My invention relates to a hawk on which to carry a small supply of fluid plaster preliminary to its being taken up upon a trowel for application to a wall or ceiling where it is to be spread.

The principal object of this invention is the construction of a hawk having a hollow handle adapted for connection with a flexible conduit through which plaster may be flowed under pressure for deposit upon the top face of the hawk; and in such a construction to provide for a controlled supply of the plaster to the hawk by means of a valve which normally shuts off the flow of fluid plaster, but which, in response to manual pressure, will release the plater for flowing onto the top face of the hawk. Other minor objectives are also attained by my invention as will appear hereinafter from the ensuing detailed description taken in conjunction with the accompanying drawing in which is described a preferred construction in the manner following:

Figure 1 is a view in perspective of the present hawk in the hands of a workman who is shown in the act of applying plaster to a wall, the hawk being held in the normal operative position which permits some of the fluid plaster to be taken up by the trowel from time to time;

Fig. 2 is a side elevation of the hawk showing the position of the workman’s hand in relation to the valve by which the flow of fluid plaster to the top face of the hawk is controlled;

Fig. 3 is an enlarged vertical section through the hawk and its supporting handle showing a slight modification;

Fig. 4 is a horizontal section, looking upwardly, taken on line 4—4 of Fig. 3; and

Fig. 5 is a view in perspective looking toward the top face of the block forming part of the slide valve.

The present hawk comprises a plaster-supporting plate 10 of aluminum or the like, and desirably of rectangular contour in accordance with usual practice. On the under side of the hawk, centrally thereof, is affixed a reinforcing disc 12 to the underside of which is secured a block 14 formed on its upper face with a diametric channel 16 which provides a guideway for a slide valve 18 in the general form of a strap. This valve which is reciprocable close to the hawk is confined between the disc 12 and block 14 so as to have capacity for movement only back and forth within the guideway 15. The slide valve 18 is aperture at 20, and at its outer end is provided with a downturned finger 22 adapted to receive pressure from the thumb 1 of the workman’s hand (see Fig. 2). The hawk plate 10, reinforced
side of the block which is remote from the finger end of the slide valve. Within each slot is fitted a tension spring 43 (see Fig. 4) anchored at 44 near the inner end of the slot and extended outwards through its open end for connection with the proximate end of a depending flange 45 which may protrude laterally beyond the slide valve at that point. This flange is adapted to engage the block 14 to serve as a stop when the slide valve is operated to one extreme position (see Fig. 4) in response to tension of the springs 42. In this position the aperture 20 through the slide valve is cut off with the opening 24 in the block 14 and the central passageway through the sleeve 26. If, however, the slide valve be pushed inwardly against the tension of the springs 42, a stop plate 48 will limit its advance to a point where the valve aperture 20 is in full register with the block hole 14 whereby to open up a passageway for the flow of plaster through the sleeve 26 to the hon face of the hawk plate. The rate of flow may be controlled as by opening the valve for less than the full distance, and the amount of plaster thus released for deposit upon the top face of the hawk may also be determined by the length of time that the valve is held open. A flexible guard of rubber or the like is supported in place just below the block 14 so as to protect the hand of the operator

A slight modification is suggested in Fig. 3 wherein a spring arm 55 having an endwise bowed or concave contour is connected as by screws 51 and 52 at opposite ends to the finger piece 22 and grip 28, this arm being engaged by the fingers so that inward pressure thereon will advance the slide valve to open position. Release of manual pressure will be followed by return of the valve to its open position by the tension of the springs 42, or of the arm 59 whose use may render the employment of other springs unnecessary.

In operation, the workman starts with an empty hawk but with all connections made to the supply source from which the plaster is to be received whenever the slide valve 18 is manually operated to an open position. When ready, the workman opens the valve to release a desired quantity of the fluid plaster upon the top face of the hawk. Once feature of advantage of the attached conduit, will approximate that of the conventional hawk due, in part, to the fact that the amount of plaster ordinarily carried by the present hawk is less than that which is now customary.

Plaster, even in its fluid state, is of relatively great viscosity and flow difficult to control with a valve. I find, however, that a slide valve such as the one herein shown is entirely satisfactory for the purposes of this invention. It is relatively leak-proof, and will not abrade or wear unduly, and is easy and dependable in its operation. Advantage is that it is so compact that it may be operated by the thumb of the same hand whose remaining fingers grip the handle of the hawk. It is, therefore, possible for one and the same hand to hold the hawk and manipulate the valve.

To maintain a balance in the frictional forces which are encountered with operation of the valve, it may be desirable to use two springs which are symmetrical with reference to the plane which proceeds central and axially of the opening which it uncover. Also the few parts which are used in putting together this valve conduces to a carefree operation and also lightweight—both important factors in a plaster hawk of this kind.

I claim:

1. A plasterer's hawk equipped with a supporting handle having therethrough a passageway opening out upon the top face of the hawk, a valve extended crosswise of the handle for opening and closing the passageway therethrough, a flexible conduit connecting the lower end of the handle with a source of plaster supply for conducting plaster through the handle to the top face of the hawk subject to control of the valve, and valve-operating means arranged close to the handle in position for manipulation by the same hand which grips the hawk.

2. A plasterer's hawk according to claim 1 in which a guide block with an opening therethrough is affixed between the handle and the under face of the hawk, and in which said guide block is apertured and adjustable and operatively fitted with the guide block to open and close the opening thereforth whereby to control the flow of plaster through to the top face of the hawk.

3. A plasterer's hawk according to claim 1 in which a guide block with an opening there-through is affixed between the handle and the under face of the hawk, in which said guide block is apertured and adjustable and operatively fitted with the guide block to open and close the opening thereforth whereby to control the flow of plaster through to the top face of the hawk, and in which spring means interconnects the slide valve and guide block to urge the valve to closed position, the slide valve being provided with stop means engageable alternately with spaced points on the guide block to limit sliding movements of the valve to substantially the minimum distance required for full opening or closing of the valve.

4. A plasterer's hawk according to claim 1 in which spring means interconnects the valve and handle to induce movement of the valve crosswise of the handle, the spring means being arranged at opposite sides of the valve so as to exert in all positions of the valve a balanced force on opposite sides of a plane radially of the handle and lengthwise of the valve.

5. A plasterer's hawk comprising, in combination, a reinforcing disc adjacent the under face of the hawk, a block adjacent the under face of the reinforcing disc, there being in the upper face of the block a transverse channel closed over its top by the reinforcing disc, means interconnecting the block, disc, and hawk in unitary relation, there being reinforcing openings therethrough of the hawk, and reinforcing block channel at a point substantially centrally of the hawk, a handle having its upper end portion entered through the said openings and in threaded engagement with the block, plate, and hawk and terminating substantially with the top face of the latter, means for substantially aligning and positioning the handle with a source of plaster supply, a reciprocable valve fitted within the block channel to be guided...
thereby in its sliding movements, the valve being formed therethrough at one point with an aperture adapted to be brought into and out of register with the opening in the block channel whereby to open or close therethrough a passageway for the flowing plaster, and spring means in connection with the valve urging the same normally to a closed position.

6. A plasterer's hawk equipped with a supporting handle having therethrough a passageway opening out upon the top face of the hawk, a valve extended crosswise of the handle for opening and closing the passageway therethrough, a flexible conduit connecting the lower end of the handle with a source of plaster supply for conducting plaster through the handle to the top face of the hawk subject to control of the valve, and valve operating means located closely adjacent the upper end of the handle in position for manipulation by the same hand which grips the hawk handle to control the flow of plaster to the top face of the hawk.

BYRON WM. DALTON.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,053,645</td>
<td>Reimer</td>
<td>Feb. 18, 1913</td>
</tr>
<tr>
<td>1,158,460</td>
<td>Doll</td>
<td>Nov. 2, 1915</td>
</tr>
<tr>
<td>1,716,317</td>
<td>Lowy</td>
<td>June 4, 1929</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>375,741</td>
<td>Germany</td>
<td>May 18, 1923</td>
</tr>
</tbody>
</table>