MAGNETIC JEWELRY CONNECTORS FOR FORMING A JEWELRY PIECE

ABSTRACT

An interchangeable jewelry system forms a bracelet, necklace, earring, and/or ring jewelry piece. The interchangeable jewelry system comprises at least two jewelry strand sections, each having a central body located centrally between two end walls comprising oppositely attracting mating magnetic portions placed opposed to one another on the central body. The mating magnetic portions comprise a first portion having a depressed magnetic female rim extending to form a magnetic female cavity section and mating raised magnetic male rim extending to form a magnetic male raised section. The depressed magnetic female rim aligns with and receives the raised magnetic male rim to guide and seat the first and second magnetic portions together. Jewelry strand sections are interchangeably connected through the mating portions to form a jewelry piece. The mating magnetic portions securely connect the jewelry strand sections to prevent loss, while being operative to readily disconnect when subjected to pulling force, increasing safety and mitigating injury to the wearer.
Figure 14a

1400

1401

1421

Figure 14b

1401

Figure 14c

1421

1401
MAGNETIC JEWELRY CONNECTORS FOR FORMING A JEWELRY PIECE

1. FIELD OF THE INVENTION

[0001] The present disclosure generally relates to jewelry pieces; and, more particularly, to jewelry piece segments with clasps and connectors for forming interchangeable jewelry pieces.

2. DESCRIPTION OF RELATED ART

[0002] Jewelry pieces are generally pre-constructed and formed for immediate wear. However, one must purchase several different jewelry pieces in order to have cooperating jewelry with their own unique combination of jewelry pieces, it is not only costly, but it also results in the need to store and organize the plethora of jewelry piece. Additionally, jewelry such as necklaces can become entangled with fixed or movable objects such as branches, swing links, and the like. On such occasions there exists the danger that the entangled jewelry piece can choke or even strangle the wearer.

[0003] Various jewelry systems have been heretofore disclosed and utilized. Examples are set forth summarily below:

[0004] U.S. Pat. No. 2,752,764 to Lederer discloses magnetic earrings with interchangeable ornaments.

[0005] U.S. Pat. No. 3,668,890 to Broido discloses a watch bracelet with a pair of bands and a coupling member, for example loop-shaped, chosen from a set of coupling members of different dimensions. Two free ends of the band are provided with means for releasably and interchangeably fixing a chosen coupling member to the bands to form a bracelet of given length.

[0006] U.S. Pat. No. 4,912,944 to Crosley et al. discloses an article of jewelry comprising a base element which supports an ornamented substrate element thereon by magnetic attraction, both the base element and the substrate element having magnetically attractive properties and at least one of them having the properties of a permanent magnet, whereby the substrate element is interchangeable with other like elements bearing different ornamentation.

[0007] U.S. Pat. No. 5,050,276 to Pemberton discloses two mirror image halves each of which is attached to the ends of a necklace. Each half has a magnetic shell and an inserted magnetic core. The shell has a cylindrical body with a cone-shaped end. The front of the shell has an open cavity for inserting the magnetic core. The front of the shell and magnetic core form a flat surface. The magnetic core is made of samarium cobalt or neodymium iron. Both are strong magnets and allow the clasp to be very small in size so that it is aesthetically pleasing and lightweight. The end of each half has an eyelet for connecting to a necklace. A conventional fastener can be soldered to one eyelet so that the clasp can be added to an existing necklace. A safety catch can be added to the clasp as a back-up safety feature for expensive jewelry.

[0008] U.S. Pat. No. 5,099,659 to Caranza et al. discloses a magnetic clasp having first and second magnetized portions, each with a hole disposed in the center thereof. The two portions are magnetically attractive to each other but are divided with a gap at their interface to permit easy separation thereof. A third magnetic portion is sized to fit within the hole in the first and second rings. The third magnetic portion prevents lateral movement of the first and second magnetized portions at their interface. The male portion has attached to its opposite end a chain, each end of the chain being further attached to a stop sized larger than the hole in the rings.

[0009] U.S. Pat. No. 5,806,346 to Schlinger et al. discloses a method of inexpensively making a magnetic pendant necklace set. The method relies upon affixing opposite-polarity magnets of at least 27 megagauss oersteds in pole strength to each of two substantially-flat ornamental settings with protruding rings to which the opposite ends of any type of necklace can be attached. The ornamental settings function (1) as a pendant clasp when joined together by their magnet centers and also (2) as a secure mount for the easy attachment of magnet-straddled, pendant ornaments.

[0010] U.S. Pat. Nos. 6,715,315 and 7,201,021 to Hartgrove disclose jewelry articles having magnetic elements and interchangeable settings. In one aspect, the jewelry articles include magnetically coupling body portions and interchangeable settings. The body portions magnetically couple together to hold the interchangeable settings. For example, the body portions can magnetically couple together using rare earth magnets to form a composite ring. Preferably, at least one of the body portions is rotatable to tangentially break the magnetic coupling between the body portions to interchange the setting. In another aspect of the present invention, magnetic elements are used to magnetically suspend a movable setting on a jewelry article. A longitudinal member has at least one end connected to the jewelry article. The setting is movably disposed on the longitudinal member. A first magnetic element adjacent an end of the longitudinal member magnetically repels a second magnetic element on the setting.

[0011] U.S. Pat. No. 6,962,063 to Pearl discloses an arrangement of strunged magnetic and non-magnetic beads worn as a necklace or bracelet in loops about the user resulting from contact together of the magnetic beads and the size of the loops determined by the number of non-magnetic beads therebetwixt, in which the stringing is according to facilitated counting of a uniform ratio of the non-magnetic to the magnetic beads rather than tedious counting of individual beads.

[0012] U.S. Pat. No. 7,216,508 to Kretchmer et al. discloses jewelry-forming components of a body member having a first magnetized portion and a further element associated therewith for magnetically repelling or attracting and receiving another jewelry-forming component. A plurality of such components can be magnetically coupled to form an article of jewelry, generally in the form of a ring, bracelet, necklace or chain link.

[0013] U.S. Pat. No. 8,096,145 to Corvino discloses a jewelry element, in particular a precious stone ring, including a magnetic device to cause the jewelry element to float with respect to the jewelry element base.

[0014] U.S. Pat. No. 8,113,013 to Kessler discloses inter-transformative jewelry articles, and kits and methods of making and using the same. Inter-transformative jewelry articles according to the present invention are adapted to change or transpose, expand or simplify, and attach or detach, wherein one shape or design or article or item becomes another shape or design or article or item by using diverse, interchangeable and adaptive parts.

[0015] U.S. Pat. No. 8,127,408 to Wiseman discloses magnetically connected socket joint components comprising
one or more paired components that form socket joint structures which can form various different articles, such as, for example, articles of jewelry, toys, educational implements, games or amusement devices, instructional aids, eyeglass frames, robotic arms, prosthetic devices, human replacement joints, and the like. The socket joint structures comprise convexly configured male and concavely configured female socket components which may be fabricated from suitable magnetic materials, or alternatively, the convexly configured male socket components may be fabricated from suitable magnetic materials while the concavely configured female socket components may be fabricated from suitable ferromagnetic materials, or vice versa.

[0016] U.S. Pat. Nos. D668,985 and 8,490,829 to Huyah discloses an ornamental design and an article of jewelry including a pliable strand; and a plurality of precious or semiprecious objects movably positioned along the pliable strand. Each of the plurality of objects including a magnetic insert extending between opposing surfaces, which itself is formed from two magnets separated by a magnetic stabilizer and aligned such that the opposing ends of the magnetic insert have the same polarity thereby creating repulsive forces between each of the plurality of objects along the strand.

[0017] U.S. Pat. No. 8,596,090 to Smith discloses an interchangeable jewelry insert for detachable attachment to a receptacle. The jewelry insert has a body with two ends, the first end having at least one dimension sized to fit within a receiving aperture of the receptacle of the item, and the second end having at least one dimension larger than the receiving aperture. The first end of the body has a first magnetic element. The receiving aperture has a second magnetic element. The first magnetic element and the second magnetic element provide a repelling force to secure the interchangeable jewelry insert to the receptacle.

[0018] U.S. Pat. No. 8,701,438 to Kovels discloses a band having a major section of a major length with first and second free ends spaced by an opening of a minor length. First and second minor sections in a generally J-shaped configuration are coupled to each free end. The minor sections have lower, upper and intermediate segments. Each upper segment ends in a semicircular free tip. An opening is formed at each free tip. A decorative gem stone has an upper region in a generally dome-shaped configuration projecting above the upper segment. A topper is removably positioned within the opening and has a decorative center and opposed ends. The opposed ends include similarly configured first and second rings adapted to be removably coupled to the first and second minor sections of the band.

[0019] U.S. Pat. No. 2002/0148251 to Plunly discloses a jewelry finding is provided as a neck accessory that enables a flexible bracelet to be worn as a necklace. Locket clasps are provided at the ends of the neck accessory to provide secure interconnection of the bracelet clasp ends with the neck accessory, while at the same time enclosing and obscuring from view the connection hardware. According to an alternate embodiment, a universal approach is implemented that uses flexible loops to modify clasp ends of most any flexible bracelet to be connectible to fastening posts in the clasp clasps of the neck accessory.

[0020] U.S. Patent App. Pub. No. 2004/0200236 to Emberson discloses a lanyard convertible to jewelry. In one embodiment the lanyard includes a Y-shaped necklace having two opposing ends which can be detachably secured together to form a loop and a short segment having an end to which an ID badge holder, a jewelry pendant, or other centerpiece may optionally be attached. The lanyard includes a plurality of centerpieces for this purpose. One or more extension pieces having two opposing ends are also provided. The opposing ends of each extension piece can be detachably secured to one another to form bracelets, or they can be detachably inserted between the opposing ends of the necklace to facilitate enlarging the loop formed by the necklace. Alternatively, the lanyard may include a linear necklace instead of a Y-shaped necklace and a slide attachment which may be slidably connected to the linear necklace for attachment with the centerpieces.

[0021] U.S. Patent App. Pub. No. 2005/0048543 to Kessler discloses inter-transformative jewelry articles, and kits and methods of making and using the same. Inter-transformative jewelry articles according to the present invention are adapted to change or transpose, expand or simplify, and attach or detach, wherein one shape or design or item becomes another shape or design or article or item by using diverse, interchangeable and adaptive parts.

[0022] U.S. Patent App. Pub. No. 2007/0095101 to Pons discloses a jewelry forming article that utilizes free magnetic bodies and free deformable chains to form various jewelry objects, such as rings, bracelets, necklaces, and the like. The various jewelry objects are formed by magnetically engaging the surfaces of the free magnetic bodies to two or more regions along a length of the deformable free chains, forming one or more loop circumferences along the length of the chains between the engaging regions, where the loop circumference may be increased or decreased by changing the positions of the engaging regions relative to the surfaces of the magnetic bodies to enable a person to secure the article on his or her body in the form of the various jewelry objects.

[0023] U.S. Patent App. Pub. No. 2010/0101274 to Worth discloses systems and methods for magnetically interchangeable jewelry that use planar surfaces and recessed magnets so that planar metallic disks (or other shapes) can be used as interchangeable ornamental features for the magnetically interchangeable jewelry. The interchangeable elements formed of a magnetically attractive material are releasably affixed to a base containing a recessed magnet (e.g., neodymium). The base is substantially flat other than an ornamental design and the ornamental elements rely on the strength of the magnet to firmly hold them in place rather than being recessed into the base or snapped into place. Other shapes could also be used for the interchangeable elements, if desired. The magnetically interchangeable jewelry can take a variety of forms including rings, bracelets, earrings, lanyards, multiple pendants on one necklace and/or other jewelry embodiments.

[0024] U.S. Patent App. Pub. No. 2012/0180522 to Severs discloses a jewelry device comprising a base unit which may be affixed to clothing or otherwise adapted to be worn on a person and a front unit which concentrically fits inside the base unit and either serves as an enclosure for an ornamented object or itself bears ornamentation. A ring or radial magnet is of a shape to fit inside the inner perimeter of the base unit. A ring or radial magnet is of a shape to fit around the outside perimeter of the front unit. Both front unit and base unit magnets are of a similar circumference allowing magnetic forces to secure front unit to base unit. Front units, or
ornamented objects enclosed by the front unit, are interchangeable with other like elements bearing different ornamentation.

[0025] U. S. Patent App. Pub. No. 2013/0247279 to Castillo discloses a collar stud assembly comprising a spherical magnet and an outer assembly. The outer assembly includes a frame which houses a magnet. The magnet of the frame and the spherical magnet are of opposite polarities and hold an inner collar and an outer collar of shirt between them when engaged. The outer assembly further includes an indent which holds the spherical magnet in a fixed position relative to the outer assembly.

[0026] Foreign Patent Application No. DE10138989 to Marbeck Male discloses an article of jewelry that consists of a base element fixed to the body or clothing, such as ring, necklace, bracelet, brouch to which is detachably fixed a decorative element. The detachable connection consists of at least one magnet on an element, and a magnet-pendant positioned on another element.

[0027] Foreign Patent Application No. EP1356747 to Dall’avo discloses a magnetic clasp for bracelets, necklaces and similar articles of goldsmithery or jewelry.

[0028] Internet Publication “Magnetic Jewelry Store” found at http://www.magnetjewelrystore.com/magnetichome.bracelets.html?gclid=Cj0KEQiwj6cdeBRCswuanqaC8haUBEiQAd q5vh8smajy7v3yOn7G6nO4Cyh1oDo5Hc9g99emKz M475MaAkbw8PH1Gq discloses magnetic bracelets.

[0029] Despite these jewelry constructs several disadvantages still remain. Many of the constructs are provided as preassembled jewelry pieces; thus a user cannot design or construct a jewelry piece. Other constructs fail to provide a system that can be readily assembled with minimum ease, while utilizing attachments that are inexpensive. As a result, several of the constructs fail to provide a secure mating attachment of jewelry portions, and as a result minimal force during wear of the assembled jewelry piece can cause disconnection and breakage.

[0030] Some constructs attempt to utilize magnetic mating constructs to connect interchangeable jewelry portions; however these constructs fail to provide an interface with enough magnetic surface area to securely hold the pieces in place during wear. When workers have attempted to increase security of the attached portions, safety is compromised as the pieces do not readily break-away when pulled on with adequate force. These embodiments present straining risks to young children wearing the jewelry pieces.

[0031] Accordingly, there exists a need for a jewelry system that allows a user to assemble and design his/her unique jewelry piece. There is a further need in the art for a jewelry system that can be readily assembled with minimum ease, while utilizing attachments that are inexpensive. Moreover, there exists a need for a jewelry system that is secure; yet breaks-away when pulled on with adequate force to thereby mitigate injury risks to those wearing constructed jewelry pieces.

SUMMARY OF THE INVENTION

[0032] The present invention is directed to magnetic jewelry connectors which can be interchangeably arranged to construct a wide variety of jewelry pieces. Briefly stated, the subject magnetic jewelry connectors are constructed having two mating magnetic clasps/plates/portions placed opposed to one another on a central portion forming a jewelry section. At least two magnetic connectors are provided for each given jewelry section. A plurality or more than one, jewelry section is preferably provided to form interchangeability when producing a jewelry piece to be worn. Pendant pieces are also preferably provided. The jewelry sections can be interchangeably connected to form a jewelry piece in the form of a bracelet, anklet, or necklace/pendant, earring or the like. As a safety measure, the jewelry piece will break apart to render the discrete jewelry section when pulled on by a child, thereby preventing choking hazards or risk of injury to other parts of the body with which the jewelry piece is associated.

[0033] The magnetic jewelry connectors are appointed to provide discrete, separate, jewelry sections that magnetically connect to interchangeably form a bracelet, anklet, necklace/pendant jewelry piece, ring and/or earrings to be worn. In addition to interchangeably forming style/finished when creating jewelry pieces, the subject magnetic jewelry connectors afford an important safety measure for children and those with disabilities in that the connection of the jewelry sections forming the jewelry piece will readily disconnect when pulled by a child, or entangled with an object such as a branch or swing link, thereby mitigating risk of injury to the neck, ears, hands or other body part with which the jewelry piece is associated.

[0034] At least one, and preferably a plurality, of the magnetic jewelry connectors are adapted to be magnetically bond together to form various jewelry pieces. The magnetic jewelry connectors generally comprise at least one jewelry section having at least two mating magnetic clasps placed opposed to one another on a central portion forming a jewelry section. These sections are generally constructed as chains or beaded chains or strands adapted to be interconnected to form a necklace, choker, bracelet, anklet or earring.

[0035] In a broad embodiment, the interchangeable jewelry system comprises at least two jewelry strand sections, each of the jewelry strand sections having a central body located centrally between two end walls; c) the end walls comprising oppositely attracting mating magnetic portions placed opposed to one another on the central body. The jewelry strand sections are adapted to be interchangeably connected together through the mating magnetic portions to form a jewelry piece. Jewelry strand sections may be formed as strands for making bracelets and necklaces, as posts with a magnetic top for forming earrings, and/or a ring portion with a magnetic ring top for forming a ring, the ring portion adapted to receive a finger. The interchangeable jewelry system comprises: a) at least two jewelry strand sections; b) each of the jewelry strand sections having a central body located centrally between two end walls; c) the end walls comprising oppositely attracting mating magnetic portions placed opposed to one another on the central body; and d) the mating magnetic portions comprising a first portion having a depressed magnetic female rim extending to form a magnetic female cavity section and mating raised magnetic male rim extending to form a magnetic male raised section, wherein the depressed magnetic female rim aligns with and receives the raised magnetic male rim to guide and seat the first and second magnetic portions together, and wherein the rings and the magnetic female cavity section the magnetic male raised section securely adjoins the jewelry strand sections together. Wherein the jewelry strand sections are adapted to be interchangeably connected together through
the mating portions to form a jewelry piece. Whereby the mating magnetic portions securely connect the jewelry strand sections together to prevent inadvertent loss while being operative to readily disconnect when subjected to a pulling force, thereby providing a safety feature that mitigates risk of injury.

[0036] An improved clasp for jewelry is also provided. The improvement comprises mating magnetic portions having a first portion with a depressed magnetic female rim extending to form a magnetic female cavity section, and a mating raised magnetic male rim extending to form a magnetic male raised section. The depressed magnetic female rim aligns with and receives the raised magnetic male rim, guiding the female and male sections together. The rims and the magnetic female cavity section, and the magnetic male raised section securely connect the jewelry strand sections together. The mating magnetic portions securely join together to prevent inadvertent loss of the jewelry while being operative to become readily disconnected when subjected to an abrupt pulling force, thereby providing a safety feature that mitigates risk of injury.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] The invention will be more fully understood and further advantages will become apparent when reference is had to the following detailed description of the preferred embodiments of the invention and the accompanying drawings, in which:

[0038] FIG. 1 illustrates a top plan view of an embodiment of the subject invention, showing a plurality of magnetic jewelry connectors adapted to be magnetically bond together to form various jewelry pieces;

[0039] FIG. 2 illustrates a top plan view of an embodiment of the subject invention, showing a plurality of magnetic jewelry connectors adapted to be magnetically bond together to form various jewelry pieces;

[0040] FIG. 3 illustrates an embodiment of the mating magnetic portions wherein the portions are formed as a ball and cup mating configuration;

[0041] FIG. 4 illustrates an embodiment of the mating magnetic portions wherein the portions are formed as disk-like plates; and

[0042] FIG. 5 illustrates an embodiment of the mating magnetic portions wherein the portions are formed as a hook that further secures the portions together, wherein the portions are being magnetically connected and the hook is disengaged;

[0043] FIG. 6 illustrates an embodiment of the mating magnetic portions wherein the portions are formed as dome shapes with substantially flat disk shaped magnetic surfaces that engage with one another, wherein the portions are shown for forming interchangeable earring jewelry pieces;

[0044] FIG. 7 illustrates an embodiment of the mating magnetic portions wherein the portions are formed as dome shapes with substantially flat disk shaped magnetic surfaces that engage with one another, and the portions are shown for forming interchangeable necklace or bracelet jewelry pieces;

[0045] FIG. 7a illustrates an embodiment of mating magnetic portions wherein the portions are formed as triangular shaped portions which when mated form a rectangular or square, and wherein the negative portion contains a depressed rim which mates with the positive portion formed as a male raised rim;

[0047] FIG. 7b illustrates the embodiment of FIG. 7a wherein the mating magnetic portions are being engaged together;

[0048] FIG. 7c illustrates top views of each of the negative and positive mating portions of the embodiment of FIG. 7a;

[0049] FIG. 7d illustrates an embodiment of mating magnetic portions wherein the portions are formed as triangular shaped portions which when mated form a rectangular or square, and wherein the positive portion contains a depressed rim which mates with the positive portion formed as a raised rim;

[0050] FIG. 8 illustrates an embodiment of FIG. 8a wherein the mating magnetic portions are being engaged together;

[0051] FIG. 8c illustrates a side view of the embodiment of FIG. 8a wherein the mating magnetic portions are being engaged together;

[0052] FIG. 8c illustrates top views of each of the negative and positive mating portions of the embodiment of FIG. 8a;

[0053] FIG. 9a illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed as triangular shaped portions which when mated form a rectangle or square;

[0054] FIG. 9b illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed having arced and curved mating surfaces;

[0055] FIG. 9c illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed having a recess and appendage mating surfaces;

[0056] FIG. 9d illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed having arced and curved mating surfaces;

[0057] FIG. 9e illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed having a recess and appendage mating surfaces;

[0058] FIG. 9f illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are mated to form a square shape;

[0059] FIG. 9g illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are mated to form a square shape and having a recess and appendage mating surface;

[0060] FIG. 10a illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed as half-oval shaped portions which when mated form an oval and wherein the positive portion includes a cavity for receiving a male magnetic portion;

[0061] FIG. 10b illustrates a top plan view of the portions of FIG. 10a being connected/disconnected;

[0062] FIG. 11a illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed as half-oval shaped portions which when mated form an oval and wherein the portions are a zigzag mating surface;

[0063] FIG. 11b illustrates a top plan view of the portions of FIG. 11a being connected/disconnected;

[0064] FIG. 12a illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed as disk shaped portions;
[0065] FIG. 12b illustrates a top plan view of the portions of FIG. 12a being connected/disconnected.

[0066] FIG. 13r illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed as half-oval shaped portions which when mated form an oval and wherein the positive portion includes a cavity for receiving a male magnetic portion.

[0067] FIG. 13l illustrates a front view of the portions of FIG. 13a being connected/disconnected.

[0068] FIG. 14r illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed as oval shaped portions.

[0069] FIG. 14l illustrates a top views of the portions of FIG. 14a.

[0070] FIG. 14l illustrates a top plan view of the portions of FIG. 14a being connected/disconnected.

DETAILED DESCRIPTION OF THE DISCLOSURE

[0071] The best mode for carrying out the present disclosure is presented in terms of the embodiments herein. The embodiments described herein detail for illustrative purposes and are subject to many variations. It is understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient, but are intended to cover the application or implementation without departing from the spirit or scope of the present disclosure. Further, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting. Any of the headings utilized within the description are for convenience only and have no legal or limiting effect.

[0072] The subject magnetic jewelry connectors are appointed to provide discrete, separate, jewelry sections that magnetically connect to interchangeably form a bracelet, anklet, earring, or necklace/pendant jewelry piece to be worn. In addition to interchangeability for style/fashion, in creating jewelry pieces, the subject magnetic jewelry connectors provide a significant safety feature that particularly concerns children and those with disabilities, that in the connection of the jewelry sections forming the jewelry piece readily disconnect when pulled by a child, thereby mitigating choking risks and the risk of injury to other parts of the body with which the jewelry piece may be associated.

[0073] The subject invention provides for mating magnetic portions that mate by way of interstitial attachment through mating rims and/or magnetic surfaces, as opposed to flat magnetic configurations. It has been found that utilizing a mating magnetic clasp comprising a negative portion containing a depressed female rim mated with a positive portion containing a male raised rim provides the ability to guide and seat the clasp together providing a secure attachment that remains securely in place and withstands normal wear, thereby improving security of the connection and protecting the connection from being broken. At the same time, it has been found that the clasp readily breaks apart upon encountering a yanking force. The mating rims and magnetic portions of the clasp are readily disconnected, thereby providing a safety feature that prevents or mitigates risk of injury to children, or to disabled or elderly persons.

[0074] On the other hand, flat magnetic configurations, such as dome shaped flat disk configurations, restrict magnetic mating to the flat disk interface. As a result, the magnetic bonding is considerably less strong and frequent misalignment of the magnetic discs decreases the effective magnetic attractive force, causing the magnetic portions to be less securely fastened to one another. Minimal force during wear of these flat configuration jewelry clasps can cause the magnetic mating portions to slide with respect to one another, thereby significantly weakening the magnetic force between the mating surfaces. With such an arrangement, the flat disks of the magnetic portions are too easily disengaged with the result that components of the lanyard are broken or lost by the wearer.

[0075] It has been found that construction of a magnetic clasp having mating magnetic portions with female and male mating rim configurations [with either the positive or negative being female; and the opposing positive or negative being male] results in a safe and secure connection that mitigates risk of injury to the wearer. In addition to the interchangeability of the subject jewelry system for forming stylish and fashionable jewelry pieces, the subject interchangeable jewelry system provides a significant safety feature by readily disconnecting (to form discrete jewelry sections) when pulled apart. Thus, the risk of choking or injury is mitigated. This safety feature is of particular concern when dealing with children and those having disabilities.

[0076] One of the problems confronting jewelry constructs as determined herein is the difficulty of creating a jewelry piece that would remain securely in place when being worn (so as not to be lost during normal activity) and yet would break apart during application of more than normal force to mitigate the risk of choking, and the like. By using a mating magnetic clasp comprising a first portion having a depressed magnetic female rim extending to form a magnetic female cavity section and a mating raised magnetic male rim extending to form a magnetic male raised section, the portions are easily guided together to provide a secure attachment that resists migration of connecting portions, maintains constant the effective magnetic attractive force, and assures a secure connection during normal wear. As used herein, the term “normal wear” is considered to mean those occasions wherein the jewelry is adorned by a user and the user goes about her/his day in work-related, non-contact sports activities. The depressed magnetic female rim aligns with and receives the raised magnetic male rim to guide and seat the first and second magnetic portions together. Preferably, the mating magnetic clasp comprises the negative portion containing the depressed female rim mated with the positive portion containing the male raised rim. With this embodiment, the surface area of the magnetic connection afforded by the rims and the magnetic female cavity and magnetic male raised section is increased and stabilized to thereby prevent migration of the opposing magnetic portions, and provide a secure connection during normal wear. At the same time, the connection achieved by this embodiment is operative to readily disconnect when subjected to more than normal force during wearing. More than normal force during wear can occur when the jewelry is caught on an object and pulled by a force or subjected to pulling force by another person that either abrupt or continuous. This pulling force can be a downward, upward or outward force that causes the rims to become miss-aligned and pull apart. During instances where the force immediately ceases, the rims will magnetically snap back into place. However, if the force continues or has considerable magnitude, the magnetic female cavity and
magnetic male raised section will become pulled apart and the jewelry will release, thereby providing a safety mechanism that mitigates injury to the wearer. This feature—attachment means that safely secures the jewelry piece to prevent inadvertent loss thereof, and yet facilitates disconnection when the jewelry pieces are subjected to more than normal forces to provide a safety feature that mitigates injury—is a necessary prerequisite for safe, secure wearing of the jewelry pieces, which is especially significant for children, elderly and/or disabled individuals. The improved clasp structure or mating magnetic portions thereby affords advantages of (i) secure attachment (so the jewelry will not be inadvertently lost); and (ii) a break-away feature, which mitigates risk of damages to the wearer of the magnetic jewelry piece.

[0077] Flat magnetic connections or connections having limited mating magnetic surface areas have been found have too little magnetic force strength, resulting in a connection that is not as strong as the subject mating configuration. Consequently, flat magnetic connections are prone to frequent misalignment of the magnetic discs during normal wear, causing the magnetic portions to fail to be securely fastened to one another. Even minimal forces can cause the magnetic portions of flat magnetic connections to become disengaged when the user is wearing the jewelry piece, ultimately resulting in breakage and/or loss of jewelry. The subject invention provides for a magnetic connection of interchangeable jewelry strands that (i) facilitates easy alignment and connectivity while (ii) safeguarding the wearer against inadvertent loss of the jewelry pieces and (iii) mitigating against injury to the wearer if the jewelry were to become entangled with or caught on an obstruction.

[0078] Generally, the subject magnetic jewelry connectors are constructed with two mating magnetic clasps placed opposed to one another on a central portion, forming a jewelry section. At least two magnetic connectors are provided for each given jewelry section. A plurality or more than one, jewelry section is preferably provided to form interchangeability in yielding a jewelry piece to be worn. Pendant pieces are also preferably provided. The jewelry sections can interchangeably be connected to form a bracelet, anklet, earring or necklace/pendant jewelry piece. As a safety measure, the jewelry piece will break apart to render discrete each jewelry section, when pulled on by a child, thereby reducing the risk of choking or injury to the wearer’s neck, ear, wrist, ankle, or hand.

[0079] FIG. 1 illustrates an embodiment of the subject invention, showing a plurality of magnetic jewelry connectors adapted to be magnetically bonded together to form various jewelry pieces. Magnetic jewelry connectors are shown generally at 10. Specifically, strand jewelry sections are shown at 11 as connector strands having two mating magnetic clasps 12a, 12b placed opposed to one another on a central portion 13 forming strand jewelry section 11. These sections are generally constructed as chains or beaded chains or strands adapted to be interconnected to form a necklace 30, choker (not shown), or bracelet. Pendant jewelry sections are shown generally at 20. Pendant jewelry sections have two mating magnetic clasps 22a, 22b placed opposed to one another on a central portion 23 having a pendant 24 forming pendant jewelry section 20. Pendant jewelry section 20 is adapted to be interconnected to strand jewelry sections 11 to form a necklace with a pendant as shown generally at 31.

[0080] Earring jewelry sections are shown generally at 40. Earring jewelry sections 40 include a base stud portion 41 having a mating magnetic top surface 42 attached to a stud 43 having an earring backing 44 removably attached thereto. Base stud portion 41 is adapted to be inserted into a user’s ear lobe or other pierced body part, and secured by way of earring backing 44, presenting mating magnetic top surface 42 for magnetic attachment of a jewelry top portion 45. Jewelry top portion 45 is constructed having a show surface 46 preferably with an ornamental feature attached to a base portion 47 having a mating magnetic surface adapted to matingly engage with the mating magnetic top surface 42 of the base stud portion 41 to form an earring as shown generally at 49.

[0081] The connectors/mating magnetic surface can be constructed as mating magnetic balls adapted to be received within mating magnetic cups as shown generally in FIG. 1, or as a plethora of various mating connector structures. These mating magnetic surfaces may be decorative mating clasps, hooks, fasteners, plates, balls, or other constructs functioning to matingly magnetically interconnect to one another to form a jewelry piece. A single jewelry section may be used alone, as shown via strand jewelry sections 11' unilaterally forming a bracelet 50. Alternatively, more than one jewelry sections 11/strand/pendant 20 may be mated to form a jewelry piece. The jewelry pieces sections can be formed in a plethora of designs and made with a plethora of different jewelry pieces, links, beads, chains, and the like.

[0082] FIG. 2 illustrates another embodiment of the subject invention, showing a plurality of magnetic jewelry connectors adapted to be magnetically bonded together to form various jewelry pieces. Referring to FIG. 2, the magnetic jewelry connectors are shown generally at 110. Specifically, strand jewelry sections are shown at 111 showing connector strands having two mating magnetic clasps 112a, 112b placed opposed to one another on a central portion 113 forming strand jewelry section 111. These sections are generally constructed as chains or beaded chains or strands adapted to be interconnected to form a necklace 130, choker (not shown), or bracelet. Pendant jewelry sections are shown generally at 120. Pendant jewelry sections have two mating magnetic clasps 122a, 122b placed opposed to one another on a central portion 123 having a pendant 124 forming pendant jewelry section 120. Pendant jewelry section 120 is adapted to be interconnected to strand jewelry sections 111 to form a necklace with a pendant as shown generally at 131.

[0083] Earring jewelry sections are shown generally at 140. Earring jewelry sections 140 include a base stud portion 141 having a mating magnetic top surface 142 attached to a stud 143 having an earring backing 144 removably attached thereto. Base stud portion 141 is adapted to be inserted into a user’s ear lobe or other pierced body part, and secured by way of earring backing 144. Mating magnetic top surface 142 is thereby presented for magnetic attachment of a jewelry top portion 145. Jewelry top portion 145 is constructed with a show surface 146 preferably with an ornamental feature attached to a base portion 147 having a mating magnetic surface 148 adapted to matingly engage with the mating magnetic top surface 142 of the base stud portion 141 to form an earring as shown generally at 149.

[0084] A single jewelry section may be used alone, as shown via strand jewelry sections 111 unilaterally forming a bracelet 150. In an alternative embodiment a decorative portion may be provided as a charm 160 adapted to be
placed or slid upon strand jewelry section 111. Charm 160 is constructed with a loop or clasp 161 attached to a magnetic plate/surface 162. The surface 162 is adapted to be matingly magnetically attached to a charm portion 163 constructed with a charm show surface 164. The surface 164 is fixed to a mating magnetic charm plate/surface 165 adapted to mate with magnetic plate/surface 162 of loop or clasp 161. Loop or clasp 161 is adapted to slide portions and jewelry section 111 to place the charm 160 on strand 111.

[0085] FIG. 3 illustrates an embodiment of the mating magnetic portions wherein the portions are formed as a ball and cup mating configuration, shown generally at 300. Partial view of strand jewelry sections 311a, 311b are shown with mating magnetic clasps 312a and 312b, respectively, shown connectors having mating magnetic surfaces. Connectors/mating magnetic surfaces of the clasps are constructed as mating magnetic ball 312a adapted to be received within mating magnetic cup 312b as shown.

[0086] FIG. 4 illustrates an embodiment of the mating magnetic portions wherein the portions are formed as disk like plates, shown generally at 400. A partial view of strand jewelry sections 411a, 411b is shown wherein mating magnetic plates 412a and 412b, respectively, form connectors having mating magnetic surfaces. Connectors/mating magnetic surfaces of the clasps are constructed as mating magnetic plates or disks 312a and 312b as shown.

[0087] FIGS. 5a and 5b illustrate an embodiment of the mating magnetic portions wherein the portions include a clasp or hook to further secure the portions together. FIG. 5a shows the mating magnetic portions wherein the portions are being magnetically connected and the clasp or hook is disengaged, shown generally at 500. FIG. 5b illustrates the embodiment of FIG. 5a wherein the portions are magnetically connected and the clasp or hook is engaged to a locking position, shown generally at 550. Referring to FIGS. 5a and 5b, a partial view of strand jewelry sections 511a, 511b is shown wherein mating magnetic plates 512a and 512b, respectively, form connectors having mating magnetic surfaces. Connectors/mating magnetic surfaces of the clasps are constructed as mating magnetic ball 512a adapted to be received within mating magnetic cup 512b as shown. A rotating clasp 515 is mounted on cup 512b and upon insertion of magnetic ball 512a the clasp 515 is rotated 360 degrees to lug or cradle ball 512a as shown at 510.

[0088] FIG. 6a illustrates an embodiment of the mating magnetic portions wherein the portions are formed as dome shapes with substantially flat disk shaped magnetic surfaces that engage with one another, shown generally at 600. Herein, the portions are shown for forming interchangeable earring jewelry pieces 649. Earring jewelry sections are shown generally at 640. Earring jewelry sections 640 include a base portion 641 having a mating magnetic top surface 612a attached to a stud/post/chain or other support 643 having an earring backing (such as 44 in FIG. 1) or lobe hook as shown herein at 644. Lobe hook 644 of base stud portion 641 is adapted to be inserted into a user's ear lobe or other pierced body part, presenting mating magnetic top surface 612a for magnetic attachment of a jewelry top portion 645. Jewelry top portion 645 is constructed having a show surface 646 preferably with an ornamental feature attached to a base portion 647 having a mating magnetic surface 612b adapted to matingly engage with the mating magnetic top surface 612a of the base stud portion 641 to form an earring as shown generally at 649. In the embodiment shown, base portion 641 and top portion's 645 base portions 647 are herein formed as dome shapes with substantially flat disk shaped magnetic surfaces 612a, 612b, respectively, that magnetically engage with one another. Different jewelry top portions 645 are provided for interchangeability, as shown for example at 645. A plethora of different top portions can be provided in a full range of designs and shapes without departing from the subject invention.

[0089] FIG. 6b illustrates the embodiment of the mating magnetic portions wherein the portions are formed as dome shapes with substantially flat disk shaped magnetic surfaces that engage with one another, wherein the portions are shown for forming interchangeable necklace or bracelet jewelry pieces, shown generally at 650. A partial view of strand jewelry sections 611a, 611b is shown wherein mating magnetic clasps 612a and 612b, respectively, form connectors having mating magnetic surfaces. Connectors/mating magnetic surfaces of the clasps are constructed as mating magnetic plates or disks 612a and 612b on dome shaped bases as shown.

[0090] FIG. 7a illustrates an embodiment of mating magnetic portions wherein the portions are formed as triangular shaped portions, shown generally at 700. FIG. 7b illustrates the embodiment of FIG. 7a wherein the mating magnetic portions are being engaged together. FIG. 7c illustrates top views of each of the negative and positive mating portions of the embodiment of FIG. 7a. The magnetic jewelry connectors are located on opposing ends of a jewelry strand, as discussed and depicted hereinabove regarding FIGS. 1-5, and are adapted to be magnetically bonded together to form various jewelry pieces.

[0091] In the embodiment shown in FIGS. 7a-7c, the mating magnetic portions are constructed as mating half-geometrical structures that form the corresponding whole geometrical structure when mated. A first mating magnetic portion 701 is shown constructed as a triangular shape having a depressed magnetic female rim 702 circumferentially surrounding a magnetic female cavity section 703. An opposite magnetically charged second mating portion 721 is shown also constructed as a triangular shape, and having a mating raised magnetic male rim 722 circumferentially surrounding a magnetic male raised section 723. When the mating magnetic portions 701 and 721 are mated, the two triangular portions form a rectangular or square shape as shown via magnetic attraction. During attachment, the depressed magnetic female rim 702 aligns with and receives the raised magnetic male rim 722 to guide and seat the first and second magnetic portions, 701, 721, together. The rims 702, 722, and the magnetic female cavity section 703, and the magnetic male raised section 723 securely adjoin jewelry strand sections together. In the embodiment shown, the magnetic female cavity section 703 and the magnetic male raised section 723 make up only a portion of each of the bottom faces of each of the first and second portions 701, 721.

[0092] Mating magnetic portions 701, 721 are formed having an outside shell 701", 721" with a magnetic core 701", 721" which the rims 702, 722, and cavity section 703 and male raised section 723 are cut into or formed within. As a result, rims 702, 722, cavity section 703 and male raised section 723 are all magnetized to form a large, non-flat, or uneven magnetic surface area. In this manner, large surface areas are provided for magnetic connection on different
planes [i.e., x, y, z geometrical planes]. The depressed female rim 702 extends from, abuts and is substantially perpendicular/at a 90° angle to the magnetic female cavity section 703, forming a wall preferably entirely or circumferentially surrounding magnetic female cavity section 703. Preferably, depressed female rim 702 and magnetic female cavity section 703 have a negative magnetic charge; portion 721 is the opposite charge, preferably thus being positive (the charges may be reversed). Thereby, depressed female rim 702 abuts and extends perpendicular to female cavity 703. Female cavity 703 may be flat or have curved or linear uneven portions. Mating raised male rim 721 extends upward, abuts and is substantially perpendicular/at a 90° angle to a bottom peripheral 724 to form the magnetic male raised section 723.

[0093] FIG. 8a illustrates an embodiment of mating magnetic portions wherein the portions are formed as triangular shaped portions which when mated form a rectangular or square, and wherein the negative portion contains a depressed rim which mates with the positive portion formed as a male raised rim, shown generally at 800. FIG. 8b illustrates the embodiment of FIG. 8a wherein the mating magnetic portions are being engaged together. FIG. 8c illustrates a side view of FIG. 8a wherein the mating magnetic portions are being engaged together. FIG. 8d illustrates top views of each of the negative and positive mating portions of the embodiment of FIG. 8a. The magnetic jewelry connectors are located on opposing ends of a jewelry strand, as described and depicted hereinabove regarding FIGS. 1-5, and are adapted to be magnetically bonded together to form various jewelry pieces.

[0094] Referring to FIGS. 8a-8d, the mating magnetic portions are constructed as mating half-geometrical structures that form the corresponding whole geometrical structure when mated. A first mating magnetic portion 801 is shown constructed as a triangular shape having a depressed magnetic female rim 802 circumferentially surrounding a magnetic female cavity section 803. An opposite magnetically charged second mating portion 821 is shown also constructed as a triangular shape, and having a mating raised magnetic male rim 822 circumferentially surrounding a magnetic male raised section 823. In the embodiment shown, the female cavity 803 and male raised section 823 form a substantially central area of the bottom faces of each of the portions 801, 821. When the mating magnetic portions, 801 and 821, are mated the two triangular portions form a rectangular or square shape as shown via magnetic mating. During attachment, the depressed magnetic female rim 802 aligns with and receives the raised magnetic male rim 822 to guide and seat the first and second magnetic portions, 801, 821, together. The rims 802, 822, and the magnetic female cavity section 803, and the magnetic male raised section 823 securely adjoin the jewelry strand sections together.

[0095] Mating magnetic portions 801, 821 are formed having an outside shell 801', 821' with a magnetic core 801", 821" which the rims 802, 822, and cavity section 803 and male raised section 823 are cut into or formed within. As a result, rims 802, 822, cavity section 803 and male raised section 823 are all magnetized to form a large, non-flat, or uneven magnetic surface area. In this manner, large surface areas are provided for magnetic connection on different planes [i.e., x, y, z geometrical planes]. The depressed female rim 802 extends from, abuts and is substantially perpendicular/at a 90° angle to the magnetic female cavity section 803 forming a wall preferably entirely or circumferentially surrounding magnetic female cavity section 803. Preferably, depressed female rim 802 and magnetic female cavity section 803 have a negative magnetic charge; portion 821 has the opposite charge, preferably thus being positive (the charges may be reversed). Thereby, depressed female rim 802 abuts and extends perpendicular to female cavity 803. Female cavity 803 may be flat or have curved or linear uneven portions. Mating raised male rim 821 extends upward, abuts and is substantially perpendicular/at a 90° angle to a bottom peripheral 824 to form the magnetic male raised section 823.

[0096] FIGS. 9a-9g illustrate alternative embodiments of the subject mating magnetic connectors. FIG. 9a illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed as triangular shaped portions which when mated form a rectangular or square with a linear mating surface shown at 930, similar to those depicted in FIGS. 7a-8d. FIG. 9b illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed having arced and curved mating surfaces shown at 931. FIG. 9c illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed having arced and curved mating surfaces shown at 932. FIG. 9d illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed having arced and curved mating surfaces shown at 933. FIG. 9e illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed having arced and curved mating surfaces shown at 934. FIG. 9f illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed having a recess and appendage mating surfaces shown at 935. FIG. 9g illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed to have a recess and appendage mating surface shown at 936.

[0097] FIG. 10a illustrates a side view of an alternative embodiment of mating magnetic portions wherein the portions are formed as having arced portions wherein when mated form an oval and wherein the positive portion includes a cavity for receiving a male magnetic portion, shown generally at 1000. FIG. 10b illustrates a top plan view of the portions of FIG. 10a being connected/disconnected. Referring to FIGS. 10a-10b, in this embodiment, the magnetic female cavity section 1041 includes a magnetic secondary cavity 1041' that extends inward from said cavity section 1041 and the magnetic male raised section 1051 includes a magnetic secondary extension 1051' (bullet shaped) that extends outward from said male raised section 1051. In this configuration, rims 1034 magnetically engage, magnetic female cavity section 1041 and magnetic male raised section 1051 magnetically engage, and magnetic secondary cavity 1041' and said magnetic secondary extension 1051' magnetically engage. Structurally, at least three different magnetic engagement mating surfaces result.

[0098] FIG. 11a illustrates a side view of an alternative embodiment of mating magnetic portions, shown generally at 1100, wherein the first and second portions 1101, 1121, are formed as half-oval shaped portions which when mated form an oval and wherein surfaces and rims form a zigzag
mating surface shown at 1130. FIG. 11b illustrates a top plan view of the portions of FIG. 11a being connected/disconnected.

[0099] FIG. 12a illustrates a side view of an alternative embodiment of mating magnetic portions, shown generally at 1200, wherein the portions 1201, 1221, are formed as disk shaped portions with the magnetic rims and surfaces. FIG. 12b illustrates a top plan view of the portions of FIG. 12a being connected/disconnected.

[0100] FIG. 13a illustrates a side view of an alternative embodiment of mating magnetic portions, shown generally at 1300, wherein the portions 1301, 1321, are formed as half-oval shaped portions which when mated form an oval and wherein the positive portion includes a secondary cavity for receiving a secondary male magnetic portion. FIG. 13b illustrates a top plan view of the portions of FIG. 13a being connected/disconnected.

[0101] FIG. 14a illustrates a side view of an alternative embodiment of mating magnetic portions 1401, 1421 wherein the portions are formed as oval shaped portions, shown generally at 1400. FIG. 14c illustrates a top view of the portions of FIG. 14a. FIG. 14d illustrates a top plan view of the portions of FIG. 14a being connected/disconnected.

[0102] The foregoing descriptions of specific embodiments of the present disclosure have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the present disclosure to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The exemplary embodiment was chosen and described in order to best explain the principles of the present disclosure and its practical application, to thereby enable others skilled in the art to best utilize the present disclosure and various embodiments with various modifications as are suited to the particular use contemplated.

[0103] Accordingly, having thus described the invention in rather full detail, it will be understood by those skilled in the art that such detail need not be strictly adhered to; but that further changes and modifications may suggest themselves to one skilled in the art, all falling within the scope of the invention, as defined by the subjoined claims.

What is claimed is:

1. An interchangeable jewelry system comprising:
 a. at least two jewelry strand sections;
 b. each of said jewelry strand sections having a central body located centrally between two end walls;
 c. said end walls comprising oppositely attracting mating magnetic portions placed opposed to one another on said central body;
 d. said mating magnetic portions comprising a first portion comprising a depressed magnetic female rim extending to form a magnetic female cavity section and second portion comprising a mating raised magnetic male rim extending to form a magnetic male raised section, wherein said depressed magnetic female rim aligns with and receives said raised magnetic male rim to guide and seat said first and second magnetic portions together, and wherein said rims and said magnetic female cavity section said magnetic male raised section securely adjoins said jewelry strand sections together;
 e. said jewelry strand sections being adapted to be interchangeably connected together through said mating portions to form a jewelry piece;

whereby said mating magnetic portions securely connect said jewelry strand sections together to prevent inadvertent loss while being capable of disconnecting when subjected to a pulling force, thereby providing a safety feature that mitigates injury.

2. The interchangeable jewelry system as recited in claim 1, wherein said jewelry strand sections are formed as elongated strands adapted to be mounted together to form said jewelry piece.

3. The interchangeable jewelry system as recited in claim 1 comprising at least one ornamental add-on section, wherein said ornamental add-on section comprises an ornamental connector section having a central body located between two end walls comprising oppositely attracting mating magnetic portion placed opposed to one another on said central body, and a pendant located on said central body of said ornamental connector section.

4. The interchangeable jewelry system as recited in claim 1 comprising at least one ornamental add-on charm, wherein said charm comprises a main body with a back side and a front side, wherein said back side has a loop adapted to receive said jewelry connector section therein to traverse along said jewelry connector section, and wherein said front side has a mating magnetic surface to receive a decorative jewelry portion having a mating magnetic surface.

5. The interchangeable jewelry system as recited in claim 1 comprising earring connector members.

6. The interchangeable jewelry system as recited in claim 1, wherein said jewelry strand sections comprise a first portion with a post and a magnetic surface.

7. The interchangeable jewelry system as recited in claim 1 comprising ring connector members.

8. The interchangeable jewelry system as recited in claim 1, wherein said jewelry strand sections comprise a first portion with a ring portion adapted to receive a finger and a ring top having a magnetic surface.

9. The interchangeable jewelry system as recited in claim 1, wherein said depressed rim is a negative magnetic portion and said male raised rim is a positive magnetic portion.

10. The interchangeable jewelry system as recited in claim 1, wherein said depressed rim is located on a perimeter of said mating magnetic portion and extends substantially continuously and uninterrupted thereon, and wherein said male raised rim is located on a perimeter of said opposite mating magnetic portion and extends substantially continuously and uninterrupted thereon.

11. The interchangeable jewelry system as recited in claim 10, wherein said depressed rim extends to forms a cavity and said male raised rim extends to form a magnetic central section, wherein said rims mate and said cavity matingly receives said magnetic central section.

12. The interchangeable jewelry system as recited in claim 1, wherein said mating magnetic portions comprise a circular and cup mating configuration.

13. The interchangeable jewelry system as recited in claim 1, wherein said mating magnetic portions comprise disk like plates.

14. The interchangeable jewelry system as recited in claim 1, wherein said mating magnetic portions further comprise a clasp or hook.

15. The interchangeable jewelry system as recited in claim 1, wherein said mating magnetic portions comprise dome structures.
16. The interchangeable jewelry system as recited in claim 1, wherein said mating magnetic portions comprise mating half-geometrical structures that form a corresponding whole geometrical structure when mated.

17. The interchangeable jewelry system as recited in claim 1, wherein said rims of said mating magnetic portions comprise zigzag shaped magnetic surface that engage with one another.

18. The interchangeable jewelry system as recited in claim 1, wherein said mating magnetic portions comprise square geometrical portions and said rims are mating Z-shaped magnetic surfaces that engage with one another.

19. The interchangeable jewelry system as recited in claim 1, wherein said magnetic female cavity section includes a magnetic secondary cavity that extends inward from said cavity section, and wherein said magnetic male raised section includes a magnetic secondary extension that extends outward from said male raised section, and wherein said magnetic secondary cavity receives said magnetic secondary extension.

20. An improved clasp for jewelry, said improvement comprising mating magnetic portions comprising a first portion having a depressed magnetic female rim extending to form a magnetic female cavity section and a mating raised magnetic male rim extending to form a magnetic male raised section, wherein said depressed magnetic female rim aligns with and receives said raised magnetic male rim to guide and seat said first and second magnetic portions together, and wherein said rims and said magnetic female cavity section said magnetic male raised section securely connect said jewelry strand sections together; and whereby said mating magnetic portions securely connect together to prevent inadvertent loss of said jewelry while being capable of disconnecting when subjected to a pulling force, thereby providing a safety feature that mitigates injury.