This invention relates broadly to new garment hanger constructions.

One of the objects of this invention is the creation of a garment hanger which is adapted to support various articles of wearing apparel in close yet spaced apart relation.

Another object of this invention is the creation of a garment hanger having an outer framework and an internal or inner framework mechanically associated therewith which at the user's election may be arranged to be held distanced from fully outer framework so that said respective frameworks may be employed to support separate articles of wearing apparel in close yet spaced apart relation.

Another object of this invention is the creation of a garment hanger embodying a plurality of garment supporting means adapted to arrangement and disposition in fashion desirable to the user for the relative support of a plurality of separate articles of wearing apparel.

Another object of this invention is the creation of a garment hanger embodying a plurality of garment supporting framework adapted to be arranged and held at the user's election in spaced apart relation to support a plurality of articles of wearing apparel.

Another object of this invention is the creation of a garment hanger embodying generally an outer supporting framework, an inner supporting framework mechanically associated with said outer framework for movement with respect thereto and for disposition in distended position therefrom and a hook carried by said hanger also arranged to co-operate with said framework, all in supporting on the composite hanger of a plurality of articles of wearing apparel in separate relation as may be desired by the user.

Another object of this invention is the creation of garment hanger constructions which are strong, durable, easy to use and adaptable to ready manufacture in quantity and which embody the mechanical advantageous features hereinafter more fully disclosed.

These and many other objects are secured by the constructions herein disclosed. Various other objects and advantages of the invention than those hereinabove specifically mentioned will appear more fully hereinafter.

Referring to the drawings, in which the same reference numerals are used throughout the several views to indicate the same or similar parts, it will be found that:

Fig. 1 represents a front elevational view of a garment hanger employing the novel principles of our construction shown with the inner or secondary hanger framework lying in the plane of the outer or primary hanger framework;

Fig. 2 represents a sectional view, taken along the section line 2—2 in Fig. 1, looking in the direction of the arrows;

Fig. 3 represents a sectional view similar to that of Fig. 2 but shown with the inner or secondary hanger framework in angularly displaced positions with respect to the plane of the outer or primary hanger framework;

Fig. 4 is a sectional view of an upper portion of our garment hanger construction shown with frameworks and upper supporting hook partly broken away and with the inner or secondary framework being swung out of the plane of the outer or primary framework;

Fig. 5 represents a perspective view of a garment hanger employing the novel principles of our construction shown with a man's jacket being carried on the outer or primary framework and with a pair of trousers being carried on the inner or secondary framework in spaced apart relation with respect to the outer or primary framework;

Fig. 6 is a sectional view similar to that of Fig. 2 but showing a possible modified embodiment adapted to make it possible to maintain the inner or secondary framework in angularly displaced position selectively to either side of the plane of the outer or primary framework, said view being shown with portions of the frameworks broken away;

Fig. 7 represents a front elevational view of a possible modified embodiment of garment hanger employing the novel principles of our invention;

Fig. 8 represents a sectional view, taken along the section line 8—8 in Fig. 7, looking in the direction of the arrows;

Fig. 9 is a sectional view of the upper portion of a garment hanger construction of the modified type of Fig. 7, shown with the frameworks and upper supporting hook partly broken away and with the inner or secondary framework being swung out of the plane of the outer or primary framework;

Fig. 10 is a detail perspective view of our novel unit adapted to securement to an outer or primary framework to produce the hanger embodiment of Fig. 7; and

Fig. 11 is a detail perspective view of our other novel unit adapted to securement to an inner or secondary framework to produce the hanger embodiment of Fig. 7.

It is the purpose of this invention to make more useful and improved garment hanger constructions. In the past different garment hangers...
of various types have been devised, but, as far as we have found, such hangers, with but few exceptions, have met with indifferent or little or no commercial adoption and success. The garment hanger which at the present time appears to be most widely favored and used is the conventional simple hanger comprising a single framework having a straight lower bar and an upper supporting hook, whether made of wood or metal or a combination of both. Such garment hangers as embodied mechanical modifications and additions upon the conventional hanger, in our opinion, have not met with favorable acceptance generally because of the fact that they have proven expensive to make, difficult, expensive and impractical to use and keep in repair and generally not involving sufficient, cheap and ready advantages over the conventional hanger to warrant its replacement by a hanger embodying such modifications and additions. It is of course clear that the conventional simple hanger leaves much to be desired. Thus, the number of separate articles of wearing apparel that can be supported thereon and carried thereby is definitely limited. Further, the order in which articles of wearing apparel may be placed upon and taken from such a hanger likewise is more or less definitely limited. To illustrate, a male user of such a hanger would probably find it necessary to take off from the hanger his jacket and vest in order to conveniently remove from the straight lower bar thereof his trousers although he naturally would put on his trousers before he would slip into his jacket and vest, and if he tried to remove the trousers from the hanger without first removing the jacket and vest would either succeed in marring and creasing the trousers, jacket and vest or all or in dropping the jacket off the hanger in the process of removing the trousers. Moreover, as is also clear most men upon removing their clothing upon retiring will first remove their jacket and vest and thereafter remove their trousers and thus when it comes to placing clothing upon the hanger will find that they have to lay down their jacket and vest while they first put their trousers upon the lower bar of the hanger since considerable inconvenience is encountered if an attempt is made to place the trousers upon the lower bar of the hanger after the jacket and vest have already been hung thereon. Thus it is apparent that the construction of the conventional hanger is such that it does not conveniently lend itself to the usual order in which a user desires to place articles of wearing apparel thereon or remove them therefrom. Likewise this same difficulty is met by a female user desiring to employ the hanger to support a jacket and skirt. Furthermore since the number of garments that can be supported on and carried by a given hanger without marring and creasing is definitely limited, a comparatively large number of such hangers is required in the average household. It is the purpose of our invention to overcome these disadvantages and to create garment hanger constructions which are adaptable to universal application and satisfactory to use.

Referring now to the drawings, it will be noted that we have shown in Fig. 1 a garment hanger or primary framework 1 of conventional configuration having a lower horizontal bar 2 and an upper supporting hook 3. The framework 1 is provided in its upper portion with a U-like recess 4 which recess opens downwardly, the U-like effect being inverted. Secured in said recess is a lining member 5 which is likewise of inverted U-like shape and is preferably of a relatively rigid material such as wood or metal. Suitable means for securing the lining member 5 in the recess 4 are provided such as screws 6 adapted to pass through holes in the member 5 and into the body of the framework 1. It will be understood that the lining member 5 throughout its length and including its ends is disposed in configuration to the surfaces of the recess and the inner surface of the framework 1. Thus, the effect will be to provide a lined smooth surfaced recess in the upper portion of framework 1. As is apparent this recess will have two vertical side walls separated from each other joined at their upper ends by a horizontal top wall. A horizontal rod or pin 7 is provided so as to run from one side wall to the other and be vertically spaced apart from the upper horizontal top wall by a sufficient distance to permit of the proper functional operations hereinafter described. Mounted on said rod or pin 7 is an element 8 of leaf-like form and provided with an enlarged end 9 having an internal slot 10 extending transversely of the width of element 8 and from one side edge thereof to the other in which slot the rod or pin 7 is disposed so that the element 8 may be moved with the rod 10 sliding upon the pin or rod 7. At this point we desire to have it noted that for the purpose of proper operation of our device the rod or pin 7 must be spaced apart from the upper horizontal top wall of the lining member 5 by a distance greater than the length of the slot 10 to prevent binding of member 8 with said wall.

Mounted on the side walls of lining member 5 nearer the opening of the lined inverted recess, that is, further down, are two opposed horizontal pins 11, which pins are arranged so that their respective center axes are colinear, or, in other words, the pins although opposed are in axial alignment with each other, and such pins are so disposed that the center axis of each is parallel to, but to one side of the axis of rod or pin 7. Element 8 is provided with a notch or groove 12, of preferably rectangular outline or other suitable smooth geometrical shape, on each side edge thereof which notches are respectively located in the said respective side edges of element 8 at equal distances from the top thereof and which notches open in opposite directions. In this connection it should be further understood that the notches should be so arranged that when the device is in the position shown in Fig. 1, said notches will lie at a distance below the pins 11, no greater than the length of internal slot 10, so that elevation of element 8 and sliding thereof upon the pin or rod 7 to, or adjacent, the end of slot 10 will bring the notches 12 into line with the pins 11, so that the proper functional operations hereinafter described may be attained.

Secured at the free end of element 8 we preferably provide an integral rigid hook 13 adapted at the election of the user of our device to serve the double purpose of providing a handle for manually performing the functional operations hereinafter described and/or providing an auxiliary supporting means for articles of wearing apparel as hereinafter described. It will be understood that element 8 is preferably provided with a bent or right angle form so as to provide an end flange 14 which carries the integral hook 13 which hook is of a width less than the width of flange 14 and is disposed substantially mid-length of the width of flange 14. It will be fur-
ther understood that element 8, flange 14 and hook 13 are preferably, but not necessarily, integral with each other.

Secured to the under surface of flange 14 is our inner or secondary hanger framework 15 which also includes lower horizontal bar 16. This framework may be carried by the element 8 at the lower end of said element by the employment of any suitable appropriate means, for example: by riveting the flange 14 and the framework 15 together with a rivet 17 as shown in Figs. 1 to 4, inclusive, of the drawings, or by using any other suitable device such as screws, bolts, etc., or even by forming the framework 15 integral with the flange 14, as may be most desirable and convenient. In the embodiment shown in Fig. 1 the outer or primary framework 14 is shown as of wood while the inner or secondary framework 15 is of metal such as brass or the like and is formed of a properly shaped strip or band of such metal having a width somewhat less than the width of the inner surface of the outer or primary framework 1.

The respective lower bars 2 and 16 are made as it will be understood, such as is most convenient and desirable and we do not therefore desire that the invention be taken as directed or limited to the employment of any particular material for such parts, but rather intend that an actual manufactured article of the type disclosed embody such materials as are found most suitable.

Having thus described the construction of the embodiment shown in Figs. 1 to 5, inclusive, we will now briefly describe the manner of operation and use thereof:

In Fig. 1 our hanger is shown with the inner or secondary hanger framework as hanging in the general plane of the outer or primary framework and in a position which may be termed as "nested" therein. Putting out from the aforesaid general plane of the hanger frameworks is the hook 13 which is substantially at right angles with respect to said plane, that is to say at substantially ninety degrees with respect thereto.

Assuming now that it is desired to use the hanger for the purpose of simultaneously supporting a plurality of articles of wearing apparel in spaced apart position, such, for example, as a jacket and a pair of trousers, as shown in Fig. 5, and it is desired to arrange the hanger's respective parts so that they will be in the relative positions shown in Fig. 5, the user will follow the following simple operations. The user will, with one hand, hold the outer or primary framework against movement and with the other hand grasp the inner or secondary framework or an attached part at any convenient place, such as at the framework proper or preferably at the hook 13, which as aforementioned is adapted to provide a ready handle for such purposes. Then the user will raise the inner or secondary framework with respect to the outer or primary framework so that element 8 slides via slot 10 along rod or pin 7 until the notches 12 are in line with the pins 11. The user will then rotate the inner or secondary framework upon the rod or pin 7 as an axis, swinging the inner or secondary framework outwardly with the element 8 passing the pins 11 via the slots 12. After the inner or secondary framework has been swung outwardly through an angle sufficient so that the element 8 is clear of the pins 11, the entire inner or secondary framework and element 8 is pulled downwardly so that element 8 via slot 10 moves downwardly on the rod or pin 7 and lowers the notches 12 out of alignment with the pins 11, and thereafter the user may release the inner or secondary framework and permit the same to swing back so that the element 8 at its rear surface hits against and is stopped by the pins 11 which act as lugs limiting the return of the inner or secondary framework and allowing to hold the same angularly will rotated from the plane of the outer or primary framework.

When the hanger has been placed in the condition outlined, it will be understood, that the parts of the hanger construction will relatively be in the positions as shown in Fig. 5 and that a jacket then may be hung upon the outer or primary framework, a pair of trousers may be hung upon the lower bar of the extended inner or secondary framework and a hat, a tie, a shirt, or other article of wearing apparel may be hung upon the hook 13 and appropriate arrangement and order of hanging articles may be employed as best suits the fashion, taste and desires of the user. It will of course be understood that with the device as just outlined the user may hang the various articles of his wearing apparel or her wearing apparel, as the case may be, in the order that such articles are removed from the person, and may reassemble the wearing of such articles in the order that they are usually placed upon the wearer's body. Further than this, it is clear that if the user will otherwise that the hanger may be employed in such fashion as the user may elect. Moreover garments may also be supported on the lower bar 2 and the inner or secondary framework 15 as well as upon the outer or primary framework 1 and the lower bar 16. Thus, it will be observed that besides other features our invention presents five supporting means, to wit: the outer or primary framework; 1; the lower bar 2; the inner or secondary framework, 15; the second lower bar, 16; and the hook, 13. Accordingly the hanger construction described is highly adaptable and suitable for providing a single hanger unit which may as the occasion requires support a greater number of articles than is supportable upon conventional present day hangers, and in such relation as will insure a minimum of missing or creasing, if not a complete avoidance thereof. Moreover it will be still further understood that the present construction essentially provides two hanger frameworks and an auxiliary supporting hook and that accordingly the range of usefulness thereof is appropriately multiplied.

Turning now back to the drawings it will be found that in Figs. 1 and 2 the inner or secondary framework is shown "nested" within the outer or primary framework and in Fig. 4 the inner or secondary framework is shown as being swung outwardly and with the slots 12 passing the pins 11. In Fig. 3 the inner or secondary framework is shown in its final angularly distended position and as being held in such position by resting against the pins 11, which as aforementioned act as lugs limiting the return of the inner or secondary framework. It of course is clear that when it is desired to return the inner or secondary framework from the position shown in Fig. 5 back to that shown in Fig. 1 that the said inner or secondary framework must be again raised so that the member 8 slides via slot 10 on the pin or rod 7 until the notches 12 fall in line with the pins 11 and the said framework may then be swung back 7.
into the position shown in Fig. 1. Turning for
the moment to the view shown in Fig. 5, it will
be noted that we have shown therein in full lines
the position that the inner or secondary frame-
work may assume if the same is swung outwardly
as hereinbefore described. Further we have
shown in said view in dotted lines a possible pos-
tion that such framework may assume if the same
is swung rearwardly instead of outwardly, that
is, under certain circumstances it may be de-
sirable that the inner or secondary framework
be free to be swung rearwardly (without being
held permanently in any particular rearward po-
sition) such, for example, when it is desired to
allow great and free access to lower bar 2 in
order to hang some large article thereupon
against which the inner or secondary framework
would return and rest, thus avoiding any difficul-
ty or objection that might be presented were the
space between lower bar 2 and lower bar 16 in
a vertical direction insufficient to accommodate
the large article, or the setting of the inner or
secondary framework in outward extended posi-
tion for some reason or other is undesirable dur-
ing the hanging of the said large article upon
the lower bar 2.

Turning next to Fig. 6 it will be observed that
we have shown a variant possible embodiment
wherein we embody one set of pins 11 in front
of element 8 and a second set of pins 11 to the
rear of or behind element 8. In this embodiment
two definite additional results are obtainable by
virtue of the presence of the additional set of
pins 11. First, the inner or secondary hanger it
will be observed can be selectively set in a definite
rearward position as well as in a definite forward
position; and second, the presence of a set of
pins 11 to either side of element 8 will be effec-
tive to confine such element and the attached
inner or secondary hanger to a "nested" position
and in the general plane of the outer or primary
hanger when the element 8 and its attached
hanger framework is lowered position so that
the notches 12 are out of line with the pins 11.

In the view shown in Fig. 6 the element 8 must
naturally lie substantially midlength of the width
of the outer or primary hanger framework and
hence should preferably join the flange 14 mid-
length of its width in an inverted T-like union
as shown at 10 in Fig. 6 rather than to the rear
edge of flange 14 in the L-like union as shown at
19 in Fig. 2 as well as Figs. 3 and 4. Further it
will be understood that the lining member 5 in
Fig. 6 is also suitably secured to the outer or pri-
mary framework by appropriate securing means
such as screws 6, or the like which as a matter of
convenience and simplicity in the drawings are
not shown in Fig. 6. Further it will also be under-
stood that suitable means are provided for join-
ing the inner or secondary framework in the em-
bodyment shown in Fig. 6 to the flange 14, which
means for like reason are not shown in Fig. 6.

With further regard to the embodiment shown
in Fig. 6 it will be understood that the use and
operation of such embodiment will follow in prin-
ciple of that of the embodiment of Figs. 1 to 5, in-
clusive, as hereinbefore described, with, of course,
the exception that the swinging of the inner or
secondary hanger framework must be in the di-
rection into which it is destined to set the same
once freedom of swing is arranged for by rais-
ing the element 8 and attached hanger frame-
work until the notches 12 are in alignment with
the pins 11, at which point the said framework
may be swung outwardly or rearwardly. In con-
nection with this embodiment it should be borne
in-mind that if the inner or secondary frame-
work is in outward extended position and it is
desired to set the same in rearward extended po-
sition that such change in setting can be ac-
complished by bringing the notches 12 into align-
ment with the pins 11 and swinging the entire
inner or secondary framework and the hanger ele-
ment 8 past both sets of pins 11 without lower-
ing the same between the forward and rearward
sets of pins 11.

Turning next to Figs. 7 to 11, inclusive, it will
be noted that we there show another possible vari-
ant construction which embodies the prin-
ciples of this invention. In these views it will be
noted that we show an element 20, in Fig. 10,
which replaces the lining member 8, hereinbefore
described, which element 20 may be so con-
structed that it can be fabricated by simple stamping
and bending operations. Thus, as will be ob-
erved from an inspection of Fig. 10, said ele-
ment 20 may be provided with two sets of lugs
21 stamped and pressed out therefrom which lugs
will be the counterpart of pins 11. In Fig. 11
an element 22 which likewise can be fabricated
by simple stamping and bending operations is
shown which replaces the element 8, hereinbefore
described.

Element 22, it will be noted, is formed of a
single strip of metal or the like stamped with 30
slots 23 and holes 26 and bent into the form
shown in Fig. 11 so that the slots 23 are in op-
posite walls and in alignment with each other.
This element 22 is also so bent as to provide
channels 24 which in the assembled device will
pass over lugs 21. It is to be understood that the
width of the strip of material from which ele-
ment 22 is pressed out and formed is less than the
distance between lugs 21. It is to be further
understood that the slots 23 are the counterpart
of slot 10, hereinbefore described, and that the
channels 24 are the counterpart of the notches
12 hereinbefore described.

With these thoughts in mind it will be observed
that the element 20 having the usual pin or rod
46
7 therein and the lugs 21 (replacing the pins 11
shown in Fig. 6) jutting out from the side walls
thereof is mounted in the recess 4 in an outer
or primary framework 1 and is adapted to be
secured in position by screws 6 or the like which
pass through holes 25 in the free ends 26 of ele-
ment 20 and into the framework 1. Mounted on
the pin or rod 7 is element 22 through the slots
23 of which said pin or rod passes. Secured to
the free ends 27 of element 22 is an inner or
secondary hanger framework 15 having bifie-
crated ends 28 arranged to receive the free ends
27 of element 22 which may be secured thereto
by any suitable means such as rivets or the like
adapted as shown at 29 to pass through ends
28 and holes 30 for holding ends 27 into the
bifurcated or slotted ends 28. Aside from the
structural differences just described it will be
understood that the construction of the embod-
iment shown in Figs. 7 to 11, inclusive, is sub-
stantially the same as that of the embodiment
hereinbefore described and it will be further un-
derstood that the operation and use thereof will
be substantially the same as that of the embod-
iment shown in Fig. 6.

It, of course, will be understood that as shown
in Fig. 7 the inner or secondary framework 15
is of wood and not metal; that element 22 shown
in Fig. 11 necessarily must be positioned in proper
position in element 20 before the pin or rod 7.
is secured in position; that the dimensions of the channels 24 must be such as to provide free passage therethrough of lugs 21 when element 22 is swung out either forwardly or rearwardly with respect to element 26; that, as before indicated, the width of element 22 must be such, and the distance between lugs 21 must be such that the element 22 may lie freely between forward and rearward sets of lugs 21; and also that the manner of securing upper supporting hook 3 to the outer or primary framework 1 must be such as to allow full freedom of movement within recess 4.

We have found that the employment of all of the features hereinbefore disclosed will be productive of the ready manufacture of an embodiment by simple processes of stamping, pressing, and bending of the elements which are particularly responsible for the operation and use as hereinbefore described. Turning for the moment to Fig. 7 it will be found that the embodiment thereof is shown with the inner or secondary hanger framework “nested” within the outer or primary hanger framework. In Fig. 8 the inner or secondary hanger framework is shown in full lines as lying with the element 22 between lugs 21, that is, in full lines shown as “nested”; and in said view is shown in dotted lines in each of two positions to wit: extended forwardly or outwardly and rearwardly, that it can be made to assume. In Fig. 9 the said inner or secondary framework is shown as being swung outwardly into outward or forward position with channels 24 passing over forward lugs 21.

It will be further noted that in the embodiment shown in Figs. 7 to 11, inclusive, no hook 13 is shown, however, it will be understood that the inner or secondary hanger framework may be directly grasped, operated and swung as desired, and further that a hook, such as hook 13, might be secured to element 22 in some conventional fashion if said hook was to be added to said embodiment. We desire to make it clear that we have shown said embodiment without the said hook solely in the interest of exhibiting how a cheaply and easily fabricated embodiment of our invention can be readily made and not because we believe such hook inapplicable to the embodiment shown in Figs. 7 to 11, inclusive, and quite to the contrary we believe it will be readily appreciated that on a somewhat more expensive model of such embodiment the hook can and should be appropriately incorporated with accompanying advantage.

It will be obvious from all the foregoing that the invention we have herein disclosed is effective to attain the various objects and purposes hereinbefore outlined. Further, it will also be obvious that the said invention incorporates many features which are possible of general adaptation in garment hangers of constructions other than those in particular connection with which we have described same as will further, course, aware, that many changes in the details of construction and relative arrangement of parts will readily suggest themselves to those skilled in the art upon their becoming acquainted with our present disclosure.

Accordingly, we do not, therefore, desire to be limited to the exact details herein set forth by way of illustration, but rather to the spirit and scope of our invention as we define it in the appended claims.

The following claims are intended to cover all generic and specific features of the invention described.

What we seek to secure by and claim for United States Letters Patent is:

1. In a device of the type described, a plurality of garment supporting frameworks means pivotally joining said frameworks together at their upper portions, and means for holding said frameworks in angularly spaced apart relation below the pivotal connection.

2. In a device of the type described, a plurality of nested garment supporting frameworks pivotally joined together at their upper portions and means for holding said frameworks in angularly spaced apart planes.

3. In a device of the type described a primary outer hanger framework having an upper supporting hook secured at the top thereof and having a downwardly opening inverted U-like recess in the body of said framework and beneath said hook and means disposed in said recess providing a pivotal support, and a secondary hanger framework secured on said means.

4. In a device of the type described a plurality of pivotally joined garment hanger frameworks and means for holding said frameworks in the same general plane or in angularly spaced apart planes below the pivotal connection.

5. In a garment hanger device of the type described a primary hanger framework, a secondary hanger framework pivotally mounted on the upper portion of and adapted to be nested within said primary hanger framework and means for holding said secondary hanger framework at an angle with respect to said primary hanger framework.

6. In a device of the type described an outer framework having a recess therein, an inner framework, means in said recess for pivotally supporting said inner framework, and means also in said recess for maintaining said inner framework in the plane of the outer framework or at an angle with respect thereto as may be selectively set by the user.

7. In a device of the type described an outer framework having a recess therein, an inner framework, means in said recess for pivotally supporting said inner framework, so that the same may be maintained either in the plane, or at an angle to the plane, of the outer framework at the user's election and means disposed in said recess for holding said inner framework at the selected position.

8. The structure recited in claim 7 characterized in that the last mentioned means consists in pins mounted on the wall of the recess and against which pins limit outward or inward movement of the pivotal inner hanger framework as the case may be.

9. In a device of the type described a primary hanger framework having a recess in the upper portion thereof, a rod running transversely and secured in said recess, an element pivotally adapted on said rod, means for limiting the sliding and pivoting, and a secondary hanger framework adapted to be carried on and by said element.

10. In a device of the type described a primary hanger framework having a downwardly opening recess in the upper portion thereof, a rod
running transversely of and secured in said recess, an element having a slot therein through which said rod and adapted to pass and also having a body portion having notched side edges, said element being adapted to slide and pivot upon said rod, pins mounted on the walls of said recess which pins are adapted by contact with the aforesaid element body portion to limit pivoting of said element upon being aligned with the notches in the side edges thereof to freely allow pivoting of said element and a secondary hanger framework carried on and by the free end of said element.

11. The structure recited in claim 10 characterized in that an integral flange is formed at the free end of the element which is adapted to slide and pivot, to which flange the secondary hanger framework is secured and on which flange a hook adapted to serve as a hook and a handle is mounted.

12. The structure recited in claim 10 characterized in that pins limiting rotative movement of the pivoted element are mounted on the walls of said recess to each side of said element.

13. The structure recited in claim 10 characterized in that the downwardly opening recess is of a substantially inverted U-like form having substantially vertical side walls in which recess a lining member of smooth finished internal surface is secured and on the internal surface of which the rod and pins mentioned are mounted.

14. The structure recited in claim 10 characterized in that the pivoted element is of leaf-like form and is of relatively great width compared to its thickness and is provided with an enlarged end through which the mentioned slot extends across the width of said element.

15. In a device of the type described a primary hanger framework having an upper supporting hook mounted on the top thereof and having a downwardly opening inverted U-like shaped recess beneath said hook and in the body of said primary hanger framework, a lining member secured in and lining the walls of said recess, a rod mounted in and running transversely of said recess at a distance below the upper wall thereof, a stamped and bent element member secured in and lining the walls of said recess, a rod mounted in and running transversely of said recess at a distance below the upper wall thereof, a stamped and bent element formed from a strip of metal and shaped to provide a portion to form a horizontal top, integral sides each of which is bent to provide a channeling of the length thereof at a predetermined distance from the top and integral divergent free ends, and which sides are each provided with a vertical slot midlength the width thereof and which slots are in line with each other, said stamped and bent element being so disposed in said recess that the aforesaid rod passes through the just mentioned slots and said stamped and bent element is adapted to slide and rotate upon said rod as a center axis, lugs pressed out vertically from the walls of the stamped and bent lining member which lugs are adapted by contact with the side edges of the stamped and bent element to limit rotative movement of said element and prevent rotation thereof unless the same is first slid by the slots on the rod so that the channels aforementioned are brought into alignment with said lugs, and a secondary hanger framework adapted to be carried on and by the free ends of the pivoted stamped and bent element.

19. The structure recited in claim 18 characterized in that the secondary hanger framework has two opposed upper free ends which are bifurcated and spaced apart and each of which ends is adapted to receive in the bifurcated portion thereof one of the free ends of the pivoted stamped and bent element, the divergency of which element ends is such that said ends are adapted to be received in the respective framework end bifurcated portions.

20. In a device of the type described, a plurality of garment supporting frameworks, means pivotally joining said frameworks together at their upper portions, and means for holding said frameworks nested in the same general plane.

21. In a device of the type described a primary outer hanger framework, a secondary inner hanger framework adapted to be disposed in the general plane of and nested within said outer framework and means for selectively holding said inner framework in a plane at an angle with respect to the general plane of the said outer hanger framework.

WALTER BIRI.
JULIUS C. CLAIRON.