DRIY SPINNING PROCESS FOR MAKING Y-SHAPED FILAMENTs

David W. Raynolds, Frank W. Abernathy, and Arthur S. Smith, Kingsport, Tenn., assignors to Eastman Kodak Company, Rochester, N. Y., a corporation of New Jersey

Application December 28, 1953, Serial No. 400,564

6 Claims. (Cl. 18—54)

This invention relates to the preparation of synthetic filaments and fibers of increased bulk and stiffness as well as increased luster and covering power. More particularly, this invention relates to improved dry spinning methods and apparatus for producing from cellulose ester spinning solutions filaments and fibers of a Y-shaped cross-section having such improved characteristics. Furthermore, this invention also relates to fabrics and other articles of manufacture made of, or containing such novel Y-shaped cross-section filaments and fibers.

Heretofore, various processes and apparatus have been provided for the production of synthetic filaments and fibers of various cross-sections. Generally these well-known cross-sections fall within one or two classifications such as relatively narrow and rectangular cross-sections, or rounded cross-sections which include filaments of round and flat sides, clover-leaf configurations and other variations produced by physical deformation of the filament, after it has assumed its normal shape, as it issues from the spinning cabinet.

Typical methods and apparatus for dry spinning solutions into synthetic fibers are disclosed in U. S. Patents 2,000,047 and 2,000,048 of May 7, 1935, to H. G. Stone. These patents describe methods including the forcing of a heated cellulose ester spinning solution through a spinnerette having a plurality of separated circular orifices and into a drying chamber containing an evaporative atmosphere maintained at a suitable drying temperature. By such controlled conditions, filaments can be consistently formed of approximately round or clover-leaf cross-section as contrasted to the filaments previously produced of elliptical shape.

Also, as shown in U. S. Patent 1,695,455 of December 18, 1928, by drawing the filaments from a round or circular orifice spinnerette in a direction other than perpendicular to the horizontal face of the spinnerette, filaments having a more or less flattened cross-section are produced. It is also known that slight variations from the round cross-section can be caused by adjusting the particular evaporating conditions under which the filament is dried in the spinning cabinet. A suitable selection of these conditions will permit the production, from spinnerettes having round orifices, of filaments with either a smooth or an unsymmetrical irregular surface.

In U. S. Patent 1,773,969 of August 26, 1930, the technique of the extrusion of filament forming solutions through circular orifices into evaporative atmospheres is also discussed. As described therein, it is suggested that the outer layer of the stream of cellulosic material which is initially circular in cross-section as it issues through the spinnerette orifices hardens or solidifies, first forming a skin that is tougher and less fluid than the interior. After this initial hardening of the outer surface, the interior of the filament is dried and thereby solidified and shrinks while the outer layer is further hardened. The outer shell of the filament being tougher and more determined in shape than the interior, the contraction of the volume of the interior causes the outer film or layer to collapse and to assume a very irregular cross-section which is in the form of a figure of many indentations of varying sizes and shapes and which is often quite flat. Because of the irregularity of shape and flatness of the cross-section of such filaments, their covering power, their bulk, stiffness and luster are quite irregular. This Patent 1,773,969 then describes the use of spinnerettes having orifices of compact or squat shape having indentations in the form of re-entrant angles. The re-entrant angles can be constituted by straight or curved boundary lines. However, the filaments produced by extruding cellulose ester filament forming solutions through such orifices have cross-sections more or less characterized by rounded surfaces.

As described in Hickey Patent 2,373,892 of April 17, 1945, I-beam type cross-section filaments or fibers having a high degree of resiliency and crush resistance may be produced by extruding a suitable cellulose ester solution through a spinnerette having rectangular orifices, the ratio of the length to the width of each rectangular orifice being between 1.35 and 1.65. Fibers made from such I-beam filaments are particularly useful for manufacturing carpet materials, as well as for the manufacture of rugging and other pile fabrics. However, the ends of the I-beam are of a round shape and do not extend substantially above the flat section of the I-beam.

An object, therefore, of the present invention is to provide a process for preparing filaments and fibers with an increased bulk and stiffness as compared to the above discussed prior art fibers of equivalent denier and chemical composition.

Another object of this invention is to provide a process for preparing filaments and fibers of increased surface area as compared to the above discussed fibers known heretofore in the art to which this invention relates.

Still another object of this invention is to provide synthetic filaments and fibers of Y-shaped cross-section of the nature hereinafter described.

A further object of this invention is the preparation of the desired filaments and fibers from spinnerette orifices of a simplified design that can be easily and accurately manufactured.

Yet another object of this invention is to provide a spinnerette having extrusion orifices therein of equilateral triangular shapes.

Another object is to provide staple fibers made from a plurality of filaments having Y-shaped cross-sections.

Again another object is to provide new and novel fabrics having a crisp feel, improved covering power and luster containing such Y-shaped cross-section filaments or staple fibers.

Still another is to provide a novel filling material of increased resistance to matting which is suitable to employ in pillows and the like.

Yet another object of this invention is to provide fibers adaptable for use in manufacturing cigarette filters.

Other objects will appear hereinafter.

In accordance with the present invention these and other objects may be attained by forcing a suitable spinning solution through a spinnerette having a plurality of equilateral triangular shaped filament forming orifices therein and evaporating the solvent by drying the resulting filaments in a spinning cabinet under carefully controlled conditions of temperature while subjecting the filaments to predetermined drafting. The temperature of the solution and its rate of extrusion are so controlled as to secure optimum results.

Under the optimum conditions of solution temperature and composition, and of extrusion, drying and drafting, the wet filaments as they leave the equilateral triangular
orifices temporarily assume a triangular cross-sectional shape. However, in accordance with a surprising feature of our invention, by careful control of the extrusion rate, the drafting rate and drying temperatures, we have discovered there occurs a change in the filament cross-section from a triangular to a Y-shaped cross-section. Under preferred ranges of operation, as suggested above, and as described in detail further on in this specification, the "legs" of the Y-shaped cross-section filament will be substantially equal in length and of substantially uniform shape. Also the angles between adjacent legs of the Y will be substantially equal. The Y-shaped cross-section is uniform along the length of the filament.

Under optional conditions of operation it is possible to vary the length, shape and angular position of the legs of the Y. However, such modifications of cross-sectional filament structure are not preferred since they result in the production of filaments of less bulkiness and luster, and such filaments tend to mat together to an undesirable extent under certain conditions.

In general the spinnerette having the equilateral triangular orifices may be employed with any suitable spinning cabinet such as, for example, one of the forms illustrated in U. S. Patents 3,000,647 and 3,000,648 referred to above. The Y-shaped cross-section filaments, however, can be prepared in accordance with our invention within a satisfactory range of spinning, drafting and solution conditions as is described hereinafter.

Another unusual and interesting feature of our invention is the discovery that filaments produced in accordance therewith by extruding solutions of cellulose acetate through equilateral triangular orifices have a more perfect Y-shaped cross-section than is obtainable when a spinneret having Y-shaped cross-section orifices is employed. In fact, in the latter case the filaments generally fall within the above-mentioned prior art classifications and are of a distorted rounded configuration and of non-uniform cross-sectional shape. They exhibit none of the desirable properties possessed by our novel filaments.

As previously stated above, we have found that the Y-shaped cross-section filaments and fibers of our invention have much greater bulkiness and stiffness than similar filaments or fibers of rounded cross-section heretofore known in this art. These characteristics of our filaments and fibers appear to be due to the intermeshing of the legs of the Y of the individual filaments in the filament bundle in such manner that each is reinforced by the other and the filament bundle has a resultant stiffness greater than that possessed by the normal cross-section fiber of equivalent denier because of the increased surface area. It is noted that a circle taking in the three tips of the legs of the Y will be greater in diameter than one taking in the lobes of the well-known clover-leaf type of cross-section. This larger "circle" is, therefore, the effective area of the Y-shaped cross-section and explains the increased bulkiness of our novel Y-type of filament and fiber.

The present invention will be further understood by reference to the following detailed description in which several examples of our invention are given and to the related drawings in which:

Figure 1 is a schematic elevational view, partly in section, showing a spinnerette which has equilateral triangular filament forming orifices positioned in a suitable dry spinning cabinet which is equipped with suitable auxiliary apparatus;

Figure 2 is a view of the face of a spinnerette showing a plurality of filament forming orifices of equilateral triangular shape;

Figure 3 is a greatly enlarged representation of the spinning solution coming out of the triangular orifices of the spinnerette and forming into the Y-shaped cross-section filaments;

Figure 4 is a reproduction of an actual photomicrograph showing the cross-section of several Y-shaped filaments of the present invention; and

Figure 5 is a reproduction of an actual photomicrograph showing in cross-section several clover-leaf filaments made by a prior art method.

The similar parts in the several figures are identified by the same numerals.

Referring to Figure 1 there is shown schematically a side elevation view, partly in section, of a spinning cabinet 11 and its associated apparatus by which the novel Y-shaped synthetic filaments and fibers of the instant invention may be manufactured. Mounted at the top of the cabinet is a candle filter unit 12 to which is connected a spinnerette 13 which in accordance with our invention has a plurality of orifices 14 therein which are of the shape of equilateral triangles. The face of this novel type of spinnerette with the equilateral triangular orifices 14 therein is shown in the greatly enlarged view of Figure 2. The candle filter may be uniformly heated by means of heating coils, not shown, which are positioned so as to surround candle filter 12, and through which coils may be circulated any appropriate heat exchange medium such as water maintained at the desired temperature.

Spinning solution of composition described hereinafter is supplied from conduit 16 through valve 17 to pump 18 which forces the solution at the desired rate to the candle filter unit 12, thence to spinnerette 13 through the equilateral triangular orifices 14 from which it is extruded initially in the form of equilateral triangular filaments 25.

The filaments 25 pass downwardly in the cabinet 11 while progressively losing solvent by evaporation until, in a substantially solidified condition they leave the cabinet 11 and pass around godet roll 20, which is positioned below the lower end of the spinning cabinet 26. Godet roll 20 is driven at a uniform speed by means, not shown, to give the desired draft to the filaments 25. From godet roll 20 the filaments pass over the usual guide rolls, one of which is shown at 21, and are finally wound onto a bobbin 22 after an appropriate twist has been imparted thereto, if desired, by means not shown.

To facilitate the evaporation of solvent from the filaments during their travel through the cabinet, heated air is supplied to the cabinet 11 by means of inlet conduits 23 and 24 positioned respectively adjacent the lower and upper ends thereof, the air passing through the cabinet and emerging through outlet conduits 26 positioned at a substantial distance below spinnerette 13, as illustrated.

The change of the cross-section of the filaments while in the cabinet from an initial triangular cross-section shape to the desired Y cross-section shape is illustrated in Figure 4. As shown at 25 the filaments have just been formed by the triangular orifices and are substantially of an equilateral triangular cross-section. Further on in the downward progress of the filaments under the controlled condition of drafting and drying they have changed to the desired Y cross-section filaments 25 Y which are depicted greatly magnified in Figure 4.

Our process is described in further detail in the following examples.

EXAMPLE 1

A spinning solution consisting of 26.5% cellulose acetate, 1.25% titanium dioxide, based on the weight of the cellulose acetate, 1.75% water and the remaining being the solvent, acetone, was spun into Y-shaped cross-section filaments of 55 denier per strand using the apparatus and its general operation as described above in connection with Figure 1. The spinnerette had 13 equilateral triangular orifices therein. The conditions of operation are shown in Table 1 where they are identified as No. 1.

In this table the air flow in cubic feet per minute is calculated per one hundred spinning cabinets. The
figures under the spinnerette orifice column represent one side of the equilateral triangle. The extrusion speed in meters per minute represents the rate at which the spinning solution is forced out of the spinnerette. This, in cooperation with the draft rate enables the filaments to change from the initial triangular cross-section to the Y cross-section while properly curing.

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Denier Per Strand</th>
<th>No. Filaments Per Strand</th>
<th>Extrusion Speed, Meters/Minute</th>
<th>Candle Filter Temp., °C</th>
<th>Bunsen Burner, C.F.M.</th>
<th>Top Air Flow, °C</th>
<th>Bottom Air Flow, °C</th>
<th>Bottom Air Inlet Temp., °C</th>
<th>Spinnersette Orifice, Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>13</td>
<td>600</td>
<td>65</td>
<td>62</td>
<td>600</td>
<td>600</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>38</td>
<td>500</td>
<td>60</td>
<td>60</td>
<td>500</td>
<td>500</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>30</td>
<td>500</td>
<td>60</td>
<td>60</td>
<td>500</td>
<td>500</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>20</td>
<td>500</td>
<td>60</td>
<td>60</td>
<td>500</td>
<td>500</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>15</td>
<td>500</td>
<td>60</td>
<td>60</td>
<td>500</td>
<td>500</td>
<td>70</td>
<td>85</td>
</tr>
</tbody>
</table>

Draft ratio may be defined rather broadly as the ratio of the linear velocity of wind-up of the filaments to the linear velocity of extrusion of the spinning solution. More specifically, draft ratio may be defined as the ratio of the linear velocity at which the filaments are wound onto and off the godet roll to the calculated average linear velocity at which the quantity of spinning solution necessary to the formation of any one of the plurality of filaments comprising the bundle of filaments wound onto and off the godet roll is extruded through any one of the plurality of orifices in the spinnerette employed in the spinning operation, the velocities being expressed in the same units of distance per unit time. For example, if the filaments are wound up at the godet roll at the same linear velocity that the spinning solution is extruded from the spinnerette, the draft is 1.0, thus signifying that the linear speed of wind-up is 100% of the extrusion speed. Similarly, if the filaments are wound up or withdrawn from the cabinet at the godet roll at a linear speed 50% greater than the speed of extrusion, the draft is 1.5, and so on.

Other columns of Table I are more or less self explanatory when considered in connection with Figure 1 of the drawings and the related description. Temperatures in the drying cabinets averaging from 40 to 90° C. are usable.

EXAMPLE 2

The cellulose acetate spinning solution of Example 1 was spun into Y-shaped cross-section filaments of 75 denier per strand using the apparatus and its general operation as previously described. The spinnerette had 19 equilateral triangular orifices. The conditions of operation are shown in Table I where they are identified as No. 2.

EXAMPLE 3

The cellulose acetate spinning solution of Example 1 was spun into Y-shaped cross-section filaments of 150 denier per strand. The spinnerette had 38 equilateral triangular orifices. The above described spinning equipment was used with the operating conditions shown as No. 3 in Table I.

EXAMPLE 4

A different spinning solution consisting of 30.0% cellulose acetate, 1.75 water, and the remainder being acetic solvent was spun into Y-shaped cross-section filaments of 150 denier per strand. The spinnerette had 7 equilateral triangular orifices. The above described spinning equipment was used with the operating conditions shown as No. 4 in Table I.
Table II

<table>
<thead>
<tr>
<th>Yarn</th>
<th>Bulk Factor</th>
<th>Specific Volume</th>
<th>Percent Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular 55/10/3.3</td>
<td>106.7</td>
<td>214.1</td>
<td>18.7</td>
</tr>
<tr>
<td>Y 55/12/3.3</td>
<td>130.2</td>
<td>214.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Regular 55/8/3</td>
<td>155.2</td>
<td>214.0</td>
<td>26.2</td>
</tr>
<tr>
<td>Y 55/8/3</td>
<td>155.2</td>
<td>214.0</td>
<td>26.2</td>
</tr>
<tr>
<td>Regular 75/10/3.3</td>
<td>184.8</td>
<td>214.8</td>
<td>14.2</td>
</tr>
<tr>
<td>Y 75/10/3</td>
<td>184.8</td>
<td>214.8</td>
<td>14.2</td>
</tr>
<tr>
<td>Regular 75/8/3</td>
<td>184.8</td>
<td>214.8</td>
<td>14.2</td>
</tr>
<tr>
<td>Y 75/8/3</td>
<td>184.8</td>
<td>214.8</td>
<td>14.2</td>
</tr>
<tr>
<td>Regular 75/5/3.3</td>
<td>205.5</td>
<td>214.8</td>
<td>26.2</td>
</tr>
<tr>
<td>Y 75/5/3</td>
<td>205.5</td>
<td>214.8</td>
<td>26.2</td>
</tr>
<tr>
<td>Regular 150/7/3.3</td>
<td>149.5</td>
<td>214.8</td>
<td>14.2</td>
</tr>
<tr>
<td>Y 150/7/3</td>
<td>149.5</td>
<td>214.8</td>
<td>14.2</td>
</tr>
<tr>
<td>Regular 150/6/3.3</td>
<td>124.1</td>
<td>214.8</td>
<td>14.2</td>
</tr>
<tr>
<td>Y 150/6/3</td>
<td>124.1</td>
<td>214.8</td>
<td>14.2</td>
</tr>
<tr>
<td>Regular 300/7/3.3</td>
<td>156.0</td>
<td>214.8</td>
<td>14.2</td>
</tr>
<tr>
<td>Y 300/7/3</td>
<td>156.0</td>
<td>214.8</td>
<td>14.2</td>
</tr>
</tbody>
</table>

In Table II the numerical expressions 55/13/3 and the like represent continuous filament yarn in terms of total denier, filament count, and twist. For example, 55/13/3 designates a continuous filament yarn having a total denier of 55 made up of 13 filaments and having 0.3 turn per inch of twist. The denier per filament of such a yarn is the total denier divided by the number of filaments. In this example 55 divided by 13 equals approximately 4 denier per filament.

The data in Table II are determined by a test which we have developed in which yarn is wound under a specified tension until it fills a spool of a known volume. The amount of yarn required to fill this volume is weighed. From this weight the "bulk factor" and "specific volume" are calculated. The "bulk factor" is calculated by the following formula:

\[
\text{Bulk factor} = \frac{\text{Volume of spool} \times \text{density of fibers} \times \text{weight of yarn}}{\text{fill spool}} \times 100
\]

This formula expresses the bulk as a percentage of the space occupied by the yarn to the space which would be occupied by solid material from which the yarn is made. The "specific volume" is determined by dividing the weight of yarn on the spool to cubic inches per pound.

The column shown as "percent difference" expresses as a percentage, the percentage difference between the bulk factor, or the specific volume, in the regular and Y section yarn. It will be noted that in continuous filament yarn the Y-shaped yarn has from 29.6 to 41.0% more bulk than regular yarn. This difference can be seen visually when comparing the skeins from which these data were obtained.

Similar data are shown in Table III relative to staple fiber yarn made respectively from regular and Y section fibers of the same cellulose ester composition.

Table III

<table>
<thead>
<tr>
<th>Yarn</th>
<th>Bulk Factor</th>
<th>Specific Volume</th>
<th>Percent Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular 20/2, 2 D/F; 2"</td>
<td>222.6</td>
<td>58.2</td>
<td>38.2</td>
</tr>
<tr>
<td>Y 20/2, 2 D/F, 2"</td>
<td>222.6</td>
<td>58.2</td>
<td>38.2</td>
</tr>
<tr>
<td>Regular 20/2, 5 D/F; 2"</td>
<td>259.0</td>
<td>53.4</td>
<td>34.2</td>
</tr>
<tr>
<td>Y 20/2, 5 D/F, 2"</td>
<td>259.0</td>
<td>53.4</td>
<td>34.2</td>
</tr>
<tr>
<td>Regular 20/2, 2 D/F; 2"</td>
<td>222.6</td>
<td>58.2</td>
<td>38.2</td>
</tr>
<tr>
<td>Y 20/2, 2 D/F, 2"</td>
<td>222.6</td>
<td>58.2</td>
<td>38.2</td>
</tr>
<tr>
<td>Regular 20/2, 5 D/F; 2"</td>
<td>259.0</td>
<td>53.4</td>
<td>34.2</td>
</tr>
<tr>
<td>Y 20/2, 5 D/F, 2"</td>
<td>259.0</td>
<td>53.4</td>
<td>34.2</td>
</tr>
</tbody>
</table>

In Table III the staple fibers are designated by their cotton count and their ply. For example, 20/1 designates a staple fiber yarn made up of a single end, which is 20's cotton count. This table also shows the denier per filament (2 D/F) etc. and the staple length of the fibers (2") etc., from which the staple yarns are spun. The bulk factor and specific volume are determined as described above in connection with Table II. It will be evident that with samples of yarn of the same composi-

tion, denier and length and varying only in cross-section, i.e. between regular and Y section, the Y section staple has from 37.4 to 54.2% more bulk.

The luster of the Y-shaped cross-section yarn is appreciably greater than that of the regular or clover-leaf cross-section of equivalent denier and composition. Luster is measured by means of a photo-electric cell. The filaments are wound in a parallel manner around a flat piece of cardboard or other similar flat surface. Light reflected off these panels to the photoelectric cell imparts a potential which is translated into a numerical luster level. On comparative tests the clover-leaf panel of filaments record 0.77 volt whereas the Y cross-section filaments of the same denier record 0.83 volt.

EXAMPLE 8

Staple fibers made from Y-shaped cross-section cellulose acetate yarn were employed as a filling material in a pillow. Because of their bulk they were found to be satisfactory for this purpose. A similar sized pillow containing the same weight of cellulose acetate staple fibers of equivalent denier of regular cross-section evidenced less bulk and did not resist matting under pressure.

EXAMPLE 9

Cigarette filters were prepared from Y-shaped cross-section cellulose acetate fibers. Their interesting bulk and stiffness properties permit the construction of filters of interesting design.

We have found that yarns composed of Y-section filaments are much stiffer and more resilient than yarns having normal or clover-leaf cross-sections. The effect on stiffness of cross sectional shape can be estimated by comparing moments of inertia of fibers having different shapes but the same cross sectional area. By this method we have determined that Y-section filaments are approximately 60% stiffer than normal round filaments of equal size. Furthermore, we have found that when a plurality of Y-shaped filaments are collected in a bundle as in a yarn strand or in a batting, a greatly increased resilience or stiffness is noted which is more than would be expected from the increase in stiffness of individual fibers. We attribute this effect to the interlocking or tongue and groove minging of the legs of the Y-filaments making up the mass of fibers. This interlocking of fibers causes much greater resistance to interfiber slippage than can be obtained in a bundle of normal filament. Thus the aggregate stiffness of a bundle of filaments is much greater than the sum of the stiffnesses of the individual fibers.

The inherent properties of cellulose acetate fibers of the Y-shaped cross-section are such that they offer numerous desirable properties in both woven and knit fabrics. In such fabrics as ninons, marquisettes, and voiles, the Y-shaped section fibers produce fabrics having desirable crispness and stiffness which are usually obtained only by special processing techniques or by special finishing. In flat fabrics, such as taffetas, twills, and satins, the increased bulk of the Y-shaped fibers produce fabrics having greater cover and thickness for a given weight of material. On the other hand there is the possibility of using less material to produce fabrics of the same cover and thickness thereby decreasing the cost. Yarns having a Y cross-section produce fabrics with less tendency for the yarns to slip resulting in higher seam strength. This characteristic is particularly important in certain fabrics, for example, satins and twills in which taffetas have a crispier feel when made from Y section yarns.

Knitted fabrics from yarns with Y-shaped sections exhibit increased body and hand which make them more desirable for certain uses such as sport shirts, mens' ties, and dress goods. Yarns spun from staple fibers of Y cross-section exhibit increase in bulk and stiffness as do the filament yarns. In addition, fabrics from these yarns have a wool-like feel or hand. In all of the fabrics which have been produced from cellulose acetate fibers of the
Y-shaped cross-section fabric properties have been obtained which are desirable and which are not obtained in cellulose acetate fibers of regular cross-section.

We claim:

1. The method of forming cellulose organic acid ester filaments having a Y-shaped cross-section, the legs of the Y being substantially equal in length and the angles between adjacent legs of the Y being substantially equal, which comprises extruding a cellulose organic acid ester filament forming solution through a spinnerette equipped with equilateral triangular extrusion orifices and into a dry spinning cabinet, drafting the filaments at a draft ratio within the range of approximately 0.7 to 1.4 while drying the filaments.

2. The method of forming cellulose organic acid ester filaments with a Y-shaped cross-section, the legs of the Y being substantially equal in length and the angles between adjacent legs of the Y being substantially equal, which comprises extruding a cellulose organic acid ester filament forming solution through a spinnerette equipped with equilateral triangular extrusion orifices and into a dry spinning cabinet, drafting the filaments at a draft ratio within the range of approximately 1.1 to 1.4 while drying the filaments at an average temperature within the range of 60° C. to 90° C. whereby the cross-section of the filaments is changed to said Y cross-section.

3. The method of forming cellulose acetate filaments with a Y-shaped cross-section, the legs of the Y being substantially equal in length and the angles between adjacent legs of the Y being substantially equal, which comprises extruding a cellulose acetate filament forming solution through a spinnerette equipped with equilateral triangular extrusion orifices and into a dry spinning cabinet, drafting the thus formed triangular cross-section filaments at a draft ratio within the range of approximately 1.10 to 1.43 while drying the filaments at an average temperature within the range of 60° C. to 90° C. whereby the cross-section of the filaments is changed to said Y cross-section.

4. The method of forming cellulose acetate filaments with a Y-shaped cross-section, the legs of the Y being substantially equal in length and the angles between adjacent legs of the Y being substantially equal, which comprises extruding a cellulose acetate filament forming solution through a spinnerette equipped with equilateral triangular extrusion orifices and into a dry spinning cabinet, drafting the thus formed triangular cross-section filaments at a draft ratio of approximately 1.2 while drying the filaments at an average temperature within the range of 60° C. to 90° C. whereby the cross-section of the filaments is changed to said Y cross-section.

5. The method of forming cellulose acetate filaments with a Y-shaped cross-section, the legs of the Y being substantially equal in length and the angles between adjacent legs of the Y being substantially equal, which comprises extruding a cellulose acetate filament forming solution through a spinnerette equipped with equilateral triangular orifices of the same size and into a dry spinning cabinet, drafting the thus formed triangular cross-section filaments at a draft ratio of approximately 1.1 while drying the filaments at an average temperature within the range of 60° C. to 90° C. whereby the cross-section of the filaments is changed to said Y cross-section.

6. The method of forming cellulose acetate filaments with a Y-shaped cross-section, the legs of the Y being substantially equal in length and the angles between adjacent legs of the Y being substantially equal, which comprises extruding a cellulose acetate filament forming solution through a spinnerette equipped with equilateral triangular orifices of the same size and into a dry spinning cabinet, drafting the thus formed triangular cross-section filaments at a draft ratio of approximately 1.4 while drying the filaments at an average temperature within the range of 60° C. to 90° C. whereby the cross-section of the filaments is changed to said Y cross-section.

References Cited in the file of this patent

UNITED STATES PATENTS

2,000,047 Stone May 7, 1935
2,000,048 Stone May 7, 1935
2,013,688 Kinsella Sept. 10, 1935
2,026,730 Dreyfus Jan. 7, 1936
2,313,296 Lamesch Mar. 9, 1943
2,373,892 Hickey Apr. 17, 1945
2,377,791 Hoffman Oct. 30, 1945
2,434,533 Wurtzburger Jan. 13, 1948
2,588,583 Small et al. Nov. 1, 1952
2,588,584 Small Nov. 1, 1952
2,673,368 Denyes Mar. 30, 1954
2,677,184 Webb May 4, 1954