EXPANDABLE APPLICATION REPRESENTATION

Applicant: Microsoft Technology Licensing, LLC, Redmond, WA (US)
Inventor: Jiawei GU, Beijing (CN)

Appl. No.: 16/157,369
Filed: Sep. 17, 2019

Related U.S. Application Data
Continuation of application No. 15/808,961, filed on Nov. 10, 2017, now Pat. No. 10,459,607, which is a continuation of application No. 14/522,857, filed on Oct. 24, 2014, now Pat. No. 9,841,874.

Foreign Application Priority Data
Apr. 4, 2014 (CN) PCT/CN2014/074793

Publication Classification
Int. Cl. G06F 3/0482 (2006.01) G06F 3/0488 (2006.01)

ABSTRACT
Expandable application representation techniques are described. The techniques may include support of an expandable tile that may function as an intermediary within a root level (e.g., start menu or screen) of a file system. The expandable tile, for instance, may be output via a gesture to gain additional information that was not included in an unexpanded version of the tile, may be utilized to provide inputs to an application such as a user, and so on. Thus, this may support non-modal interaction by a user. Techniques are also described in which the expanded representation is included in a taskbar, which may also be used for non-modal interaction, sending of content represented in the representation to a device or application, continuation of interaction initiated with the representation by a mobile computing device, and so on. Expandable tile techniques may also be utilized to support interaction between shells of an operating system, such as a desktop and immersive shell. Further description of these and other examples involving and not involving an expandable tile are also contemplated.
Fig. 1
Fig. 2
Fig. 4
Fig. 7
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Manage Bluetooth devices:

Bluetooth: On

Your PC is searching for and can be discovered by:

- CNG111101X
 Connected
- Nexus 5
- zijings iPhone
 Connected

Fig. 18
Add devices

Printers
- B/W-B2-12F-E-6040MFP-BW on hon-pm-01
- Microsoft XPS Document Writer
- Send To OneNote 2013

Other devices
- Dell Z2095W
- DELL U2410
- Dell USB Entry Keyboard
- Generic Bluetooth Radio
- USB Optical Mouse

Fig. 19
Fig. 20
Fig. 23
2402
Output representations of applications in a root level of a menu hierarchy
maintained by an operating system of the computing device, the
representations selectable to launch execution of respective said
applications

2404
Responsive to recognition by the operating system of an input configured
to cause expansion of one of the representations, expand a display of the
representation for inclusion in the root level with one or more other said
representations, the expanded display of the representation configured to
accept one or more inputs for a respective said application

2406
Responsive to recognition by the operating system of an input configured
to cause expansion of one of the representations, expand a size of a
display of the representation for inclusion in the root level with one or
more other said representations, the expanded display causing
rearrangement of one or more other ones of the representations in the
root level in the grid layout that maintains the grid layout

2408
Responsive to recognition by the operating system of an input configured
to cause expansion of one of the representations, expanding a display of
the representation for inclusion in the root level with one or more other
said representations, the expanded display of the representation
configured to indicate content and a relative level of activity involving the
content in a shared network environment

2410
Responsive to recognition by the operating system of an input configured
to cause the expanded representation to be included in a taskbar, include
the expanded representation for display as part of the taskbar

Fig. 24
2500

2502
Receive an input that is configured to cause output of a taskbar by an operating system of the computing device

2504
Responsive to the receiving, cause display of the taskbar in a user interface by the computing device, the taskbar including representations of applications that are selectable to launch execution of respective said applications, at least one of the representations for a respective said application configured as an expanded representation configured to accept one or more inputs involving content displayed within the expanded representation

Fig. 25
2602
Display a user interface by the computing device that includes representations of hardware devices or applications

2604
Display a taskbar in the user interface by the computing device, the taskbar including representations of applications that are selectable to launch execution of the applications, at least one of the representations for a respective said application configured as an expanded representation configured to accept one or more inputs involving content displayed within the expanded representation

2606
Responsive to receipt of a selection of a particular one of the representations of content in the expanded representation and a selection of one the representations of hardware devices or application, send the content from the expanded representation to the hardware device or application that corresponds to the selected representation of the hardware devices or applications

Fig. 26
Display representations of applications, selectable to launch execution of respective said applications, in a root level of a menu hierarchy maintained by an operating system of the computing device, at least one of the representations having an expanded display having a result of execution of the respective said application.

Responsive to receipt of an input from a mobile computing device that is associated with the at least one representation having the expanded display, transfer the result of the execution of the respective said application to the mobile computing device.

Fig. 27
2802
Output a desktop shell representation of a desktop shell and representations of applications in a root level of a menu hierarchy maintained by an operating system of the computing device, the representations of the applications selectable to launch execution of respective said applications

2804
Responsive to recognition by the operating system of an input configured to cause expansion of the desktop shell representation, expand a display of the desktop shell representation for inclusion in the root level with one or more other said representations of the applications, the expanded display of the representation configured to include content that describes applications that are executable within the desktop shell

Fig. 28
EXPANDABLE APPLICATION REPRESENTATION

PRIORITY APPLICATIONS

[0001] This application claims the benefit of priority of U.S. application Ser. No. 15/808,961 entitled “Expandable Application Representation” filed Nov. 10, 2017, the content of which is incorporated by reference herein in its entirety. This application also claims the benefit of priority of U.S. application Ser. No. 14/522,857 entitled “Expandable Application Representation” filed Oct. 24, 2014, the content of which is incorporated by reference herein in its entirety. This application also claims the benefit of priority of PCT Application Serial No. PCT/CN2014/0074793 entitled “Expandable Application Representation” filed Apr. 4, 2014, the content of which is incorporated by reference herein in its entirety.

BACKGROUND

[0002] With the advent of application availability via the Internet, the number of applications that are made available to a user has increased along with the ease at which the user may access these applications. Accordingly, users may choose and install a large number of applications on the users’ computing device.

[0003] However, interaction by a user with the applications may be hindered by the number of applications that are installed on the computing device. This may include locating an application of interest as well as accessing functionality of the application. For instance, a user may select a weather application to get weather information, then interact with a news application to catch up on the latest news, and so on through a number of other applications. Consequently, navigating through these applications to locate desired information may take a significant amount of time, which may be further complicated by the number of applications that are available on the computing device.

SUMMARY

[0004] Expandable application representation techniques are described. The techniques may include support of an expandable representation that may function as an intermediary within a root level (e.g., start menu or screen) of a file system. The expandable representation, for instance, may be output via a gesture to gain additional information that was not included in an unexpanded version of the representation, may be utilized to provide inputs to an application, and so on. Thus, this may support non-modal interaction by a user within the root level of the file system.

[0005] Techniques are also described in which the expanded representation is included in a taskbar, which may also be used for non-modal interaction, support sending of content represented in the representation to a device or application, continuation of interaction initiated with the representation by a mobile computing device, and so on. Expandable representation techniques may also be utilized to support interaction between shells of an operating system, such as a desktop and immersive shells. Further description of these and other examples involving and not involving an expandable representation are also contemplated as further described in the detailed description.

[0006] This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The detailed description is described with reference to the accompanying figures. In the figures, the leftmost digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items.

[0008] FIG. 1 depicts an environment in an example implementation that is configured to perform expandable representation techniques described herein.

[0009] FIG. 2 depicts an example implementation showing a plurality of display modes that are usable to support user interaction with an application.

[0010] FIG. 3 depicts an example implementation showing use of a gesture to cause output of an expanded representation that involves an animation.

[0011] FIG. 4 depicts an expanded representation that is output responsive to a gesture of FIG. 3.

[0012] FIG. 5 depicts an example implementation showing an instance of user interaction with an expanded representation.

[0013] FIG. 6 is an illustration of a larger view of the expanded representation having a text entry box that is configured to receive text that may then be posted to the social network service through selection of an icon.

[0014] FIG. 7 depicts an example implementation of a free arrangement for an expanded representation.

[0015] FIG. 8 depicts an example implementation of a tabbed arrangement for an expanded representation.

[0016] FIG. 9 depicts an example implementation of a span arrangement for an expanded representation.

[0017] FIG. 10 depicts free, tabbed, and span arrangements that may leverage one or more of the list, grid, and expandable list layouts.

[0018] FIG. 11 is an example implementation showing representations and expanded representations of calculator and music applications.

[0019] FIG. 12 is an example implementation showing representations and expanded representations of news and contacts applications.

[0020] FIG. 13 depicts an example implementation illustrating a glance-able nature of representations and notifications and increased content available via an expanded representation.

[0021] FIG. 14 depicts an example implementation showing a user interface of an application that is configured to provide users access to applications for download and use.

[0022] FIG. 15 is an illustration of an environment in an example implementation that is operable to support desktop and immersive shells of the operating system of FIG. 1.

[0023] FIG. 16 depicts an example implementation of an expanded representation of a desktop shell of FIG. 15.

[0024] FIG. 17 depicts a system in an example implementation in which the expanded representation is included in a taskbar configured as a back stack of the operating system of FIG. 1.
FIG. 18 depicts a system in an example implementation in which an expanded representation is included in a taskbar to send items of content included in the representation to a device.

FIG. 19 depicts a system in an example implementation in which the expanded representations are included in a taskbar to send items of content included in the representation of a file sharing service to a device accessible by the computing device.

FIG. 20 depicts an example implementation showing another example of transfer of content between devices involving transfer of execution between computing devices that involves an expanded representation.

FIG. 21 depicts an example implementation in which a user may interact with the computing device to generate directions for a map.

FIG. 22 depicts another example implementation of transfer of a result of execution associated with an expanded representation between devices.

FIG. 23 depicts an example implementation in which expanded representations are leveraged to indicate activity levels of content in relation to a shared network environment.

FIG. 24 is a flow diagram depicting a procedure in an example implementation in which a representation is expanded in a root level of a file hierarchy of an operating system.

FIG. 25 is a flow diagram depicting a procedure in an example implementation in which a taskbar including an expanded representation is displayed.

FIG. 26 is a flow diagram depicting a procedure in an example implementation in which content included within an expanded representation is sent to an application or device.

FIG. 27 is a flow diagram depicting a procedure in an example implementation in which a result of execution of an application associated with an expanded representation is transferred between computing devices.

FIG. 28 is a flow diagram depicting a procedure in an example implementation in which an expanded representation is configured for a desktop shell.

FIG. 29 illustrates various components of an example device that can be implemented as any type of computing device as described with reference to FIGS. 1-28 to implement embodiments of the techniques described herein.

DETAILED DESCRIPTION

Overview

Representations of applications (e.g., icons, tiles, and so on) may be utilized to support a wide variety of functionality without having the user specifically launch the application. For example, a representation of a weather application may include a notification that describes current weather conditions. However, conventional techniques that were utilized to display a notification were often static and modal and thus often necessitated that a user navigate away from the representations to gain further information about the notification.

Expandable application representation techniques are described. The techniques may include support of an expandable representation (e.g., tile) that may function as an intermediary within a root level (e.g., start screen) of a file system. For example, the root level may include representations, such as tiles, of applications within a start menu.

An expanded version of the tile may be output via a gesture to gain additional information that was not included in an unexpanded version of the tile. The expanded representation may also be included within the root level, e.g., through rearrangement of other representations in the grid when expanded. A first expanded representation may be utilized to provide additional content, such as additional notifications or additional content associated with a particular notification, view activity levels of content in a shared network environment, and so on. Another expanded representation may be utilized to allow a user to provide limited inputs to an application and/or allow limited functionality to applications features such as making a call, answering a text, post a status, play a video or song, etc. Another expanded representation of the application at a root level may include a full functionality implementation of the app within the larger root mode display, such as a calculator, Sudoku game, video player. Although not an expanded presentation of an application, the next expansion would be launching of the application to the typical full screen or split screen application running within a full screen or window frame in a desktop. Thus, all the expanded presentations of the application within the root mode display may support non-modal interaction by a user without forcing the user to navigate “away” from the root level.

Techniques are also described in which the expanded representation is included in a taskbar, which may also be used for non-modal interaction, sending of content represented in the representation to a device or application, continuation of interaction initiated with the representation by a mobile computing device, and so on. Expandable tile techniques may also be utilized to support interaction between shells of an operating system, such as a desktop and immersive shell. Further description of these and other techniques may be found in relation to the following sections.

In the following discussion, an example environment is first described that may employ the techniques described herein. Example procedures are then described which may be performed in the example environment as well as other environments. Consequently, performance of the example procedures is not limited to the example environment and the example environment is not limited to performance of the example procedures.

Example Environment

FIG. 1 is an illustration of an environment 100 in an example implementation that is operable to employ the expandable application representation techniques described herein. The illustrated environment 100 includes a web service 102 and a computing device 104 that are communicatively coupled via a network 106. The web service 102 and the computing device 104 may be implemented by a wide range of computing devices.

For example, a computing device may be configured as a computer that is capable of communicating over the network 106, such as a desktop computer, a mobile station, an entertainment appliance, a set-top box communicatively coupled to a display device, a mobile communication device (e.g., a wireless phone as illustrated for the computing device 104), a game console, and so forth. Thus, a computing device may range from full resource devices.
with substantial memory and processor resources (e.g., personal computers, game consoles) to a low-resource device with limited memory and/or processing resources (e.g., traditional set-top boxes, hand-held game consoles). Additionally, a computing device may be representative of a plurality of different devices, such as multiple servers utilized by a business to perform operations, a remote control and set-top box combination, an image capture device and a game console configured to capture gestures, and so on.

[0044] Although the network 106 is illustrated as the Internet, the network may assume a wide variety of configurations. For example, the network 106 may include a wide area network (WAN), a local area network (LAN), a wireless network, a public telephone network, an intranet, and so on. Further, although a single network 106 is shown, the network 106 may be configured to include multiple networks.

[0045] The computing device 104 is further illustrated as including an operating system 108. The operating system 108 is configured to abstract underlying functionality of the client 104 to applications 110 that are executable on the computing device 104. For example, the operating system 108 may abstract processing, memory, network, and/or display functionality of the computing device 104 such that the applications 110 may be written without knowing "how" this underlying functionality is implemented. The application 110, for instance, may provide data to the operating system 108 to be rendered and displayed by the display device 112 without understanding how this rendering will be performed.

[0046] The operating system 108 may also represent a variety of other functionality, such as to manage a file system and a user interface that is navigable by a user of the computing device 104. An example of this is illustrated as an application launcher (e.g., start screen) that is displayed on the display device 112 of the computing device 104. The start screen includes representations of a plurality of the applications 110, such as icon, tiles, textual descriptions, and so on which may be displayed in a matrix or grid of rows and/or columns of application representations (icons, tiles, etc.). The start screen may be considered a root level of a hierarchical file structure, e.g., each of the other levels are "beneath" the root level in the hierarchy. The representations shown in the illustrated example are selectable to launch a corresponding one of applications 110 for execution on the computing device 104. In this way, a user may readily navigate through a file structure and initiate execution of applications of interest.

[0047] The operating system 108 is also illustrated as including a notification module 114. The notification module 114 is representative of functionality to manage notifications 116 that are to be displayed as part of the representations of the applications. For example, a representation 118 of a weather application is illustrated as including a notification that indicates a name and current weather conditions, e.g., "Seattle 65°/Cloudy." Likewise, a representation 120 for a travel application is illustrated as including a notification that indicates that a current flight status is "delayed." In this way, a user may readily view information relating to the applications 110 without having to launch and navigate through each of the applications. Although representations of specific applications are shown, other representations of applications are also contemplated, such as a representation of an application that references a user's involvement with a service, e.g., a friend in a social network service.

[0048] In one or more implementations, the notifications 116 may be managed without executing the corresponding applications 110. For example, the notification module 114 may receive the notifications 116 from a variety of different sources, such as from software (e.g., other applications executed by the computing device 104), from a web service 102 via the network 106, and so on. This may be performed responsive to registration of the applications 110 with the notification module 114 to specify where and how notifications are to be received. The notification module 114 may then manage how the notifications 116 are displayed as part of the representations without executing the applications 110. This may be used to improve battery life or improve performance of the computing device 104 by not running each of the applications 110 to output the notifications 116.

[0049] Additionally, the notification module 114 may support techniques to allow developers of the respective applications 110 to specify how the notifications 116 are to be displayed as part of the representation of the applications 110. For example, the notification module 114 may examine a manifest 122 of an application 110, such as an install manifest used to install the application 110, at runtime using a system call, and so on. The manifest 122 may describe how and when the notifications 116 are to be displayed as well as how the notifications 116 are to be managed to determine which notifications 116 are to be displayed.

[0050] The notification module 114 may also utilize a variety of other techniques to enable a developer or other entity to specify how the notifications 116 are to be displayed and managed. For instance, the notification module 114 may be communicated along with corresponding tags that specify how the notifications 116 are to be displayed and/or managed. Thus, an originator of the tags may specify how corresponding notifications 116 are to be displayed or managed. This may be performed to enable a variety of different functionality as further described in the following sections.

[0051] Although this discussion described incorporation of the notification module 114 at the client, functionality of the notification module 114 may be implemented in a variety of ways. For example, functionality of a notification module 124 may be incorporated by the web service 102 in whole or in part. The notification module 124, for instance, may process notifications received from other web services and manage the notifications for distribution to the computing device 104 over the network 106.

[0052] As previously described, conventional techniques were often modal and thus caused a user to navigate away from the root level to gain more information. For example, a user may view the representation 118 of the weather application is illustrated as including a notification that indicates a name and current weather conditions, e.g., "Seattle 65°/Cloudy." To gain additional information, the user selected the representation 118 to launch a corresponding application, which causes the user to leave the start menu in this example. However, techniques are described in which the representations may be expanded within the root level, in some instances, to provide additional content, and in a further expanded view supports additional functionality without causing the user to navigate away from the root level and thus support non-modal interaction, an example of which is described as follows and shown in a corresponding figure.
[0053] FIG. 2 depicts an example implementation 200 showing a plurality of display modes that are usable to support user interaction with an application. The example implementation is illustrated through use of first, second, third, and fourth display modes 202, 204, 206 for interaction with an application and associated content. In the first display mode 202, a representation 208 is configured as a tile corresponding to a contact that also includes a notification that the contact commented on the post of the user. To view additional information about this notification, a user may supply an input (e.g., gesture, selection via a cursor control device, speech input, and so on) to cause expansion of the representation 208 to transition to the second display mode 204.

[0054] In the second display mode 204, an expanded representation 210 is shown that is output responsive to the gesture or other input described above. The expanded representation 210 includes additional content related to the notification in this example. For instance, the expanded representation 210 includes a picture that was the subject of the post, other comments made in relation to the post, an input portion configured to receive one or more inputs from a user of the computing device 104 as further described in relation to FIGS. 5 and 6, as well as the post that was actually made by a user represented by the contact. Thus, the representation 210 includes additional content other than the notifications included in the unexpanded representation 208, which may further describe the notification. In other examples, multiple additional notifications may be displayed. The second display mode may have a plurality of different sub-modes involving display of the expanded representation.

[0055] The expanded representation 210 may be configured to receive and output this content in a variety of ways. For example, selection of the representation 208 to cause output of the expanded representation 210 may cause execution of a corresponding application 110 of FIG. 1. Thus, in this example the application 110 is “woken” to obtain the content for inclusion in the expanded representation 210.

[0056] In another example, the content of display 204 may be supplied by the notification module 114 of FIG. 1 without executing the corresponding application 110. For example, the notification module 114 may be configured to obtain notifications as previously described in relation to FIG. 1 without executing the applications 110. In this way, the notification module 114 may obtain content associated with the application 110 to support user interaction with the application 110 without actually executing the application.

[0057] The second display mode 204 may also support a variety of different sub-modes involving display of the expanded representation. For example, one such sub-mode may involve an expanded representation that may be utilized to provide additional content, such as additional notifications or additional content associated with a particular notification, view activity levels of content in a shared network environment, and so on. Another expanded representation in another sub-mode may be utilized to allow a user to provide limited inputs to an application and/or allow limited functionality to applications features such as making a call, answering a text, post a status, play a video or song, and so forth. Another expanded representation in another one of the sub-modes of the application at a root level mode may include a full functionality implementation of the app within the larger root mode display, such as a calculator as shown in FIG. 11. Sudoku game as shown in FIG. 14, video player as shown in FIG. 4, and so on which is described in further detail below.

[0058] In the third display mode 206, execution of the application 110 associated with the representation (e.g., a contacts application) is fully launched in a mode such as desktop mode in a window or frame or in a full screen view or split screen without chrome. For example, the operating system 108 may support an immersive shell as further described below in which an application is displayed without chrome, e.g., without a window. The third display mode 206 may be entered through selection of either the representation 208 in the first display mode 202 or the expanded representation 210 in the second display mode 204 or through any other suitable icon or user interaction with the application representation.

[0059] Thus, although not an expanded presentation of an application, the next expansion provided via the third display mode involves launching of the application to the typical full screen or split screen application running within a full screen or window frame in a desktop. Thus, all the expanded presentation of the application within the root mode display this may support non-modal interaction by a user without forcing the user to navigate “away” from the root level.

[0060] Further, a user may navigate between the modes in a variety of ways. For example, a user may select a portion of the representation 208 (e.g., the text of the notification) to cause output of the expanded representation 210 and select another portion of the representation 208 (e.g., the shadowed people representing a contacts application) to cause a transition to the third display mode 206. Gestures may also be supported, an example of which is described as follows and shown in the corresponding figure.

[0061] FIG. 3 depicts an example implementation 300 showing use of a gesture or icon (down arrow, etc.) to expand to the next hierarchical view or representation and selection of another portion of the application representation (icon, tile, etc.) may open the fully functioning application. In some cases, the input received by the computing system associated with expanding the application representation will cause output of an expanded representation that involves an animation. This example implementation 300 is shown using first, second, and third 302, 304, 306 stages. At the first stage 302, a user contacts the representation 208 as shown in FIG. 2 using two fingers (illustrated through use of two phantom circles 308, 301) and moves them apart to make an expansion gesture. Other gestures are also contemplated, such as a tap or activation through a menu or icon. As illustrated, the start screen in this example includes a plurality of other representations configured as tiles that follows a grid arrangement.

[0062] The operating system 108 then recognizes the gesture and in response causes output of an animation or other suitable user interface display transformation as shown in the second stage 304. In the displayed embodiment, the animation in this example gives an appearance that the representation 208 shown in second stage 304 is unfolding to assume its expanded size. It should also be recognized in this stage that the animation also involves rearrangement of other representations. As illustrated, the representation 208 is included in a column that includes representations 312, 314 of video and photos in the first stage 302. The representations 312, 314 of video and photos are then moved to
adjacent columns in the second stage 304, e.g., the video representation 312 to the left and the photos representation 314 to the right. This movement may also cause rearrangement of other columns as illustrated. Any appropriate movement of proximate application representations may be used to make room for expanding the representation of the selected application representation in the root mode.

[0063] At the third stage 306, the expanded representation 210 is shown along with the other rearranged representations. In this way, a user may interact with the expanded representation 210 in a non-modal manner without leaving the root level, e.g., the start screen, of the operating system 108 in this example. Although a root level is described, it should be readily apparent that this functionality may also be employed at other levels in a file system without departing from the spirit and scope thereof, such as in a taskbar.

[0064] Use of expanded representations may also be leveraged to support multitasking. For example, as shown in the third stage 306, a user repeats the expansion gesture as previously described, but in this instance performs the gesture for the representation 312 of a video application. This also causes expansion of the representation and rearrangement of other representations as shown in the example implementation 400 of FIG. 4.

[0065] In FIG. 4, an expanded representation 402 is illustrated that is output responsive to the gesture of FIG. 3. The expanded representation 402 for the video application is displayed concurrently with the expanded representation 210 for the contacts application. The expanded representation 402 includes content that is selectable via the representation and in some implementations to cause display of the video within the representation within the root mode. In this way, the expanded representations 210, 402 may permit a user to multitask by interacting with a plurality of expanded representations simultaneously, e.g., to watch a video and view posts from a social network service and also allow the panning/scrolling or other root mode user interactions with the root mode display of multiple application representations. Thus, in this example the expanded representation 402 supports inputs to interact with content displayed within the tile. An expanded representation may also be configured to support text inputs, an example of which is further described in the following and shown in corresponding figures.

[0066] FIG. 5 depicts an example implementation 500 showing an instance of user interaction with an expanded representation 210. As previously described, the expanded representation 210 in this example corresponds to a contacts application. The contacts application may support interaction with a social network service and thus include images, videos, status updates, and other posts that are uploaded to share with “friends” of a user. As illustrated, a user selects a text entry box to enter text that is to be posted to the social network service, e.g., by “tapping” on the box, through use of a cursor control device, and so on.

[0067] As shown in the example implementation 600 of FIG. 6 showing a larger view of the expanded representation 210, the text entry box 602 is configured to receive text that may then be posted to the social network service through selection of an icon. A user may also provide other inputs, such as to “like” a post through use of the “thumbs up” icon, provide a status update or any other appropriate but limited functionality of the application underlying the application representation. The expanded representation 210 also includes an option to navigate through other posts and an option 606 which is shown as an icon but can be a gesture, to return to an unexpanded or lesser hierarchical expanded version of the representation 208. In this way, a user may quickly expand and interact with the expanded representation 210 and then remove the expansion when done to conserve space in the user interface. An expanded representation 210 may be configured in a variety of ways, examples of which are described as follows and shown in corresponding figures. Although examples of a contacts application and video application are described above, any suitable application with notifications, expandable content, and/or limited sets of functionality may apply the application expandable content and/or functionality, e.g., calculator application can expand from simple tile addition to a full scientific calculator, a setting application can provide inputs to connectivity status and/or further functionality to connect or set some settings, a game application to expand to show new games available, show friends and/or current status or updates, etc.

[0068] FIG. 7 depicts an example implementation of a free arrangement 700 for an expanded representation. In this example, the free arrangement 700 includes a large center area that is configured to include content of one or more notifications from the notification engine along with a top portion that is configured to include titles and a bottom portion having functionality as previously described.

[0069] FIG. 8 depicts an example implementation of a tabbed arrangement 800 for an expanded representation. As the name implies, tabs may be included along the top in this example to navigate between different views within the tab and thus may include support of additional content.

[0070] FIG. 9 depicts an example implementation of a span arrangement 900 for an expanded representation. In this example, the span arrangement 900 supports a vertical display of a plurality of items to support navigation through the items. Items in the span layout may then be scrolled.

[0071] The free, tabbed, and span arrangements 700, 800, 900 may be configured with a variety of different layouts. As shown in the example implementation 1000 of FIG. 10, for instance, the free, tabbed, and span arrangements 700, 800, 900 may leverage one or more of the list, grid, expandable list, and customizable layouts. Thus, an expanded representation may be configured to accept a variety of different content, examples of which are described as follows and shown in corresponding figures.

[0072] FIG. 11 is an example implementation 1100 showing representations and expanded representations of calculator and music applications. A calculator application may be represented in a first display mode as previously described using an unexpanded representation 1102. The representation 1102 may then be expanded in response to a user input such as through the down arrow icon or any other displayed or user interface or un-displayed user input gesture. The expanded representation then displays in the root mode as an expanded representation 1104 of the calculator application that is configured to accept inputs (e.g., a “press” of the keys) to interact with the application.

[0073] Likewise, a music application may be represented in the first display mode using a representation 1106 such as a tile or icon that is not expanded. In this example, the representation 1106 may still be configured to output notifications as previously described without causing execution of the music application. The representation 1106 may then be expanded within the root mode responsive to a user input.
to display an expanded representation 1108 of the music application that is configured to accept inputs to interact with the application. For example, a user may navigate through an output of media using the expanded representation, select a different music item to play using the music application, and so on. The expanded representation 1108 also includes album art as a background image in this example.

[0074] FIG. 12 is an example implementation 1200 showing representations and expanded representations of news and contacts applications. The news application may have a representation 1202 configured for display in the first display mode as above. The representation 1202 may then be expanded to display an expanded representation 1204 that includes content related to the news application, which in this instance is displayed as headlines and corresponding images.

[0075] As previously described, navigation between the representation 1202 and the expanded representation 1204 may be performed responsive to a user input, e.g., a cursor control device, gesture, spoken command, and so forth. Other implementations are also contemplated in which the transition from the representation 1202 to the expanded representation 1204 may be performed automatically and without user intervention. In this example, a notification may be received by the notification module 114 of subject matter flagged by a user, subject matter flagged by a provider of the notification, and so on. Responsive to this flag (e.g., an Amber alert), the representation 1202 may be expanded to form the expanded representation 1204 to provide addition information related to the notification. A variety of other examples are also contemplated. Further expansions may be activated and displayed to provide limited functionality such as search, filter, display of articles, and so forth.

[0076] The contact application representation may be further expanded to allow limited functionality. The expansion may be in a horizontal or vertical direction. For example, in some aspects, the application representation may be expanded in the vertical direction to display a text entry area for response to a message and/or expand to left to include an activation icon to initiate a call with the associated contact. These are just two examples of limited functionality or interaction that may be associated with a contact representation. Further expansions of the representation and/or subset and limited set of functionality may be used as appropriate.

[0077] For the representation 1206 of the contact application, for instance, a user may indicate particular contacts that are to cause an automatic display of the expanded representation 1206, particular posted content in a shared network resource (e.g., a social network service), and so on. Similarly, a sender of a notification may include an urgency flag for a particular communication (voicemail, text, email, etc.) that may additionally or alternatively be used by the operating system 108 to trigger an automatic display of the expanded representation. Receipt of corresponding notifications by the notification module 114 may then cause automatic display of the expanded representation 1206.

[0078] FIG. 13 depicts an example implementation 1300 illustrating a glanceable nature of representations and notifications and increased content available via an expanded representation. As shown in the four left examples, a representation may have a variety of sizes that are dedicated to output of notifications, which involves stock market notifications in this instance.

[0079] To obtain additional information, an expanded representation may be employed as shown in the two right examples that may include content that is not part of the notifications. For example, the expanded representation may involve execution of a represented application whereas an unexpanded version does not. Other implementations are also contemplated as previously described in which the expanded representation does not involve execution of a corresponding application 110.

[0080] FIG. 14 depicts an example implementation 1400 showing a user interface of an application store that is configured to provide users access to applications for download and use. As described in the background, application stores have become increasingly viewed as a primary source to obtain applications 110 by a user. As such, applications that support expandable representations may support a dedicated application category in the application store such that users may choose applications that are configured to support interaction within a root level (e.g., start screen) of the operating system 108. As illustrated, for instance, a Sudoku puzzle application may support an expanded representation 1402 that may be purchased by a user to play Sudoku within the expanded representation 1402. A variety of other examples are also contemplated without departing from the spirit and scope thereof.

[0081] FIG. 15 is an illustration of an environment 1500 in an example implementation that is operable to support desktop and immersive shells of the operating system 108. The illustrated environment 1500 includes a computing device 104 having the operating system 108 and application 110 as previously described in relation to FIG. 1.

[0082] The operating system 108 is also illustrated as including an immersive environment module 1502 which is representative of functionality of the computing device 102 to provide an immersive shell 1504 via which a user may interact with the applications 110 and other data of the computing device 102, both local to the device as well as remotely via a network. The immersive shell 1504 is configured to accept inputs to interact with the operating system 108 and applications 110 of the computing device 102 to access functionality of the computing device 102, such as the abstracted functionality described above. The immersive shell 1504 may also be configured to support a desktop shell 1506 as further described below.

[0083] The immersive shell 1504 may be configured to support interaction with the applications 110 with little to no window frame. Additionally, the immersive shell 1504 may support interaction with the applications 110 without requiring the user to manage a corresponding window frame’s layout, primacy of the window with respect to other windows (e.g., whether a window is active, in front of behind other windows, an order of the windows, and so on). Although illustrated as part of the operating system 108, the immersive environment module 1502 may be implemented in a variety of other ways, such as a stand-alone module, remotely via a network, and so forth.

[0084] In one or more implementations, the immersive shell 1504 of the operating system 108 is configured such that it is not closeable or capable of being uninstalled apart from the operating system 108. Additionally, the immersive shell 1504 may be configured to consume a significant portion of an available display area of a display device 1508 of the computing device 104. A user may interact with the immersive shell 1504 in a variety of ways, such as via a
cursor control device, using one or more gestures, using speech recognition, capture using one or more depth-sensing cameras, and so on.

[0085] Thus, the immersive environment module 1502 may manage the immersive shell 116 in which content of applications 110 may be presented and the presentation may be performed without requiring a user to manage size, location, privacy, and so on of windows used to display the content of the applications 110.

[0086] For example, as shown on a user interface displayed by the display device 1508, a user interface is shown that is configured to display data 1510, 1512 from two applications in a “snapped” configuration. In this example, both of the applications that correspond to the data are enabled to actively execute by the computing device 102 while execution is suspended for other of the applications 110 that do not currently display data. A gutter 1514 is disposed between the displays of the data 1510, 1512 that may be moveable to change an amount of display area consumed by applications on the display device 1508, respectively.

[0087] The immersive shell 1504 may support a wide variety of functionality to provide an immersive experience for a user to access the applications 110. In the following discussion, this functionality is discussed in relation to leveraging these techniques to enable interaction with a desktop shell 1506. It should be readily apparent, however, that these techniques may be employed for managing interaction with the applications 110 themselves without departing from the spirit and scope thereof.

[0088] The desktop shell 1506 is representative of another configuration of a user interface output by the operating system 108 when in this example to interact with the applications 110 and other data. For example, the desktop shell 1506 may be configured to present applications and corresponding data through windows having frames. These frames may provide controls through which a user may interact with an application as well as controls enabling a user to move and size the window. The desktop shell 1506 may also support techniques to navigate through a hierarchical file structure through the use of folders and represent the data and applications through use of icons. In one or more implementations, the desktop shell 1506 may also be utilized to access applications 110 that are configured specifically for interaction via the desktop shell 1506 and not configured for access via the immersive shell 1504, although other implementations are also contemplated.

[0089] In one or more of the techniques described herein, the immersive shell 1504 provides access to the desktop shell 1506 as if the desktop shell 1506 was another application that was executed on the computing device 104. In this way, a user may utilize the functionality of the immersive shell 1504 yet still access the desktop shell 1506 for more traditional functionality. Examples of implementation of the desktop as an immersive application within the immersive shell include use of the expandable representation techniques described herein which is described as follows and shown in a corresponding figure.

[0090] FIG. 16 depicts an example implementation of an expanded representation 1600 of the desktop shell 1506 of FIG. 15. The expanded representation 1600 as previously described treats the desktop shell 1506 as an application.

Accordingly, the expanded representation 1600 of the desktop shell is configured to include content associated with the desktop shell.

[0091] In the illustrated example, this content describes applications 110 that are “open” within the desktop shell 1506, which include a browser, word processing application, spreadsheet application, and presentation application. Each of the content items are selectable to navigate directly to a corresponding application within the desktop shell 1506 from the root level display. Although running applications may be displayed in the desktop application representation as shown in FIG. 16, any suitable number and or types of states of applications may be shown in the desktop application representation such as a most frequently used list of application, applications pinned in the a desktop application representation by the user, any or all of which may be shown in the an first or further hierarchical expanded view of the desktop application representation in the root mode display.

[0092] The expanded representation 1600 may include icons received from a taskbar of the desktop shell 1506, which include a file sharing application, antivirus utility, and a representation of a printer which are also selectable to navigate to corresponding functionality within the desktop shell 1506. Thus, the expanded representation 1600 may operate as a portal (e.g., a “wormhole”) between the shells of the operating system 108 by supporting interaction between the shells without requiring output of both shells. The inclusion and supported interaction with content displayed within the expanded representation 1600 may also be leveraged for a variety of other functionality, such as to send content to a device or application from the desktop shell 1506 or other expanded representation as further described below.

[0093] FIG. 17 depicts a system 1700 in an example implementation in which the expanded representation is included in a taskbar configured as a back stack of the operating system 108 of FIG. 1. As previously described in relation to FIG. 15, the operating system 108 may maintain an immersive environment in which a display of one or more applications may substantially consume a display environment of one or more display devices.

[0094] However, applications may also “remain available” by the operating system 108 through use of a taskbar 1702 operating as a “back stack” in which execution of the application is suspended until it appears on the display device 1508. A user, for instance, may make a swipe gesture through one or more fingers of the users hand, a “click and drag” gesture, and so on to replace one or more of the applications currently being displayed with an application from the back stack. Other examples are also contemplated in which the taskbar 1702 is not associated with “back stack” functionality, e.g., the applications represented in the taskbar are actively executing, were “pinned” to the taskbar, and so on.

[0095] In the illustrated example, the taskbar 1702 includes representations that are selectable to navigate to user interfaces of the applications, e.g., to a third display state “full screen” view in an immersive shell. The representations in the taskbar also include an expanded representation as previously described, which in this instance is an expanded representation for a photo application. The expanded representation may be included in the taskbar in a variety of different ways. For example, the photo application may be in a suspended state in a back stack and thus included
automatically and without user intervention through selection of execution of the application. The expanded representation may also be “pinned” to the taskbar using one or more commands by a user (e.g., a “right-click” menu), and so on.

[0096] The expanded representation of FIG. 17 includes content of photos that are accessible via the represented application (e.g., the third display mode) as well as via the “portal” provided by the expanded representation. Although a photo application is shown in the expanded content expanded application representation, it is to be appreciated that any suitable application type with content expanded view, and/or limited functionality expanded application representation may be used in the embodiment of the taskbar in addition to or alternative to application representations in the root level display. This portal of the taskbar with expandable application representations may thus support non-modal interaction to the content included in the expanded representation, which may be leveraged to support a variety of different functionality.

[0097] In the illustrated instance, a user interface 1704 of an email application is displayed within an immersive shell, although display within a desktop shell is also contemplated. The user interface of the fully running email application includes a display of flagged emails as well as a portion to compose and send an email. A user in this example is composing an email and wishes to attach a photo. To do so, the user may access the expanded representation of the photo application and select content from the expanded representation for inclusion in the email application. Thus, this selection may be made without entering the third display state of the application.

[0098] For instance, the user may cause display of the taskbar in a variety of different ways. This may include use of a bezel gesture involving a swipe of the side of the display device 112 that is to display the taskbar 1702, use a cursor control device to place a cursor proximate to the edge to cause the display of the taskbar 1702, use of a key command or icon, speech command, and so on.

[0099] Regardless of how the output is initiated, once the taskbar 1702 is displayed as illustrated in FIG. 17, a user may then select one or more items of content that are displayed within the expanded representation, such as a desired photo. This may be performed in a variety of ways, such as through a “drag and drop” gesture to drag content from the expanded representation to the email in the user interface, use of a cursor control device to select (e.g., “check”) an item of content, and so on. Thus, in this example a user may compose an email and select items for inclusion in the email that are accessible via other applications through use of expanded representations of those applications. In this way, a user may send content from an expanded representation to a device, further description of which is discussed as follows and shown in corresponding figures.

[0100] FIG. 18 depicts a system 1800 in an example implementation in which the expanded representation is included in a taskbar to send items of content included in the representation to a device. In this example, a user interface is output by the computing device 104 as in the previous example. The user interface also includes an output 1802 of a wireless device manager application that is usable to manage which devices are communicatively coupled to the computing device 104. This may include peripheral devices as well as communicative couplings to other computing devices, e.g., mobile computing devices such as phones and tablets, and so forth. A variety of different communicative couplings may be supported, such as a Bluetooth® wireless communicative coupling as illustrated, Wi-Fi®, and other wireless communicative techniques, as well as physical (e.g., wired) communication techniques.

[0101] The sending of content from the expanded representation to a device may be performed in a manner that is similar to that previously described in relation to FIG. 17 for sending to an application. For example, a user may cause output of the taskbar 1702 having the expanded representation of the photos application (or any other suitable content from any expanded application) as previously described. A user may then select an item of content from the expanded representation (e.g., via a gesture, cursor control device, etc.) and then select a representation of a device to which the item of content is to be sent, e.g., a drag-and-drop gesture, successive clicks, and so forth. The operating system 108 may then cause the item of content to be sent to the device, e.g., loaded via a wireless communicative connection, and so on.

[0102] Thus, as described the expanded representation may support new interaction techniques to send content to desired destinations. For example, rather than navigate to an application via which the item is available and then specify a desired destination for the item (e.g., first selecting “what” and then “where”) a user may first navigate to a desired destination for the item of content (e.g., “where”) and then select the items of content to be sent to that destination, e.g., the “what”. The expanded representation may also support usage scenarios to manage interaction with remote content, an example of which is further described in the following and shown in a corresponding figure.

[0103] FIG. 19 depicts a system 1900 in an example implementation in which the expanded representation is included in a taskbar to send items of content included the representation of a file sharing service to a device accessible by the computing device 104. The taskbar 1702 is illustrated as including an expanded representation of a file sharing environment application. As such, the expanded representation includes items of content that are available via the file sharing service, e.g., presentations, documents, and folders in the illustrated example.

[0104] Thus, like the previous example items of content may be sent to desired interactions through interaction with the expanded representation, such as desired applications, devices, a printer as illustrated, and so on. Further, as this is a file sharing environment in this example, the item of content may be streamed to an indicated destination without first specifically saving a version of the document locally on the computing device 104.

[0105] Although these transfer techniques describe sending content from an expanded representation to a desired destination as including the expanded representation in the taskbar 1702, other examples are also contemplated. For example, these techniques may also be applied using the expanded representation from the root level (e.g., start screen) of the operating system 108 to transfer content to represented applications, devices, and even between
expanded representations, e.g., from a file sharing service expanded representation to a device manager application including content represented as devices in the expanded representation.

[0106] FIG. 20 depicts an example implementation 2000 showing another example of transfer of content between devices involving transfer of execution between computing devices that involves an expanded representation. As previously described in relation to FIG. 6, an expanded representation 210 may support receipt of inputs, such as text entry for a status update for a social network service.

[0107] As shown in FIG. 20, the expanded representation 210 may have an aspect ratio and resolution that approximates that of a display device of a mobile computing device 2002. Accordingly, this similarity may be leveraged to transfer a result of execution of applications between devices in an efficient manner without recoding the applications. A user, for instance, may begin entry of text for a status update through interaction with the expanded representation 210. The user may then desire to continue this interaction with the mobile computing device 2002 such as a wearable computing device, laptop, tablet, mobile phone, and so on.

[0108] Accordingly, an associated application 110 and/or operating system 108 may recognize an input to transfer a result of this execution. The input may take a variety of different forms, such as recognition of a “tap” of the mobile computing device 2002 against the computing device 104, use of a command, gesture on either device, and so on. In response, a result of this execution (e.g., input received and associated application, a rendered screen, and so on) may be transferred between the devices using suitable technologies such as near field communications. In the illustrated instance this transfer of the result of execution permits a user to continue the status update on another device and/or transfer the data to a mobile device for reference later (such as an address or map, etc. discussed further below).

[0109] In the example implementation 2100 of FIG. 21, a user may interact with the computing device 104 to generate directions for a map. The result of the execution in the instance (e.g., the directions) may then be transferred from the computing device 104 to the mobile computing device 2002. In this instance, a user of the mobile computing device 2002 may “grab” the expanded representation by placing the mobile computing device 2002 over a display of the expanded representation.

[0110] This proximity may be detected in a variety of ways, such as via near field communication (NFC), use of a sensor-in-pixel configuration of a display device of the computing device 104, a camera of the mobile computing device 2002, and so on. The result of the execution may then permit continued interaction via a corresponding application on the mobile computing device 2002. The reverse operation may also be performed, such as to transfer from the mobile computing device 2002 to an expanded representation of the computing device 104. In this way, a user may seamlessly interact with a plurality of different computing devices in an efficient manner.

[0111] FIG. 22 depicts another example implementation 2200 of transfer of a result of execution associated with an expanded representation between devices. In this example, a gesture or other input is detected to transfer the result of execution between devices. In this example, an animation is utilized to give an appearance that the expanded representation is partially displayed on both devices to indicate this transfer. Other animations are also contemplated to indicate the transfer.

[0112] FIG. 23 depicts an example implementation 2300 in which expanded representations are leveraged to indicate activity levels of content in relation to a shared network environment. Shared network environments may be implemented by a web service to support remote interaction and collaboration between a variety of different users remotely via a network. Examples of shared network environments include file hosting services in which content such as documents and presentations are made available for users to edit and view, social network services for sharing status updates and images, and so on. Thus, content associated with the shared network environment may support activities associated with that content, e.g., the sharing, viewing, “liking,” and so on.

[0113] In this example, expanded representations 2302, 2304 are configured to indicate relative activity levels of content included in the expanded representation. For example, expanded representation 2302 includes content that is available via a file hosting service, i.e., “in the cloud.” Each of the items of content includes an indication, illustrated as a strength bar, which indicates an amount of activity that is associated with a respective item of content within the shared network environment, e.g., the file sharing service.

[0114] Any suitable displayed indication may be used to indicate activity level and/or strength of activity such as icons, highlight, color coding, texture, etc. The level of activity or strength may be based on a number of times accessed, editing of the content, how recently the content was accessed, and so forth.

[0115] Further, the items of content are arranged within the expanded representation 2302 based on the relative levels of activity to each other. In this way, the expanded representation 2302 may act as a portal to support interaction and include items of content that have an increased likelihood of being of interest to a user, thus further supporting a likelihood that a user need not “navigate away” from a start screen, support use in a taskbar; and so forth.

[0116] The expanded representation 2304 includes content involving notifications received from a social network service. In this too, activities levels of content are indicated and arranged within the representation, which in this instance are status posts, “likes,” and so forth. Other examples are also contemplated, such as articles for news applications and so on. Content displayed within the expanded representation and associated levels may be obtained in a variety of ways, such as part of the notification system as previously described in relation to FIG. 1. Thus, in this example a user may readily be kept “up-to-date” regarding content involved in a shared network environment through use of the expanded representations. It should be readily apparent that these activity level techniques may be included in any of the previously described scenarios without departing from the spirit and scope thereof.

Example Procedures

[0117] The following discussion describes expandable application representation techniques that may be implemented utilizing the previously described systems and devices. Aspects of each of the procedures may be implemented in hardware, firmware, or software, or a combination
thereof. The procedures are shown as a set of blocks that specify operations performed by one or more devices and are not necessarily limited to the orders shown for performing the operations by the respective blocks. In portions of the following discussion, reference will be made to the example environment.

[0118] FIG. 24 depicts a procedure 2400 in an example implementation in which a representation is expanded in a root level of a file hierarchy of an operating system. Representations are output of applications in a root level of a file hierarchy maintained by an operating system of the computing device, the representations selectable to launch execution of respective applications (block 2402). The representations, for instance, may be displayed in a first display mode that is configured to output notifications within the representations and without execution of the represented application, e.g., through leveraging the notification system of FIG. 1.

[0119] Responsive to recognition by the operating system of an input configured to cause expansion of one of the representations, a display is expanded of the representation for inclusion in the root level with one or more other representations, the expanded display of the representation configured to accept one or more inputs for a respective application (block 2404). A user, for instance, may make a gesture that is recognized by the operating system to cause expansion of a representation displayed in the first display mode to an expanded display in the second display mode. When in the second display mode, inputs may be received to interact with content included within the expanded representation, such as to select a photo, input text, print a document, and so forth.

[0120] Responsive to recognition by the operating system of an input configured to cause expansion of one of the representations, a size is expanded of a display of the representation for inclusion in the root level with one or more other representations, the expanded display causing rearrangement of one or more other ones of the representations in the root level in the grid layout that maintains the grid layout (block 2406). Continuing with the previous example, receipt of the input may cause both expansion of the representation as well as rearrangement of other representations as shown in FIG. 3.

[0121] Responsive to recognition by the operating system of an input configured to cause expansion of one of the representations, a display is expanded of the representation for inclusion in the root level with one or more other representations, the expanded display of the representation configured to indicate content and a relative level of activity involving the content in a shared network environment (block 2408). As shown in FIG. 23, relative levels of activity within a shared network environment may be included through indications (e.g., as a “heat map”, strength bars, etc.), order of arrangement of the content itself, and so forth.

[0122] Responsive to recognition by the operating system of an input configured to cause the expanded representation to be included in a taskbar, the expanded representation is included for display as part of the taskbar (block 2410). A user, for instance, may “right click” on an expanded representation and select an option to pin the expanded representation to the taskbar. In another instance, a user may select the expanded representation from the root level and drag it toward an edge of a user interface associated with an output of the taskbar, e.g., via a drag-and-drop gesture or through use of a cursor control device. A variety of other examples are also contemplated.

[0123] FIG. 25 depicts a procedure 2500 in an example implementation in which a taskbar including an expanded representation is displayed. An input is received that is configured to cause output of a taskbar by an operating system of the computing device (block 2502). This may include a bezel gesture that involves a “swipe” from an edge of a display device, use of a “right-click” of a cursor control device, positioning of a cursor proximate an edge of the display device, and so forth.

[0124] Responsive to the receiving, display is caused of the taskbar in a user interface by the computing device, the taskbar including representations of applications that are selectable to launch execution of respective applications, at least one of the representations for a respective application configured as an expanded representation configured to accept one or more inputs involving content displayed within the expanded representation (block 2504). A variety of different inputs may be received, such as to enter text, interact with content included within the expanded representation, and so on.

[0125] FIG. 26 depicts a procedure 2600 in an example implementation in which content included within an expanded representation is sent to an application or device. A user interface is displayed by the computing device that includes representations of hardware devices or applications (block 2602). As shown in FIG. 18, for instance, a user interface may include representations of devices, such as peripheral devices or other computing devices. The user interface may also include representations of applications, which may include the first display mode (e.g., a tile) or a second display mode (e.g., an expanded tile). In one or more implementations, the third display mode (e.g., a full screen mode in an immersive shell) is also contemplated as shown in FIG. 17.

[0126] A taskbar is displayed in the user interface by the computing device, the taskbar including representations of applications that are selectable to launch execution of the applications, at least one of the representations for a respective application configured as an expanded representation configured to accept one or more inputs involving content displayed within the expanded representation (block 2604). The taskbar may be output responsive to a variety of inputs, such as gestures, commands, and so on as previously described.

[0127] Responsive to receipt of a selection of a particular one of the representations of content in the expanded representation and a selection of one the representations of hardware devices or application, the content is sent from the expanded representation to the hardware device or application that corresponds to the selected representation of the hardware devices or applications (block 2606). As shown in FIG. 18, for instance, a user may select content (e.g., a photo) from the expanded representation of the photo application and drag it to a representation of another computing device to send the photo to that device wirelessly. As shown in FIG. 19, the user may select a document from the expanded representation and select a device that is to print the document. A variety of other examples are also contemplated as previously described.

[0128] FIG. 27 depicts a procedure 2700 in an example implementation in which a result of execution of an application associated with an expanded representation is trans-
ferred between computing devices. Representations of applications are displayed, selectable to launch execution of respective applications, in a root level of a file hierarchy maintained by an operating system of the computing device, at least one of the representations having an expanded display having a result of execution of the respective application (block 2702). The expanded representation, for instance, may include inputs received from a user and thus the result includes those inputs as shown in FIG. 20. The result may also include processing that has occurred and thus may include data involving an execution state of the application, e.g., directions in a map generated responsive to a user input as shown in FIG. 21.

[0129] Responsive to receipt of an input from a mobile computing device that is associated with the at least one representation having the expanded display, the result of the execution of the respective application is transferred to the mobile computing device (block 2704). Continuing with the previous example, an input may be received to cause this transfer, either by the computing device 104 or the other computing device, e.g., computing device 2002, which may take a variety of forms as described in relation to FIG. 20. In response, the result (e.g., inputs, state and configuration data of an application, and so on) may be transferred between the devices in an efficient and intuitive manner.

[0130] FIG. 28 depicts a procedure 2800 in an example implementation in which an expanded representation is configured for a desktop shell. A desktop shell representation is output of a desktop shell along with representations of applications in a root level of a file hierarchy maintained by an operating system of the computing device, the representations of the applications selectable to launch execution of respective said applications (block 2802). The representation of the desktop shell may be included with representations of other applications with a root level of a file system in a first display mode as previously described.

[0131] Responsive to recognition by the operating system of an input configured to cause expansion of the desktop shell representation, a display of the desktop shell representation is expanded for inclusion in the root level with one or more other representations of the applications, the expanded display of the representation configured to include content that describes applications that are executable within the desktop shell (block 2804). As shown in FIG. 16, for instance, the expanded representation includes content that describes applications that are available for execution in the desktop shell, e.g., actively, in a suspended-state, and so forth. The representations are selectable to launch the applications within the desktop shell, e.g., to automatically cause a transition between an immersive and desktop shell. Thus, the expanded representation of the desktop shell may act as a portal to support interaction between the shells of the operating system 108.

Example System and Device

[0132] FIG. 29 illustrates an example system generally at 2900 that includes an example computing device 2902 that is representative of one or more computing systems and/or devices that may implement the various techniques described herein, which is illustrated through inclusion of the expanded representation 210. The computing device 2902 may be, for example, a server of a service provider, a device associated with a client (e.g., a client device), an on-chip system, and/or any other suitable computing device or computing system.

[0133] The example computing device 2902 as illustrated includes a processing system 2904, one or more computer-readable media 2906, and one or more I/O interface 2908 that are communicatively coupled, one to another. Although not shown, the computing device 2902 may further include a system bus or other data and command transfer system that couples the various components, one to another. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. A variety of other examples are also contemplated, such as control and data lines.

[0134] The processing system 2904 is representative of functionality to perform one or more operations using hardware. Accordingly, the processing system 2904 is illustrated as including hardware element 2910 that may be configured as processors, functional blocks, and so forth. This may include implementation in hardware as an application-specific integrated circuit or other logic device formed using one or more semiconductors. The hardware elements 2910 are not limited by the materials from which they are formed or the processing mechanisms employed therein. For example, processors may be comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a context, processor-executable instructions may be electronically-executable instructions.

[0135] The computer-readable storage media 2906 is illustrated as including memory/storage 2912. The memory/storage 2912 represents memory/storage capacity associated with one or more computer-readable media. The memory/storage component 2912 may include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The memory/storage component 2912 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and so on) as well as removable media (e.g., Flash memory, a removable hard drive, an optical disc, and so forth). The computer-readable media 2906 may be configured in a variety of other ways as further described below.

[0136] Input/output interface(s) 2908 are representative of functionality to allow a user to enter commands and information to computing device 2902, and also allow information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, touch functionality (e.g., capacitive or other sensors that are configured to detect physical touch), a camera (e.g., which may employ visible or non-visible wavelengths such as infrared frequencies to recognize movement as gestures that do not involve touch), and so forth. Examples of output devices include a display device (e.g., a monitor or projector), speakers, a printer, a network card, tactile-response device, and so forth. Thus, the computing device 2902 may be configured in a variety of ways as further described below to support user interaction.

[0137] Various techniques may be described herein in the general context of software, hardware elements, or program modules. Generally, such modules include routines, programs, objects, elements, components, data structures, and
so forth that perform particular tasks or implement particular abstract data types. The terms “module,” “functionality,” and “component” as used herein generally represent software, firmware, hardware, or a combination thereof. The features of the techniques described herein are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.

[0138] An implementation of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. The computer-readable media may include a variety of media that may be accessed by the computing device 2902. By way of example, and not limitation, computer-readable media may include “computer-readable storage media” and “computer-readable signal media.”

[0139] “Computer-readable storage media” may refer to media and/or devices that enable persistent and/or non-transitory storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer-readable storage media refers to non-signal bearing media. The computer-readable storage media includes hardware such as volatile and non-volatile, removable and non-removable media and/or storage devices implemented in a method or technology suitable for storage of information such as computer readable instructions, data structures, program modules, logic elements/circuits, or other data. Examples of computer-readable storage media may include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other storage device, tangible media, or article of manufacture suitable to store the desired information and which may be accessed by a computer.

[0140] “Computer-readable signal media” may refer to a signal-bearing medium that is configured to transmit instructions to the hardware of the computing device 2902, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier waves, data signals, or other transport mechanism. Signal media also include any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media.

[0141] As previously described, hardware elements 2910 and computer-readable media 2906 are representative of modules, programmable device logic and/or fixed device logic implemented in a hardware form that may be employed in some embodiments to implement at least some aspects of the techniques described herein, such as to perform one or more instructions. Hardware may include components of an integrated circuit or on-chip system, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), and other implementations in silicon or other hardware. In this context, hardware may operate as a processing device that performs program tasks defined by instructions and/or logic embodied by the hardware as well as a hardware utilized to store instructions for execution, e.g., the computer-readable storage media described previously.

[0142] Combinations of the foregoing may also be employed to implement various techniques described herein. Accordingly, software, hardware, or executable modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage media and/or by one or more hardware elements 2910. The computing device 2902 may be configured to implement particular instructions and/or functions corresponding to the software and/or hardware modules. Accordingly, implementation of a module that is executable by the computing device 2902 as software may be achieved at least partially in hardware, e.g., through use of computer-readable storage media and/or hardware elements 2910 of the processing system 2904. The instructions and/or functions may be executable/operable by one or more articles of manufacture (for example, one or more computing devices 2902 and/or processing systems 2904) to implement techniques, modules, and examples described herein.

[0143] As further illustrated in FIG. 29, the example system 2900 enables ubiquitous environments for a seamless user experience when running applications on a personal computer (PC), a television device, and/or a mobile device. Services and applications run substantially similar in all three environments for a common user experience when transitioning from one device to the next while utilizing an application, playing a video game, watching a video, and so on.

[0144] In the example system 2900, multiple devices are interconnected through a central computing device. The central computing device may be local to the multiple devices or may be located remotely from the multiple devices. In one embodiment, the central computing device may be a cloud of one or more server computers that are connected to the multiple devices through a network, the Internet, or other data communication link.

[0145] In one embodiment, this interconnection architecture enables functionality to be delivered across multiple devices to provide a common and seamless experience to a user of the multiple devices. Each of the multiple devices may have different physical requirements and capabilities, and the central computing device uses a platform to enable the delivery of an experience to the device that is both tailored to the device and yet common to all devices. In one embodiment, a class of target devices is created and experiences are tailored to the generic class of devices. A class of devices may be defined by physical features, types of usage, or other common characteristics of the devices.

[0146] In various implementations, the computing device 2902 may assume a variety of different configurations, such as for computer 2914, mobile 2916, and television 2918 uses. Each of these configurations includes devices that may have generally different constructs and capabilities, and thus the computing device 2902 may be configured according to one or more of the different device classes. For instance, the computing device 2902 may be implemented as the computer 2914 class of a device that includes a personal computer, desktop computer, a multi-screen computer, laptop computer, netbook, and so on.

[0147] The computing device 2902 may also be implemented as the mobile 2916 class of device that includes
mobile devices, such as a mobile phone, portable music player, portable gaming device, a tablet computer, a multi-screen computer, and so on. The computing device 2902 may also be implemented as the television 2918 class of device that includes devices having or connected to generally larger screens in casual viewing environments. These devices include televisions, set-top boxes, gaming consoles, and so on.

[0148] The techniques described herein may be supported by these various configurations of the computing device 2902 and are not limited to the specific examples of the techniques described herein. This functionality may also be implemented all or in part through use of a distributed system, such as over a “cloud” 2920 via a platform 2922 as described below.

[0149] The cloud 2920 includes and/or is representative of a platform 2922 for resources 2924. The platform 2922 abstracts underlying functionality of hardware (e.g., servers) and software resources of the cloud 2920. The resources 2924 may include applications and/or data that can be utilized while computer processing is executed on servers that are remote from the computing device 2902. Resources 2924 can also include services provided over the Internet and/or through a subscriber network, such as a cellular or Wi-Fi network.

[0150] The platform 2922 may abstract resources and functions to connect the computing device 2902 with other computing devices. The platform 2922 may also serve to abstract scaling of resources to provide a corresponding level of scale to encountered demand for the resources 2924 that are implemented via the platform 2922. Accordingly, in an interconnected device embodiment, implementation of functionality described herein may be distributed throughout the system 2900. For example, the functionality may be implemented in part on the computing device 2902 as well as via the platform 2922 that abstracts the functionality of the cloud 2920.

CONCLUSION

[0151] Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed invention.

What is claimed is:
1. A method implemented with a mobile computing device, the method comprising:
 outputting representations of applications in a root level of a file hierarchy maintained by an operating system of the mobile computing device, the root level of the file hierarchy being located on a start menu or a start screen or both, the representations selectable to launch execution of respective said applications, each of the representations comprising an application icon or an application tile as opposed to a folder; and
 responsive to recognition by the operating system of an input configured to cause expansion of one of the representations of respective said applications, expanding a display of the representation of the respective application for inclusion at the root level with one or more other said representations of respective said applications, the expanded display of the representation of the respective application configured to accept one or more inputs for the respective application.
2. A method as described in claim 1, wherein the expanded display of the representation is configured to accept one or more inputs other than the launching of the execution of the respective application.
3. A method as described in claim 1, wherein the expanded display of the representation of the respective application is configured to accept one or more inputs of textual characters entered by a user that are displayed as part of the representation.
4. A method as described in claim 1, wherein the expanded display of the representation of the respective application is configured to accept one or more inputs of textual characters entered by a user that are displayed as part of the representation.
5. A method as described in claim 1, wherein the content represented within the expanded display is consumable as part of execution of the respective application.
6. A method as described in claim 1, further comprising causing execution of the respective application responsive to selection of the expanded display of the representation.
7. A method as described in claim 1, further comprising causing execution of the respective application in an immersive shell of the operating system responsive to a selection received from a user.
8. A method as described in claim 1, wherein the representations of the application are configured to output notifications as part of the respective said applications without executing the respective said applications.
9. A method as described in claim 1, wherein the expanded display of the representation is displayable using a plurality of different sub-modes that provide different levels of functionality in relation to the respective application.
10. A method as described in claim 9, wherein the plurality of sub-modes include a first said sub-mode in which the expanded display includes additional information regarding a notification included in the representation, a second said sub-mode in which the expanded display supports user inputs, and a third said sub-mode in which full functionality of the respective application is accessible in the root level.
11. A method as described in claim 1, further comprising rearranging one or more other representations of respective said applications at the root level responsive to the expanding of the display.
12. A method as described in claim 11, wherein the rearranging is performed using a grid layout.
13. A method as described in claim 1, wherein the expanded display of the representation of the respective application is configured to support a plurality of display modes, the plurality of display modes including:
 a first said display mode in which representations are output of applications in a root level of a file hierarchy of the operating system, the root level of the file hierarchy being located on a start menu or a start
screen or both, the representations of the applications selectable to launch execution of respective said applications, each of the representations comprising an application icon or an application tile as opposed to a folder;
a second said display mode in which at least one of the representations is expandable for display at the root level, the expanded display of the at least one representation configured to accept one or more inputs for a respective one of said applications; and
a third said display mode entered through selection of the at least one representation or the expanded display of the at least one representation to cause a full screen view of a respective application.

15. A system as described in claim 14, wherein the second said display mode includes one or more of the representations of the first said display mode and is entered through interaction with the at least one said representation.

16. A system as described in claim 15, wherein the interaction is a gesture.

17. A system as described in claim 14, wherein the second said display mode and the third said display mode are enterable via interaction with different parts of the at least one representation displayed in the first said display mode.

18. A method implemented with a mobile computing device, the method comprising:

outputting representations of applications in a grid layout in a root level of a file hierarchy maintained by an operating system of the mobile computing device, the root level of the file hierarchy being located on a start menu or a start screen or both, the representations selectable to launch execution of respective said applications, each of the representations comprising an application icon or an application tile as opposed to a folder; and

responsive to recognition by the operating system of an input configured to cause expansion of one of the representations, expanding a size of a display of the representation for inclusion at the root level with one or more other said representations, the expanded display causing rearrangement of one or more other ones of the representations in the root level in the grid layout that maintains the grid layout.

19. A method as described in claim 18, wherein the expanded display of the representation is configured to receive one or more inputs involving input of text within the expanded display.

20. A method as described in claim 18, wherein the expanded display of the representation is configured to accept one or more inputs involving content represented within the expanded display.

* * * * *