fig. 11, the container supporting platform 22 is mounted on and secured to the top of a pneumatically operated sleeve 34, sleeve 36 being supported on a stationary rod 38, the rod 38 being supported at its lower end in a flange member 39 attached to a base member 40 of the frame. An inverted cap member 41 secured to the underside of the base member 40 and fitted over the lower end of the flange member 39 forms an air chamber 42 to which a compressed air supply pipe 43 is connected. The chamber 42 communicates with the lower end of the central bore 38 in the rod 37, and the upper end of the bore is flared as shown and is closed by the underside of the elevating platform 22 when the latter is in its lowered position as illustrated in Fig. 11.

In operation when compressed air is permitted to enter the chamber 42 the elevating platform with its sleeve 36 is caused to rise on the supporting rod 37 to elevate a container into operative relation to the shrouded vacuum filling head. The sleeve 36 with its platform 22 is prerotated from rotation on its axis by a roller 45 movable in a vertical guide formed by angle bars 46 secured to supporting brackets 48 as shown in Fig. 7. As illustrated in Fig. 12, the lower end of the shroud 20 is provided with a skirt 21 of rubber or other resilient material for airtight sealing engagement with the platform. The lower end of the cylinder 36 is connected by an expandable bellows 47 to the upper surface of the flanged member 39. A passageway 48 formed in the flange 39 is open to the atmosphere and communicates with the interior of the bellows as shown. It will be observed that the central supporting rod 37 is reduced in diameter immediately below the upper end and thereby forming an annular space between the rod and its sleeve. Thus, in operation when the cylinder 36 is elevated to expand the bellows 47 air may be drawn in through the passageway 48, and conversely, when the cylinder 36 is lowered the air within the bellows may be exhausted through the passageway 48. The bellows 47 provides protection from dust, and opening 48 may be connected to a dust-free area or provided with a filter, not shown.

The operating mechanism for controlling the elevation of the container supporting platform 22 includes a spring 50 and cam operated valve member indicated at 50 in Fig. 13 operating in a chamber 56 formed in a multiple valve housing 100 and included in the piping diagram shown in Fig. 14. As therein shown, a pipe 48a leading from a source of compressed air is connected by a pipe 52 through an inlet 54 to the chamber 56, the inlet 54 being normally closed by the valve member 50 as shown in Fig. 13. In such position the pipe line 43 connected to the chamber 42 of the elevating mechanism is opened to the atmosphere through communicating passageways 58, 60 formed in the valve member 50 and housing 100 respectively as shown. The spring 50 operated valve member 50 is arranged to be operated by a cam 62 operating with a cam roller 64 carried by the stem of the valve member 50. The cam 62, as shown in Fig. 3, is fast on a single revolution camshaft 66 supported in bearings formed in the side frames 12 of the machine and is arranged to be driven through connections including a single revolution clutch of conventional design and indicated generally at 65. The driving cam member of the clutch is provided with a sprocket 70 connected by a chain and sprocket drive 72 to a motor 74, the driving member of the clutch being normally disengaged from the driving member by a solenoid operated clutch 76 as shown in detail in Fig. 10. The cam member 76 is pivotally mounted at 78 in a bracket 80 attached to the machine frame and is arranged to engage a notch 82 formed in the clutch member to maintain the clutch in non-driving engagement. A solenoid 84 is connected to the latch member by a link.
86, and in operation upon energizing the solenoid 84, the
latch member 76 is rocked downwardly to release the clutch
paddle 66 to make one revolution, the shaft 76 coming to rest upon re-engagement of the latch bolt 76 in the
notch 82. As indicated in Fig. 15, the solenoid 84 forms
part of a control circuit which includes supply leads 86,
87 and leads 87, 89 having a push button switch 90 so that in
operation pressing of the push button 90 will energize the
solenoid 84 to rock the latch member 76 downwardly to
release the clutch unit 68. A second latch 91 shown in
Fig. 10 may be spring pressed to engage a second notch
93 formed in the clutch member for the purpose of prevent-
ing back lash of the shaft 66 when abruptly brought to
rest by the latch member 76.
Upon elevation of the container into the shroud and
sealing engagement of the supporting platform 22 with the
lower end of the shroud, provision is made for evacuating the
shroud member and withdrawing the pre-
formed load from the measuring receptacle 16 into the
container 34. As shown in Fig. 12, the filling head 18 is
provided with an annular suction inlet 92 which com-
municates through a passageway 95 with a manifold 94
having a suction pipe 96 connected to a valve chamber
98 forming a part of the multi valve housing 100. The
valve chamber 98 is provided with a cam operated and
spring pressed valve member 102, the chamber 98 being
provided with a partition 104 provided with passageways
106 communicating with an upper chamber 108 in which
is connected by passageway 110 to a vacuum chamber
112. The chamber 112 may be connected to a source of
vacuum indicated diagrammatically at 114 by a pipe
116. The spring pressed valve member 102 is arranged to
be actuated by a cam 118 fast on the cam shaft 66 which operates with a cam roll 120 carried by the stem
of the valve member 102.
In the operation of the machine, immediately after sealing engagement of the platform 22 with the shroud
20, the valve member 102 is depressed to permit the flow of
air to evacuate the shroud chamber, and simultaneously
therewith or immediately thereafter, provision is made for
deflating the normally inflated valve member 28 to
open the inlet 52 and thus effect withdrawal of the previ-
ously measured load from the measuring receptacle 16.
As illustrated in Fig. 13, the mechanism for controlling the member 28 includes a control valve 122 slidingly
mounted in a chamber 124 which is connected to a source
of compressed air by a pipe 126, the chamber 124 being
connected by a pipe 128 to the filling head 18, as shown in
Figs. 12 and 13. The pipe 128 communicates with passageways 130 formed in a conduit 132 extended through one side of the filling head, the conduit 132 hav-
ing its inner end bent downwardly at right angles and dis-
posed in alignment with the axis of the inlet 32. The
lower end of the conduit 132 is provided with a plug 134.
The member 28 comprises an annular resilient tube con-
ected at its upper and lower ends in airtight relation to the
vertical portion of the conduit 132 and is arranged to
communicate with the compressed air passageways 130
through lateral openings 138 formed in the conduit 132
as clearly shown in Fig. 12. The control valve 122 is
provided with a cam roll 140 arranged to cooperate with a
cam 142 fast on the cam shaft 66, and in operation immediately after the shroud chamber is evacuated, the
control valve 122 is actuated to align passageways 144
formed therein with an atmospheric opening 146 formed
in the housing 78 which permits the flow of the air to
reach the air operated valve member 150 as shown in
Fig. 13. The valve member 150 operates in a valve chamber 152 connected by a pipe 154 to the
manifold 94 shown in Fig. 4 and which is arranged to
communicate with the annular passageway 92 formed in
the filling head 18 wherein the valve member 28 is
again expanded to close the inlet 32 by operation of the
control valve 122. The stem of the spring pressed valve
member 150 is provided with a cam roll 156 arranged to cooperate with a cam 158 fast on the cam shaft 66, and the
chamber 152 is arranged to communicate through pass-
geways 159 with a chamber 162 having an opening 164 to
the atmosphere. Upon opening of the shroud 20 to the
atmosphere the elevating cam 62 operates to rotate the
valve member 50 into a position to open the elevator
chamber 42 to the atmosphere through line 43 and pas-
geways 58, 60 whereupon the elevator will descend with a filled container on the platform 22. It will be
understood that in operation the chamber 16 is normally
open to the atmosphere through similar valve controlled
connections in the filling head 14 during the withdrawal
of the material therefrom to permit the flow of material
into the container, as will be hereinafter described.
From the description thus far it will be observed that
during one period in a cycle of operation of the vacuum
filling machine a container placed on the platform 22 is
evacuated in operation to the shroud 20 where-
upon the container is vacuum filled with a previously
loaded vacuum drawn from the receptacle 16, and upon filling of the container the platform 22 is permitted to descend to its initial position. During the second period in a cycle of
operation of the vacuum filling machine provision is
made for preforming a succeeding load in the receptacle
16 to be subsequently withdrawn into a succeeding con-
tainer during the next cycle of operation. As herein
shown, in order to initiate filling of the receptacle 16 the
one revolution cam shaft 66 is provided with a cam 166
arranged to cooperate with a cam roll 168 forming part of a
switch 170. The switch 170 forms part of a circuit
172 having a relay 174 shown in Fig. 15, and as the
relay 174 approaches the end of its revolution the cam 166
effects closing of the switch 170 to energize the relay
174. The relay 174 is arranged to open the circuit to
the solenoid 94 at a normally closed switch 176 and to
simultaneously close a switch 178 in a circuit 180 pro-
vided with a solenoid 182. The solenoid 182 is oper-
atively connected to a latch member similar to latch 76
for controlling the operation of a one revolution clutch
184 mounted on a lower cam shaft 186 as shown in
Fig. 4, such solenoid and associated connections being
similar to those shown in Figs. 3 and 13 except that the valve 50 for operating the elevat-
ing mechanism is eliminated. Thus, in the operation of
the machine when the lower cam shaft 186 is released
permitting the one revolution clutch 190, cooperat-
ing with a roller 192 carried by a valve similar to 102 and
operating in a similar valve chamber, is arranged to
effect depression of the valve to permit the flow of air from
the source of vacuum through a pipe 194 to the vacuum
chamber, then through the adjacent valve chamber and
connecting pipe 196 to a manifold 198, see Figs. 12 and
14, communicating with the filling head 14 through pas-
geways 200 and annular passageway 202 to the interior
of the receptacle 16 to evacuate the same. Simultan-
eously therewith or immediately thereafter, the oppositely
expanded valve member 26 is expanded by operation of
a cam 204 cooperating with a cam roll 206 carried by
a valve member similar to 122 shown in Fig. 13 and
operating in a chamber connected to a source of com-
pressed air by a pipe 208. The chamber is also con-
nected by a pipe 210 to the inflatable valve unit 26 in
the filling head 14. The cam operated valve is provided with passageways for alignment with an atmospheric opening in the housing 188 operating in a manner similar to the above described. The receptacle 16 is arranged to be opened to the atmosphere by a cam 199 cooperat-

ing with a cam roll 191 carried by a valve similar to 150 in the multivalue housing 188. The valve chamber is connected by a pipe 193 to the manifold 198 for com-
munication with the interior of the receptacle in a man-
ner similar to that described with respect to the filling head 18. A screen 291 may cover the passageway 292.

Thus, in the operation of the machine, upon eva-

tuation of the measuring receptacle 16, material is with-

drawn from the supply hopper 10 into the measuring re-

ceptacle to form a predetermined load therein. There-

after, the vacuum is discontinued through operation of the cam 190; the receptacle is opened to the atmosphere through the operation of the cam 189 and remains open to

the atmosphere during subsequent withdrawal of the material therefrom; and the inflatable valve 26 is again
closed through operation of the cam 204 to complete preforming of the load. It is to be understood that subsequent withdrawal into a succeeding container presented in op-

erative relation to the shroud 20 as above described. As shown in Figs. 4 and 15, a switch 212 in the relay cir-

cuit 172 is arranged to be opened by a cam 214 and roller 216 as the cam shaft 186 approaches the end of its revolution to deenergize the relay 174 whereby the switches 176, 178 may again assume their normal posi-

tions in readiness for a succeeding cycle of operation by

manual pressing of the push button 90 as described.

It will be observed that a container placed on the plat-

form is elevated into operative relation to the shroud

20, and a previously formed measured load is withdrawn from the receptacle 16 by vacuum and deposited into the container without sealing engagement of the filling head with the mouth of the container to provide a pre-

determined load in the container irrespective of variations in the size and shape thereof. It will thus be seen that the present vacuum filling machine is of particular ad-

vantange in filling irregularly shaped containers and also non-rigid containers, such as paper bags, with successive uniform loads of material.

In a modified form of the vacuum filling head, illustrated in Fig. 17, provision is made for handling containers, such as bags made of a relatively thin and lightweight material which may be displaced from the platform 22 during the elevating operation or which may be incapable of main-

aining an upright position during the vacuum filling op-

eration. As shown in Fig. 17, the filling head 18 may be provided with a central depending hollow portion 19 forming an extension of the inlet 32. The hollow portion 19 is open at its lower end and may be of a cross sectional shape, such as to fit loosely within the relatively thin bag and thus support the same in an upright position on the platform 22 during the filling operation. In operation the material withdrawn from the receptacle 16 into the hollow portion 19 during the filling operation is subsequently de-

posited into the container by gravity during the descent of the platform with the container.

Referring now to Figs. 12 and 16, provision is made in the illustrated and preferred embodiment of the inven-
tion for preventing the accumulation of the powdered material on the exterior of the container during the vacu-

um filling operation. As herein shown, the platform 22 is provided with a vent opening 220 extending through

one side and upwardly to the center of the platform. The upper surface of the platform is provided, with a
plurality of radially arranged raised portions 222 upon which the container is supported to provide a clearance between the upper surface of the platform and the bot-
tom of the container. In the operation of the machine air will be drawn in from the atmosphere through the vent opening 220 and will flow along the bottom surface of

the container between the raised portions 222 and along the side walls of the container and into the suction open-

ings 92, 95. In practice the vent opening 220 may be relatively small so that any reduction in pressure in the shroud chamber during the vacuum filling operation is prac-

catically negligible. However, the stream of air drawn in through the vent opening and around the exterior sur-

faces of the container is sufficient to maintain the exterior surfaces of the container being filled free of the powdered or finely divided material.

In the embodiment of the invention illustrated in Figs.

1 to 15, the feeding operation is performed by vacuum to pre-

determine load in a volumetric measuring receptacle 16, which load is subsequently withdrawn from the receptacle and deposited into the container to be filled. The vacuum filling of the measuring receptacle 16 is of particular advantage in that it also serves to deaerate the commuted material prior to delivery to the container whereby the mate-

rial is more closely packed within the container and is rendered less subject to excessive settling of the ma-

terial in the filled container.

In a modified form of the invention, as illustrated in Figs.

18 to 23, provision is made for preforming loads of predetermined weight of a weighed load being de-

posited into a receptacle to be subsequently weighed by vacuum and introduced into the container. As illus-

trated in Figs. 18 and 19, the vacuum filling mechanism for withdrawing a preformed load from a receptacle and intro-

ducing the load into a container may and preferably will comprise the vacuum filling mechanism previously de-

scribed in the embodiment of the invention illustrated in

Figs. 1 and 2 and includes the filling head, shroud 20 and elevating platform 22 on which the container 34 is eli-

vated into operative engagement with the shroud 20. Also, the drive mechanism, indicated generally at 224, and the control mechanism including the cam operated control valves, indicated generally at 224, and the control mechanism including the cam operated control valves, indicated generally at 226, may and preferably will com-

prise the corresponding mechanisms previously described.

As shown in Fig. 18, the weighing mechanism for pre-

forming the load in the modified form of the invention in-

cludes a pneumatically controlled cantilever type weigh-

ing unit, indicated generally at 228, having a weighing bucket 230 into which material is caused to flow from a supply thereof through a supply pipe 232, vibratory feeder 234, and magnetic switch 236, having a pivoted cutoff blade 237. In the operation of the machine a previously weighed load contained in the weighing bucket 230 is released by mechanically opening the spring closed pivoted shutter 239 to permit the load to fall by gravity into the receptacle 238 having its lower end in communication with the material inlet in the filling head 18. It will be understood that in operation the vacuum filling operation is performed during the initial period in a cycle of operation of the machine and is initi-

ated by pressing a push button switch 251 to energize the solenoid 253 in the circuit 255 shown in Fig. 21 to permit the one revolution clutch 257 to make one revolution whereby the previously deposited load contained in the receptacle 238 is withdrawn and deposited in the con-

tainer, and that during a second period of the cycle the weighing operation is performed to provide a preformed load in readiness for a succeeding cycle of operation. Thus, as indicated in Fig. 21, when the cam operated switch 242 is closed to energize the relay 244 in the circuit 245, the operation of the closed switch 246 in the circuit 255 controlling the vacuum filling operation and closing the normally open switch 250 in the circuit 261 to energize the solenoid 263 and initiate operation of the one revolution shaft 252 forming a part of the drive indicated generally at 254 for controlling the weighing opera-

The drive switch 252 may be provided with a one-

revolution clutch 256 controlled by solenoid operated
latch mechanism, as previously described, and connected by a chain and sprocket drive 258 to a motor 260. When the circuit 239 is closed, the motor 260 operates either the latching mechanism or the motor 260. Upon starting the one revolution shaft 252, the shutter 239 is first operated by a cam 274 fast on the cam shaft 252, which cooperates with a roller 276 carried by one arm 275 of a two-armed lever pivoted at 280, the other arm having a roller 282 cooperating with a bearing plate 280 formed on the shutter 239. After the previously weighted load has been released, the weighing bucket 328 is immediately spring closed, and thereafter the material cutoff blade 237 is arranged to be rocked from its spring-closed position, as shown in Fig. 18 to a latch position as shown in Fig. 20. As seen in Figs. 18 and 23, the cutoff blade is arranged to be rocked by a cam 284 fast on the shaft 252 and cooperating with a roller 286 carried by one arm of a bell crank 288 pivoted at 290, the other arm of the bell crank being engaged by a pin and slot connection 292 with a link 294 connected to the cutoff blade arm 295. A spring 296 connected to an extended portion of the bell crank 288 is arranged to hold the roller against its cam 284, and a spring 298 is arranged to the cutoff blade arm 295 is arranged to urge the blade into its open position. The blade 237 is held in its open position by a pivoted latch member 300 engaged with a notch formed in the hub of the arm 295 and is arranged to be released to cut off the feed of the material by a pneumatic control unit 307 operatively connected to the weighing unit to be hereinafter described.

From the description thus far of the modification shown in Fig. 18 it will be observed that during the second period of a cycle of operation of the machine, a previously weighed load contained in the weighing bucket 230 as released into the receptacle 238 and the vibratory feeder 234 is started; and the cutoff blade 237 is opened to permit material to flow in a stream into the weighing bucket 230. As illustrated in general in Fig. 18, the canister weighting unit indicated at 225 may comprise a weighing unit of the type illustrated and described in S. R. Howard, U.S. Patent No. 2,678,185, dated May 11, 1954, and includes two upper and lower relatively stiff canister springs 262, 264 of equal length, the leaf springs being connected at one end to a frame member 265 and the other end of the leaf springs being connected in a rigid tie member 267 to which the weighing bucket 230 is attached by means of a spring 268. The weighing unit is also provided with a coil spring 270 arranged to exert a counterclockwise upon the spring beam and to support a portion of the weight of the load, and the unit is also provided with a piston operating in a dash pot, indicated generally at 272. Sensitive pneumatically operated control mechanism, indicated generally at 302 in Figs. 18 and 20, is arranged to cooperate with the canister weighting unit 225 for terminating the weighing operation when a predetermined weight is reached, such control mechanism including a pressure responsive amplification device having a jet portion 304 cooperating with a valve member 306 carried by and movable with the canister spring weighting unit 225 adapted to effect rapid tripping of the pneumatically operated latch mechanism 297 upon minute deflection of the spring weighing unit. The pressure responsive control device 302 is of the same general type illustrated and described in the Howard patent No. 2,678,185, and as shown in Fig. 20, may be connected to a source of compressed air by a pipe 310. Normally the valve member 306 is spaced slightly from the jet 306, and the construction of the pneumatically operated unit is such that when a pressure charge occurs upon minute movement of the valve member toward the jet, the valve member 306 when the canister spring beam is deflected through a correspondingly minute distance. The increase in pressure is arranged to move an arm 312 to operate in a chamber 314, the arm having a valve for cooperation with the jet 315 of a pressure chamber 316 operatively connected by a pipe 318 to the pneumatically operated latch member 297. The pneumatically operated member 297 may include a chamber 320 having a spring pressured piston 322 operating therein, the air pressure normally retaining the latch member 300 in its latched position. In operation when the material deposited in the weighing bucket reaches a predetermined weight, the increase in pressure in the chamber 314 will move the arm 312 to the right, as in Fig. 20, thus exposing the opening in the jet 315 and reducing the pressure in the chamber 316 permitting the piston to be spring operated to release latch 300 and permit the cutoff blade 237 to be closed.

Provision is also made in the preferred embodiment of the invention for maintaining the canister spring beam in its locked or operative position during the release of the material from the weighing bucket 230 and during the initial flow of the material into the weighing bucket, the beam being unlocked during the weighing period to effect operation of the pressure responsive amplification device 302 when the predetermined weight is reached. As herein shown, the scale lock may comprise a chamber 324 having a spring pressed plunger 326 arranged to engage the underside of the weighing beam, the chamber being connected by a pipe 325 to the compressed air supply pipe 310. The pipe 325 is also provided with a cam operated valve 330 having a roller 332 for cooperation with a cam 334 fast on the cam shaft 252. In operation the valve 330 is normally open so that the air pressure will maintain the weighing beam locked, and at a predetermined time in the cycle the valve 334 operates to close the valve 330 and open the line 332 to the atmosphere, thus reducing the pressure in the chamber 324 and permitting the plunger 326 to be spring pressed downwards to unlock the weighing beam.

Provision is also made for opening the circuit 245 to 248 to disconnect the operation of the vibratory motor 260 and to reset the switches 246, 250 when the predetermined weight is reached, and as herein shown, a second pressure chamber 338 having a valve arm 338 movable therein is arranged to cooperate with a second jet 340 in communication with the pressure chamber 336. The jet 340 is connected by a pipe 342 to a pneumatically operated unit having a spring pressured plunger 344 cooperating with a microswitch 346 forming a part of the relay circuit 245, and in operation when the pressure in the chamber 336 is increased to a predetermined point corresponding to a predetermined weight the valve 338 is moved away from the jet 340 to reduce the pressure in the chamber 316 permitting the plunger 342 to be spring returned and permitting the switch 346 to be opened, thus terminating the second period in the cycle of operation of the vacuum filling machine, in readiness for a succeeding cycle of operation upon manual pressing of the push button 251, as described. It will be understood that the predetermined weight is normally reached prior to the end of the revolution of the cam 252 so that after the predetermined weight is reached the weighing beam is again locked by operation of cam 334 to open valve 330.

Referring now to Figs. 24 to 31, the embodiment of the invention therein illustrated includes volumetric load forming mechanism, indicated generally at 350, arranged to form successive measured loads which are deposited into the open top of a receptacle 352 having its bottom in communication with the inlet of the filling head 18 of the vacuum filling mechanism. The vacuum filling mechanism in the embodiment of the invention shown in Fig. 24 and may and preferably will comprise the vacuum filling mechanism shown in Fig. 1, and may include the correspondingly numbered parts comprising the filling head 18, shroud 20, platform 22 and elevating mechanism 24. The control mechanism and driving mech-
During movement of the piston 398 to the left the air in the left hand side of the chamber 399 is discharged through a pipe 426, branch pipes 428, 430, passages 432, 434 in the housing which communicate with passageways 436, 438 respectively in the rotary valve 402, the passageways 436, 438 being aligned in the position shown in Fig. 29, with atmospheric openings 440, 442 respectively formed in the housing.

 Provision is made for rotating the valve 402 ninety degrees each cycle of operation to reverse the operation of the air motor 396 and to shift the measuring chambers 384, 386 to the right, such rotation being effected upon initiation of rotation of the one revolution shaft 362 through a chain and sprocket drive 444. The input shaft of a gear reduction unit 446, the rotary valve 402 being keyed to the output shaft 404 of the gear reduction unit, as shown in Figs. 25 and 27. When thus rotated through ninety degrees from the position shown in Fig. 29, the diametral opening 408 will be in alignment with opposed passageways 432, 434 to cause the flow of compressed air through branch pipes 426, 430 and pipe 426 to the chamber 399 to effect movement of the piston 398 and the measuring chambers 384, 386 to the right, the air on the right hand side of the piston being permitted to escape through the pipe 424, branch pipes 420, 422, passageways 416, 418 in the housing and passageways 436, 438 in the valve which at this time will be aligned with atmospheric openings 440, 450 in the housing.

 Thus, in the operation of the modified form of the machine shown in Fig. 24 it will be seen that after a volumetrically formed measured load has been withdrawn by vacuum from the receptacle 352 and deposited into the container 34 during one period in a cycle of operation of the vacuum filling machine, the lower control mechanism 354 is arranged to initiate rotation of the one revolution shaft 362 of the upper control mechanism 364 whereupon the volumetric measuring chambers are shifted to empty one chamber containing a previously formed load into the receptacle 352, the other chamber receiving a new load from the supply hopper and the measuring chambers being shifted from one leg of the hopper to the other during alternate cycles of operation.

 From the above description it will be seen that the present vacuum filling machine is capable of forming and depositing successive uniform loads into successive containers and without sealing engagement with the mouth of the container, and that as a result the present vacuum filling machine is particularly adapted for filling uniform loads into containers which are of small in size or shape, and for filling flexible containers, such as paper bags, wherein difficulties formerly encountered in attempting to make an airtight seal with the mouths thereof are eliminated and which are also subject to variation in size or shape or to deformation such as to vary the volume thereof.

 While the preferred embodiment of the invention has been herein illustrated and described it will be understood that the invention may be embodied in other forms within the scope of the following claims.

 Having thus described the invention, what is claimed is:

 1. In a vacuum filling machine for handling finely divided solid material, in combination, a vacuum filling machine, means including a filling head and a shroud enclosing the container to be filled, the filling head having a material inlet opening, means for evacuating the shroud, means for forming and depositing a preformed, predetermined load of the material including a volumetric vacuum filled receptacle, and means connected therewith for operating in response to the vacuum in the shroud for discharging the preformed load through the material inlet and into a container supported in the shroud, the material in said receptacle being under atmospheric pressure during drawing of the material therefrom into the container.

 2. In a vacuum filling machine for handling finely...
divided solid material, in combination, container supporting means, vacuum filling means including a vacuum filling head having a suction opening and a material inlet opening, said filling head and said supporting means cooperating to form a vacuum chamber enclosing and supporting the container with the mouth of the container in non-sealing relation to the filling head and to said material inlet opening, means for evacuating said chamber and said receptacle therewithina to said material inlet opening, and vacuum operated means for forming and depositing a predetermined load of material into said receptacle to be withdrawn and introduced into the container upon evacuation of said vacuum chamber during the vacuum filling operation, the material in said receptacle being under atmospheric pressure during the withdrawing operation.

3. In a vacuum filling machine for handling finely divided solid material, in combination, container supporting means including an elevating platform, vacuum filling means including a vacuum filling head having a suction opening and a material inlet opening and provided with a depending shroud portion, means for elevating said container supporting platform into sealing engagement with said shroud portion to form a vacuum chamber enclosing said container with the mouth of the container in non-sealing relation to the filling head and said material inlet opening, means for evacuating said chamber, a supply of material, a receptacle operatively connected to said material inlet opening, and vacuum operated means for forming and depositing the same into said receptacle to be withdrawn and introduced into the container upon evacuation of said vacuum chamber during the vacuum filling operation, the material in said receptacle being under atmospheric pressure during the withdrawing operation.

4. A vacuum filling machine for handling finely divided solid material, in combination, vacuum filling means including a filling head and a shroud enclosing the container to be filled, the filling head having a material inlet opening, means for evacuating the shroud, vacuum operated means for forming a receptacle for forming and storing a predetermined load of the material, and means connected therewith and operating in response to the vacuum in the shroud for drawing the predetermined load through the material inlet and into the container supported in the shroud, the material in said receptacle being under atmospheric pressure during drawing of the material therefrom into the container, and control means actuated upon completion of the container vacuum filling operation for initiating operation of said vacuum operated load forming means to deposit a preformed load into said receptacle for a succeeding vacuum filling operation.

5. A vacuum filling machine as defined in claim 4 wherein the material inlet opening is provided with a normally closed valve and with means for opening said valve during the vacuum filling operation.

6. In a vacuum filling machine, in combination, container supporting means, vacuum filling means including a vacuum filling head having a suction opening and a material inlet opening, said filling head and said supporting means cooperating to form a vacuum chamber enclosing and supporting the container with the mouth of the container in non-sealing relation to the filling head, means for evacuating said material inlet opening, means for forming and depositing a predetermined load of material into said receptacle to be withdrawn and introduced into the container upon evacuation of said vacuum chamber during the vacuum filling operation, said load forming means including a volumetric vacuum filled receptacle operatively connected to a supply of the material for measuring said predetermined load, said vacuum filled receptacle being open to the atmosphere during the withdrawing operation.

7. In a vacuum filling machine, in combination, container supporting means including an elevating platform, vacuum filling means including a vacuum filling head having a suction opening and a material inlet opening and provided with a depending shroud portion, means for elevating said container supporting platform into sealing engagement with said shroud portion to form a vacuum chamber enclosing said container with the mouth of the container in non-sealing relation to the filling head and said material inlet opening, load forming means including a volumetric vacuum filled receptacle operatively connected to said material inlet opening and provided with a filling head having a suction opening and a supply inlet connected to a supply of the material for measuring said predetermined load, said container vacuum filling means including means for evacuating the chamber and for withdrawing the preformed load from the receptacle into the container, means for evacuating the receptacle to withdraw material from the supply into the receptacle, means for opening said material inlet respectively, means for operating said valves to open the supply valve during the receptacle filling operation and for opening the material inlet valve during the container filling operation, and means for opening said receptacle to the atmosphere during the withdrawal of the material therefrom into the container.

8. A vacuum filling machine as defined in claim 7 which includes control means actuated upon completion of the container vacuum filling operation for initiating the receptacle vacuum filling operation to provide a preformed load in the receptacle for a succeeding container filling operation.

9. In a vacuum filling machine for filling containers with finely divided material, in combination, container supporting means, a vacuum filling head having a suction opening and a material inlet opening, said filling head and said supporting means cooperating to form a vacuum chamber enclosing the container with the mouth of the container in non-sealing relation to the filling head and said material inlet opening, a receptacle operatively connected to said material inlet opening for the reception of a predetermined load of material, and means for evacuating said chamber to effect withdrawal of the preformed load from the receptacle and into the container, said container supporting means comprising a platform having raised portions spacing the bottom of the container from the platform, said vacuum chamber being provided with a relatively small atmospheric opening disposed in said platform with relation to said suction opening to cause a flow of air about the exterior surfaces of the container including the bottom and side walls thereof during the vacuum filling operation to prevent an accumulation of comminuted material thereon, the material in said receptacle being open to the atmosphere during withdrawal thereof into the container.

10. In a vacuum filling machine for handling finely divided solid material, in combination, vacuum filling means including a shroud having a filling head at the upper end thereof and means for supporting a container to be filled in operative filling position beneath the filling head, said filling head being provided with a material inlet opening, means for forming a predetermined load of material including a receptacle disposed above the filling head and having a lower portion thereof provided with an outlet, a substantially straight conduit connected to said outlet and the inlet opening in the filling head and through which said predetermined load of finely divided solid material may be caused to flow under the influence of gravity and the vacuum in the shroud into said container, an inflatable valve in said straight conduit for controlling the flow of material therethrough, the material in said
receptacle being open to the atmosphere during flow of the material therefrom into the container.

11. In a vacuum filling machine for handling finely divided solid material, in combination, vacuum filling means including a filling head and a shroud, means for supporting a container to be filled below the filling head and within the shroud, means for evacuating the shroud, means for storing a supply of the finely divided material in an elevated position, a measuring receptacle disposed above the vacuum filling means, a straight conduit connecting the elevated storage means and said measuring receptacle and through which the finely divided solid material may readily flow into the receptacle, said receptacle having an outlet in the lower portion thereof, and a straight conduit connecting said outlet with the inlet opening of the filling head and through which said predetermined load of finely divided solid material may be caused to flow by gravity and in response to the vacuum in the shroud, the material in said receptacle being open to the atmosphere during flow of the material therefrom into the container.

12. In a vacuum filling machine for filling containers with finely divided material, in combination, container supporting means, vacuum filling means including a vacuum filling head having a shroud provided with a suction opening and a material inlet opening, said shroud of said filling head and said supporting means cooperating to form a vacuum chamber enclosing and supporting the container with the mouth of the container in non-sealing relation to the filling head and to said material inlet opening, means for evacuating the shroud, a receptacle operatively connected to said material inlet opening, means for forming and depositing a predetermined load of finely divided material into the receptacle to be withdrawn and introduced into the container upon evacuation of said vacuum chamber during the vacuum filling operation, said load preforming means including means for weighing a predetermined load of material, and means for depositing the weighed load into said receptacle.

13. A vacuum filling machine as defined in claim 12 which includes control means actuated upon completion of the vacuum filling operation for initiating the weighing operation to provide a preformed weighed load in said receptacle for a succeeding weighing operation.

14. In a vacuum filling machine for filling containers with finely divided material, in combination, container supporting means, vacuum filling means including a vacuum filling head having a shroud provided with a suction opening and a material inlet opening, said shroud of said filling head and said supporting means cooperating to form a vacuum chamber enclosing and supporting the container with the mouth of the container in non-sealing relation to the filling head and to said material inlet opening, means for evacuating the shroud, a receptacle operatively connected to said material inlet opening, means for forming and depositing a predetermined load of material into said receptacle to be withdrawn and introduced into the container upon evacuation of said vacuum chamber during the vacuum filling operation, said load preforming means including means for volumetrically measuring a predetermined load of material, and means for depositing the measured load into said receptacle.

15. A vacuum filling machine as defined in claim 14 wherein the volumetric measuring means includes a supply hopper having spaced legs, a pair of spaced measuring chambers open at top and bottom, one of said chambers being aligned with one of said legs to receive a load and the other chamber being aligned with said receptacle to empty its load in one of said operations, and means for reciprocating said chambers to align said first chamber with the receptacle and the second chamber with the other leg of the supply hopper during alternate cycles of operation.

16. A vacuum filling machine as defined in claim 15 which includes control means actuated upon completion of the vacuum filling operation for initiating the evacuation of said volumetric measuring chambers to provide a preformed measured load in the receptacle for a succeeding container filling operation.

17. In a vacuum filling machine for filling containers with finely divided material, in combination, container supporting means, a vacuum filling head having a shroud provided with a suction opening and a material inlet opening, said shroud of said filling head and said supporting means cooperating to form a vacuum chamber enclosing the container with the mouth of the container in non-sealing relation to the filling head and said material inlet opening, a receptacle operatively connected to said material inlet opening for the reception of a predetermined load of finely divided material, means for forming and depositing a predetermined load of material into said receptacle, and means for evacuating said chamber to effect withdrawal of the preformed load from the receptacle and introduction into the container.

18. In a vacuum filling machine, in combination, container supporting means including an elevating platform, vacuum filling means including a vacuum filling head having a suction opening and a material inlet opening and provided with a depending shroud portion for elevating said container supporting platform into sealing engagement with said shroud portion to form a vacuum chamber enclosing said container with the mouth of the container in non-sealing relation to the filling head and said material inlet opening, means for evacuating the shroud, a receptacle operatively connected to said material inlet opening, and means for forming and depositing a predetermined load of material into said receptacle to be withdrawn and introduced into the container upon evacuation of said chamber during the vacuum filling operation, the portion of the filling head defining the material inlet opening being extended downwardly to be loosely inserted into the container during the elevating operation whereby to support a fragile container during the vacuum filling operation.

References Cited in the file of this patent

UNITED STATES PATENTS

1,222,199 Gammler Apr. 19, 1917
2,138,355 Ryan et al. Nov. 29, 1938
2,138,356 Ryan et al. Nov. 29, 1938
2,564,969 Goldberg Aug. 21, 1951
2,565,045 Ray Aug. 21, 1951
2,608,355 Redlin Aug. 26, 1952
2,642,216 Carter June 16, 1953