COMBINATION THERAPIES FOR B-CELL LYMPHOMAS COMPRISING ADMINISTRATION OF ANTI-CD20 ANTIBODY

Applicant: Biogen Inc., Cambridge, MA (US)

Inventor: Antonio J. Grillo-Lopez, South San Francisco, CA (US)

Appl. No.: 15/334,235

Filed: Oct. 25, 2016

Related U.S. Application Data

Division of application No. 15/225,594, filed on Aug. 1, 2016, which is a division of application No. 13/524,837, filed on Jun. 15, 2012, which is a division of application No. 11/840,956, filed on Aug. 18, 2007, now Pat. No. 8,329,172, which is a continuation of application No. 10/196,732, filed on Jul. 17, 2002, now abandoned, which is a continuation of application No. 09/372,202, filed on Aug. 11, 1999, now Pat. No. 6,455,043.

Provisional application No. 60/096,180, filed on Aug. 11, 1998.

Publication Classification

Int. Cl.
C07K 16/28 (2006.01)
A61K 38/20 (2006.01)
A61K 38/19 (2006.01)
A61K 39/395 (2006.01)
A61K 38/21 (2006.01)

U.S. Cl.
CPC C07K 16/2887 (2013.01); A61K 39/39558 (2013.01); A61K 38/212 (2013.01); A61K 38/193 (2013.01); A61K 38/2013 (2013.01); C07K 2317/24 (2013.01); C07K 2317/56 (2013.01); A61K 2039/505 (2013.01)

ABSTRACT

New combined therapeutic regimens for treatment of B-cell lymphomas are disclosed which comprise, in particular, administration of anti-CD20 antibodies to patients having low-, intermediate- or high-grade non-Hodgkin’s lymphomas.
FIG. 2

Number of Patients

Grade of Event

1
2
3
4

1st Infusion
2nd Infusion
3rd Infusion
4th Infusion
Post-treatment
COMBINATION THERAPIES FOR B-CELL LYMPHOMAS COMPRISING ADMINISTRATION OF ANTI-CD20 ANTYBODY

CROSS-REFERENCE TO RELATED APPLICATIONS

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Apr. 4, 2014, is named GNE0375R1CD20D11US.txt and is 2,517 bytes in size.

FIELD OF THE INVENTION

[0003] The invention relates to the use of anti-CD20 antibodies or fragments thereof in the treatment of B-cell lymphomas, particularly the use of such antibodies and fragments in combined therapeutic regimens.

BACKGROUND OF THE INVENTION

[0004] The use of antibodies to the CD20 antigen as diagnostic and/or therapeutic agents for B-cell lymphoma has previously been reported. CD20 is a useful marker or target for B-cell lymphomas as this antigen is expressed at very high densities on the surface of malignant B-cells, i.e., B-cells wherein unaltered proliferation can lead to B-cell lymphomas.

[0005] CD20 or Bp35 is a B-lymphocyte-restricted differentiation antigen that is expressed during early pre-B-cell development and remains until plasma cell differentiation. It is believed by some that the CD20 molecule may regulate a step in the B-cell activation process which is required for cell cycle initiation and differentiation. Moreover, as noted, CD20 is usually expressed at very high levels on neoplastic ("tumor") B-cells. The CD20 antigen is appealing for targeted therapy, because it does not shed, modulate, or internalize.

[0006] Previous reported therapies involving anti-CD20 antibodies have involved the administration of a therapeutic anti-CD20 antibody either alone or in conjunction with a second radiolabeled anti-CD20 antibody, or a chemotherapeutic agent.

[0007] In fact, the Food and Drug Administration has approved the therapeutic use of one such anti-CD20 antibody, RITUXAN®, for use in relapsed and previously treated low-grade non-Hodgkin’s lymphoma (NHL). Also, the use of RITUXAN® in combination with a radiolabeled murine anti-CD20 antibody has been suggested for the treatment of B-cell lymphoma.

[0008] However, while anti-CD20 antibodies and, in particular, RITUXAN® (U.S.; in Britain, MABTHERA®, in general Rituximab), have been reported to be effective for treatment of B-cell lymphomas, such as non-Hodgkin’s lymphoma, the treated patients are often subject to disease relapse. Therefore, it would be highly desirable if more effective treatment regimens could be developed. More specifically, it would be advantageous if anti-CD20 antibodies had a beneficial effect in combination with other lymphoma treatments, and if new combined therapeutic regimens could be developed to lessen the likelihood or frequency of relapse. Also, it would be helpful if current treatment protocols for B-cell lymphoma were improved whereby patients with lymphomas which are refractory to other treatment methods could be treated with chimeric or radiolabeled anti-CD20 antibodies. It would also be helpful if treatment with anti-CD20 antibodies, particularly in combination with other treatments, could be used as therapy for other types of lymphomas besides low grade, follicular non-Hodgkin’s lymphoma (NHL).

SUMMARY OF THE INVENTION

[0009] The present invention discloses combined therapeutic treatments for B-cell lymphomas, and reports the benefits of treating relapsed or refractory B-cell lymphomas with chimeric and radiolabeled anti-CD20 antibodies. In particular, it has been found that treatment with anti-CD20 antibody provides a beneficial synergistic effect when administered in combination with cytokines, radiotherapy, myeloablative therapy, or chemotherapy. Surprisingly, patients who had prior bone marrow or stem cell transplantation had an unexpected increase in the over-all response rate when compared with patients with no prior therapy.

BRIEF DESCRIPTION OF THE FIGURES

[0010] FIG. 1: Time to progression (TTP) for all 151 assessable patients and TTP for 76 responders (CR or PR). Kaplan-Meier projected overall median TTP is 9.0 months (95% confidence interval [CI], 6.7 to 11.4); projected TTP for responders is 12.5 months (95% CI, 11.0 to 16.0).

[0011] FIG. 2: Adverse events attributed to antibody, or cause unknown, stratified by infusion number. As depicted by solid and white shading, 96% of events were grade 1 or 2.

[0012] FIG. 3: Median CD19+ lymphocyte counts (...) were depleted after 1 antibody infusion and recovered by 9 to 12 months. A minority of patients (n=16) did not deplete circulating B cells. These were predominantly SI patients (n=13) and nonresponders (n=15).

[0013] FIGS. 4A, 4B, 4C: Patients with (A) complete response (CR) or (B) partial response (PR) show accumulation of antibody, whereas (C) nonresponder shows rapid clearance.

DETAILED DESCRIPTION OF THE INVENTION

[0014] This invention encompasses combined therapeutic regimens for the treatment of B-cell lymphomas. In general, such methods include a method for treating relapsed B-cell lymphoma, where a patient having prior treatment for lymphoma has relapsed and is administered a therapeutically
effective amount of a chimeric anti-CD20 antibody. Such prior treatments can include, for example, previous treatment with anti-CD20 antibodies, treatments which included a bone marrow or stem cell transplantation, radiotherapy and chemotherapy. The previous chemotherapy may be selected from a wide group of chemotherapeutic agents and combination regimens, including CHOP, ICE, Mitozantrone, Cytarabine, DVP, ATRA, Idarubicin, hoelzer chemotherapy regime, LaLa chemotherapy regime, ABVD, CEOP, 2-Cda, FLAG & IDA with or without subsequent G-CSF treatment), VAD, M & P, C-Weekly, ABCM, MOPP and DHAP.

[0015] Also included in the methods of the invention are methods for treating a subject having B-cell lymphoma wherein the subject is refractory to other therapeutic treatment including all those listed above, i.e., treatment with chimeric anti-CD20 antibody, treatments which included a bone marrow or stem cell transplantation, radiotherapy and chemotherapy. In particular, encompassed are methods of treating a patient who has not exhibited appreciable tumor remission or regression after administration of a chimeric anti-CD20 antibody, comprising administering to said patient a radiolabeled anti-CD20 antibody.

[0016] In particular, the methods of treating a patient with a radiolabeled antibody after a chimeric antibody are performed whereby the radiolabeled anti-CD20 antibody is administered from about one week to about two years after said administration of said chimeric anti-CD20 antibody. More particularly, the radiolabeled anti-CD20 antibody is administered from about one week to about nine months after said administration of said chimeric anti-CD20 antibody.

[0017] While any anti-CD20 antibodies can be used for the methods of the present invention, a preferred chimeric antibody is C2B8 (IDEC Pharmaceuticals, Rituximab). A preferred radiolabeled antibody is Y2B8, which is a murine antibody labeled with yttrium-90 (90Y). However, antibodies with other radiolabels may be used, particularly those labeled with a beta or alpha isotope. Anti-CD19 antibodies may also be used.

[0018] One of skill in the art would know the parameters for choosing a particular type of anti-CD20 antibody. For instance, chimeric and humanized antibodies are beneficial for decreased immunogenicity, and for facilitating antibody effector mediated immune reactions via the human constant region domains. Murine and other mammalian antibodies, in contrast, are beneficial for delivering a radiolabel to the tumor cell, as such antibodies generally have a decreased half-life in vivo.

[0019] Antibody treatments performed initially to which patients are refractory or have relapsed may include initial treatments with other antibodies or mammalian antibodies. Also encompassed are initial treatments with other antibodies, including anti-CD19 antibodies and anti-Lym antibodies, and treatments with antibodies labeled with cytotoxic moieties, such as toxins, and radioisotopes, e.g., OXOLYM® (Technicline) or BEXXAR® (Coulter).

[0020] It should be clear that the combined therapeutic regimens of the present invention can be performed whereby said therapies are given simultaneously, i.e., the anti-CD20 antibody is administered concurrently or within the same time frame (i.e., the therapies are going on concurrently, but the agents are not administered precisely at the same time). The anti-CD20 antibodies of the present invention may also be administered prior to or subsequent to the other therapies. Sequential administration may be performed regardless of whether the patient responds to the first therapy to decrease the possibility of remission or relapse.

[0021] The combined therapies of the present invention include a method for treating B-cell lymphoma comprising administering at least one chimeric anti-CD20 antibody and at least one cytokine. In particular, the invention includes a method for treating B-cell lymphoma comprising administering a synergistic therapeutic combination comprising at least one anti-CD20 antibody and at least one cytokine, wherein the therapeutic effect is better than the additive effects of either therapy administered alone. Preferred cytokines are selected from the group consisting of alpha interferon, gamma interferon, IL-2, GM-CSF and G-CSF. Again, the anti-CD20 antibody and the cytokine(s) may be administered sequentially, in either order, or in combination.

[0022] Also included in the present invention is a method for treating B-cell lymphoma comprising administering to a patient a therapeutically effective amount of a chimeric anti-CD20 antibody before, during or subsequent to a chemotherapeutic regimen. Such a chemotherapy regimen may be selected from the group consisting of, at the very least, CHOP, ICE, Mitoxantrone, Cytarabine, DVP, ATRA, Idarubicin, hoelzer chemotherapy regime, La La chemotherapy regime, ABVD, CEOP, 2-Cda, FLAG & IDA with or without subsequent G-CSF treatment), VAD, M & P, C-Weekly, ABCM, MOPP and DHAP.

[0023] Also encompassed are methods for treating B-cell lymphoma comprising administering to a patient a therapeutically effective amount of a chimeric anti-CD20 antibody before, during or subsequent to a bone marrow or peripheral stem cell transplant. Such bone marrow transplant may also be accompanied by other therapeutic regimens such as chemotherapy. The antibodies of the present invention may also be used in a method of reducing residual CD20+ tumor cells in bone marrow or stem cells before or after myeloablative therapy by administering to a patient a chimeric anti-CD20 antibody. It may also be possible to use such antibodies in vitro to induce apoptosis of tumor cells and reduce or cure bone marrow or stem cell preparations of residual tumor cells before they are infused back into the patient.

[0024] It should be understood that stem cell transplants may be allogeneic or autologous. If the transplant is allogeneic, i.e., from another person, the disclosed therapeutic regimens may include treatments with immunosuppressive drugs before administration of the anti-CD20 antibodies. Coadministration of other drugs designed to enhance acceptance of the transplant and stimulate the production and differentiation of immune cells is also contemplated. For instance, it has been shown that administration of GM-CSF to marrow transplant recipients promotes the development of specific bone marrow cells which in turn produces circulating infection-fighting neutrophils, and increased the survival rate of marrow transplant recipients.

[0025] The methods of the present invention may be used to treat a variety of B-cell lymphomas, including low grade/follicular non-Hodgkin’s lymphoma (NHL), small lymphocytic (SL) NHL, intermediate grade/follicular NHL, intermediate grade diffuse NHL, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL and Waldenström’s Macroglobulinemia. It should be clear to those of skill in the art that these lymphomas will often have different
names due to changing systems of classification, and that patients having lymphomas classified under different names may also benefit from the combined therapeutic regimens of the present invention.

[0026] For instance, a recent classification system proposed by European and American pathologists is called the Revised European American Lymphoma (REAL) Classification. This classification system recognizes Mantle cell lymphoma and Marginal cell lymphoma among other peripheral B-cell neoplasms, and separates some classifications into grades based on cytology, i.e., small cell, mixed small and large, large cell. It will be understood that all such classified lymphomas may benefit from the combined therapies of the present invention.

[0027] The U.S. National Cancer Institute (NCI) has in turn divided some of the REAL classes into more clinically useful “indolent” or “aggressive” lymphoma designations. Indolent lymphomas include follicular cell lymphomas, separated into cytology “grades,” diffuse small lymphocytic lymphoma/chroniic lymphocytic leukemia (CLL), lymphoplasmacytoidal/Waldenstrom’s Macroglobulinemia, Marginal zone lymphoma and Hairy cell leukemia. Aggressive lymphomas include diffuse mixed and large cell lymphoma, Burkitt’s lymphoma/diffuse small non-cleaved cell lymphoma, Lymphoblastic lymphoma, Mantle cell lymphoma and AIDS-related lymphoma. These lymphomas may also benefit from the combined therapeutic regimens of the present invention.

[0028] Non-Hodgkin’s lymphoma has also been classified on the basis of “grade” based on other disease characteristics including low-grade, intermediate-grade and high-grade lymphomas. Low-grade lymphoma usually presents as a nodal disease, and is often indolent or slow-growing. Intermediate- and high-grade disease usually presents as a much more aggressive disease with large extranodal bulky tumors. Intermediate- and high-grade disease, as well as low grade NHL, may benefit from the combined therapeutic regimens of the present invention.

[0029] The Ann Arbor classification system is also commonly used for patients with NHL. In this system, stages I, II, III, and IV of adult NHL can be classified into A and B categories depending on whether the patient has well-defined generalized symptoms (B) or not (A). The B designation is given to patients with the following symptoms: unexplained loss of more than 10% body weight in the 6 months prior to diagnosis, unexplained fever with temperatures above 38°C, and drenching night sweats. Occasionally, specialized staging systems are used:

[0030] Stage I—involveent of a single lymph node region or localized involvement of a single extralymphatic organ or site.

[0031] Stage II—involvement of two or more lymph node regions on the same side of the diaphragm or localized involvement of a single associated extralymphatic organ or site and its regional lymph node with or without other lymph node regions on the same side of the diaphragm.

[0032] Stage III—involvement of lymph node regions on both sides of the diaphragm, possibly accompanied localized involvement of an extralymphatic organ or site, involvement of the spleen, or both.

[0033] Stage IV—disseminated (multifocal) involvement of 1 or more extralymphatic sites with or without associated lymph node involvement or isolated extralymphatic organ involvement with distant (non-regional) nodal involvement.

[0034] Preferred antibodies, dosages regimens and particular combinations of therapy will now be illustrated by way of the following exemplary data.

Rituximab and Y2B8

[0035] Non-Hodgkin’s lymphoma (NHL) affects approximately 250,000 people in the United States. The majority of patients with NHL are not cured by chemotherapy, radiotherapy, or high-dose treatment with autologous bone marrow (ABMT) or peripheral blood stem cell (PBSC) support.

[0037] Approximately 80% of non-Hodgkin’s lymphomas are B-cell malignancies and >95% of these express the CD20 antigen on the cell surface. This antigen is an attractive target for immunotherapy because it is found exclusively on B-cells, and not on hematopoietic stem cells, pro-B-cells, normal plasma cells, or other normal tissues. It is not shed from the cell surface and does not modulate upon antibody binding (1).

[0038] Rituximab is one of a new generation of monoclonal antibodies developed to overcome limitations encountered with murine antibodies, including short half-life, limited ability to stimulate human effector functions, and immunogenicity (2, 3).

[0039] Rituximab is a genetically engineered monoclonal antibody with murine light-and heavy-chain variable regions (SEQ ID NOS: 1 and 2, respectively) and human gamma 1 heavy-chain and kappa light-chain constant regions. The chimeric antibody is composed of two heavy chains of 451 amino acids and two light chains of 213 amino acids and has an approximate molecular weight of 145 kD. Rituximab is more effective than its murine parent in fixing complement and mediating ADCC, and it mediates CDC in the presence of human complement (4). The antibody inhibits cell growth in the B-cell lines FL-18, Ramos, and Raji, sensitizes chemoresistant human lymphoma cell lines to diphtheria toxin, ricin, CD95 doxorubicin, and etoposide, and induces apoptosis in the DHL-4 human B-cell lymphoma line in a dose-dependent manner (5). In humans, the half-life of the antibody is approximately 60 hours after the first infusion and increases with each dose to 174 hours after the fourth infusion. The immunogenicity of the antibody is low; of 355 patients in seven clinical studies, only three (<1%) had a detectable anti-chimeric antibody (HACA) response.

[0040] Rituximab was genetically engineered using the murine 2B8 antibody. The 2B8 antibody has also been conjugated to different radionuclides for diagnostic and therapeutic purposes. To this end, copending application Ser. No. 08/475,813 (now U.S. Pat. No. 6,682,734); Ser. No. 08/475,815 (now U.S. Pat. No. 6,539,061) and Ser. No. 08/478,967 (now U.S. Pat. No. 5,843,439), all herein incorporated by reference in their entirety, disclose radiolabeled anti-CD20 conjugates for diagnostic “imaging” of B-cell lymphoma tumors before administration of therapeutic antibody. “In2B8” conjugate comprises a murine monoclonal antibody, 2B8, specific to human CD20 antigen, that is attached to Indium [111] (111In) via a bifunctional chelator, i.e.,
MX-DTPA (diethylenetriaminepentaacetic acid), which comprises a 1:1 mixture of 1-isothiocyanatobenzyl-3-methyl-DTPA and 1-methyl-3-isothiocyanatobenzyl-DTPA. Indium-[111] is selected as a diagnostic radionuclide because it emits gamma radiation and finds prior usage as an imaging agent.

[0041] Patents relating to chelators and chelator conjugates are known in the art. For example, U.S. Pat. Nos. 4,831,175 of Gansow is directed to polystyrene diethylentriaminepentaacetic acid chelates and protein conjugates containing the same, and methods for their preparation. U.S. Pat. Nos. 5,099,069, 5,246,692, 5,286,850, and 5,124,471 of Gansow also relate to polystyrene-DTPA chelates. These patents are incorporated herein in their entirety.

[0042] The specific bifunctional chelator used to facilitate chelation in application Ser. Nos. 08/475,813, 08/475,815 and 08/478,967 (now U.S. Pat. Nos. 6,682,734; 6,399,061; and 5,843,439, respectively) was selected because it possesses high affinity for trivalent metals, and provides for increased tumor-to-normal-tumor ratios, decreased bone uptake, and greater in vivo retention of radionuclide at target sites, i.e., B-cell lymphoma target sites. However, other bifunctional chelators are known in the art and may also be beneficial in tumor therapy.

[0043] Also disclosed in application Ser. Nos. 08/475,813, 08/475,815 and 08/478,967 (now U.S. Pat. Nos. 6,682,734; 6,399,061; and 5,843,439, respectively) are radiolabeled therapeutic antibodies for the targeting and destruction of B-cell lymphomas and tumor cells. In particular, the Y2B8 conjugate comprises the anti-human CD20 murine monoclonal antibody, 2B8, attached to yttrium-[90] Y via the same bifunctional chelator. This radionuclide was selected for therapy for several reasons. The 64 hour half-life of [90] Y is long enough to allow antibody accumulation by the tumor and, unlike e.g., [111] In, it is a pure beta emitter of high energy with no accompanying gamma irradiation in its decay, with a range of 100 to 1000 cell diameters. The minimal amount of penetrating radiation allows for outpatient administration of [90] Y-labeled antibodies. Furthermore, internalization of labeled antibodies is not required for cell killing, and the local emission of ionizing radiation should be lethal for adjacent tumor cells lacking the target antigen.

[0044] Because the [90] Y radionuclide was attached to the 2B8 antibody using the same bifunctional chelator molecule MX-DTPA, the Y2B8 conjugate possesses the same advantages discussed above, i.e., increased retention of radionuclide at a target site (tumor). However, unlike [111] In, it cannot be used for imaging purposes due to the lack of gamma radiation associated therewith. Thus, a diagnostic "imaging" radionuclide, such as [111] In, can be used for determining the location and relative size of a tumor prior to and/or following administration of therapeutic chimeric or [90] Y-labeled antibodies in the combined regimens of the invention. Additionally, iodine-labeled antibody enables dosimetric assessment to be made.

[0045] Depending on the intended use of the antibody, i.e., as a diagnostic or therapeutic reagent, other radiolabels are known in the art and have been used for similar purposes. For instance, radionuclides which have been used in clinical diagnosis include [131] I, [123] I, [99m] Tc, [67] Ga, as well as [111] In. Antibodies have also been labeled with a variety of radionuclides for potential use in targeted immunotherapy (Peierls et al. 1987). The use of monoclonal antibody conjugates for the diagnosis and treatment of cancer. *Immunol.* Cell Biol. 65: 111-125. These radionuclides include [188] Re and [186] Re as well as [99m] Tc, and to a lesser extent [153] Au and [67] Cu. (131) has also been used for therapeutic purposes. U.S. Pat. No. 5,460,785 provides a listing of such radioisotopes and is herein incorporated by reference.

[0046] As reported in copending application Ser. Nos. 08/475,813, 08/475,815 and 08/478,967 (now U.S. Pat. Nos. 6,682,734; 6,399,061; and 5,843,439, respectively), administration of the radiolabeled Y2B8 conjugate, as well as unlabeled chimeric anti-CD20 antibody, resulted in significant tumor reduction in mice harboring a B-cell lymphoblastic tumor. Moreover, human clinical trials reported therein showed significant B-cell depletion in lymphoma patients infused with chimeric anti-CD20 antibody. In fact, chimeric 2B8 has recently been heralded the nation’s first FDA-approved anti-cancer monoclonal antibody under the name of RITUXAN®. Thus, at least one chimeric anti-CD20 antibody has been shown to demonstrate therapeutic efficacy in the treatment of B-cell lymphoma.

[0047] In addition, U.S. application Ser. No. 08/475,813 (now U.S. Pat. No. 6,682,734) herein incorporated by reference, discloses sequential administration of RITUXAN®, a chimeric anti-CD20, with both or either iodium-labeled or yttrium-labeled murine monoclonal antibody. Although the radiolabeled antibodies used in these combined therapies are marine antibodies, initial treatment with chimeric anti-CD20 sufficiently depletes the B-cell population such that the HAMA response is decreased, thereby facilitating a combined therapeutic and diagnostic regimen.

[0048] Thus, in this context of combined immunotherapy, marine antibodies may find particular utility as diagnostic reagents. Moreover, it was shown in U.S. application Ser. No. 08/475,813 (now U.S. Pat. No. 6,399,061) that a therapeutically effective dosage of the yttrium-labeled anti-CD20 antibody following administration of RITUXAN® is sufficient to (a) clear any remaining peripheral blood B-cells not cleared by the chimeric anti-CD20 antibody; (b) begin B-cell depletion from lymph nodes, or (c) begin B-cell depletion from other tissues.

[0049] Thus, conjugation of radiolabels to cancer therapeutic antibodies provides a valuable clinical tool which may be used to assess the potential therapeutic efficacy of such antibodies, create diagnostic reagents to monitor the progress of treatment, and devise additional therapeutic regents which may be used to enhance the initial tumor killing potential of the chimeric antibody. Given the proven efficacy of an anti-CD20 antibody in the treatment of non-Hodgkin’s lymphoma, and the known sensitivity of lymphocytes to radioactivity, it would be highly advantageous for such chimeric and radiolabeled therapeutic antibodies to find use in combined therapeutic regimens which decrease the frequency of relapsed or refractory non-Hodgkin’s lymphoma. In addition, it would be beneficial if such combined therapeutic regimens found use in the treatment of other B-cell lymphomas.

Low-Grade or Follicular NHL.

[0050] Single-Agent Studies with Relapsed or Refractory NHL.

[0051] FDA approval of Rituximab was based on five single-agent studies primarily in patients with low-grade or follicular NHL. An early Phase I study of single Rituximab infusions ranging from 10-500 mg/m² demonstrated that the maximum tolerated dose had not been reached; however, the length of infusion time at the highest dose was not considered feasible for outpatient therapy. The ORR in 15 patients was 13% (Table 1/6).
<table>
<thead>
<tr>
<th>Study Description</th>
<th>Indication</th>
<th>N*</th>
<th>ORR</th>
<th>CR</th>
<th>PR</th>
<th>Median DR (months)</th>
<th>Median TIP (months)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I/II, Single-Dose</td>
<td>Relapsed B-Cell Lymphoma</td>
<td>15</td>
<td>2 (13%)</td>
<td>0 (0%)</td>
<td>2 (13%)</td>
<td>NA</td>
<td>8.1</td>
<td>6</td>
</tr>
<tr>
<td>Single Agent</td>
<td></td>
<td>17 (50%)</td>
<td>3 (9%)</td>
<td>14 (41%)</td>
<td>8.6</td>
<td>10.2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Phase II, Multiple-Dose</td>
<td>Relapsed Low-, Intermediate-, and High-Grade Lymphoma</td>
<td>34</td>
<td>17 (50%)</td>
<td>3 (9%)</td>
<td>14 (41%)</td>
<td>8.6</td>
<td>10.2</td>
<td>7</td>
</tr>
<tr>
<td>Dose-Ranging</td>
<td>Newly Diagnosed and Relapsed Low-Grade or Follicular B-Cell Lymphoma</td>
<td>38</td>
<td>38 (100%)</td>
<td>22 (58%)</td>
<td>16 (42%)</td>
<td>35.3+</td>
<td>36.7+</td>
<td>21, 22</td>
</tr>
<tr>
<td>Phase II, Multiple-Dose</td>
<td>Relapsed Low-Grade or Follicular B-Cell Lymphoma</td>
<td>151</td>
<td>76 (50%)</td>
<td>9 (6%)</td>
<td>67 (44%)</td>
<td>11.6</td>
<td>13.2</td>
<td>8, 9</td>
</tr>
<tr>
<td>Combined with CHOP</td>
<td>Relapsed Low-Grade or Follicular B-Cell Lymphoma</td>
<td>35</td>
<td>21 (60%)</td>
<td>5 (14%)</td>
<td>16 (46%)</td>
<td>13.4+</td>
<td>19.4+</td>
<td>13</td>
</tr>
<tr>
<td>Phase II, Multiple-Dose</td>
<td>Newly Diagnosed and Relapsed Low-Grade or Follicular B-Cell Lymphoma</td>
<td>38</td>
<td>17 (45%)</td>
<td>4 (11%)</td>
<td>13 (34%)</td>
<td>22.3+</td>
<td>25.2+</td>
<td>29</td>
</tr>
<tr>
<td>Combined with Interferon</td>
<td>Relapsed Low-Grade or Follicular B-Cell Lymphoma, Bulky Disease</td>
<td>28</td>
<td>12 (43%)</td>
<td>1 (4%)</td>
<td>11 (39%)</td>
<td>5.9</td>
<td>8.1</td>
<td>14</td>
</tr>
<tr>
<td>Phase II, Multiple-Dose, Single-Agent</td>
<td>Relapsed Low-Grade or Follicular B-Cell Lymphoma, Retreatment</td>
<td>57</td>
<td>23 (40%)</td>
<td>6 (11%)</td>
<td>17 (29%)</td>
<td>15.0+</td>
<td>16.7+</td>
<td>19, 20</td>
</tr>
<tr>
<td>Phase II, Multiple-Dose, Single-Agent</td>
<td>Relapsed Low-Grade or Follicular B-Cell Lymphoma, Previously Untreated</td>
<td>30</td>
<td>29 (96%)</td>
<td>19 (65%)</td>
<td>10 (33%)</td>
<td>11+</td>
<td>17+</td>
<td>34</td>
</tr>
<tr>
<td>Combined with CHOP</td>
<td>Intermediate- or High-Grade Lymphoma</td>
<td>54</td>
<td>17 (32%)</td>
<td>5 (9%)</td>
<td>12 (22%)</td>
<td>NA</td>
<td>8.2+</td>
<td>33</td>
</tr>
</tbody>
</table>

[0052] In Phase I of a Phase I/II dose-ranging study, patients received 125-375 mg/m² administered as four weekly infusions. No dose-related toxicities were demonstrated, and 375 mg/m² was chosen as the Phase II dose. Tumor regressions were observed in 17 of 37 (46%) patients who received this dose, including 3 (8%) complete responses (CR) and 14 (38%) partial responses (PR) (7).

[0053] A subsequent single-arm pivotal study of Rituximab infused at 375 mg/m² weekly times four was conducted in 166 patients with relapsed or refractory, low-grade or follicular NHL (International Working Formulation [IWG] Types A-D and REAL classification, small lymphocytic lymphoma, Follicular center, follicular Grades I, II, III (8)). Patients with tumor masses >10 cm or with >5000 lymphocytes/μl in the peripheral blood were excluded from this study. The median age was 58 years (105 men and 61 women) and the median number of prior treatments was three. Bone marrow involvement was present in 56% of 149 patients evaluated. Forty-five percent had ≥2 extranodal sites and 41% had bulky disease (≥5 cm).

[0054] Complete response required the regression of all lymph nodes to <1×1 cm² demonstrated on two occasions at least 28 days apart on neck, chest, abdomen, and pelvic CT scans, resolution of all symptoms and signs of lymphoma, and normalization of bone marrow, liver, and spleen. Partial response required a ≥50% decrease in the sum of the products of perpendicular measurements of lesions without any evidence of progressive disease for at least 28 days. Patients who did not achieve a CR or PR were considered non-responders, even if a net decrease (≥50%) of measurable disease was observed. Time to progression was measured from the first infusion until progression.

Rituximab Chimeric Anti-CD20 Monoclonal Antibody Therapy for Relapsed Indolent Lymphoma: Half of Patients Respond to a Four-Dose Treatment Program

[0055] Purpose: The CD20 antigen is expressed on more than 90% of B-cell lymphomas. It is appealing for targeted therapy, because it does not shed or modulate. A chimeric monoclonal antibody more effectively mediates host effector functions and is itself less immunogenic than are murine antibodies.

[0056] Patients and Methods: This was a multi-institutional trial of the chimeric anti-CD20 antibody, IDEC-C2B8. Patients with relapsed low grade or follicular lymphoma received an outpatient treatment course of IDEC-C2B8 375 mg/m² intravenously weekly for four doses.

[0057] Results: From 31 centers, 166 patients were entered. Of this intent-to-treat group, 48% responded. With a median follow-up duration of 11.8 months, the projected median time to progression for responders is 13.0 months. Serum antibody levels were sustained longer after the fourth infusion than after the first, and were higher in responders and in patients with lower tumor burden. The majority of adverse events occurred during the first infusion and were grade 1 or 2; fever and chills were the most common events. Only 12% of patients had grade 3 and 3% grade 4 toxicities. A human antichimeric antibody was detected in only one patient.

[0058] Conclusion: The response rate of 48% with IDEC-C2B8 is comparable to results with single-agent cytotoxic chemotherapy. Toxicity was mild. Attention needs to be paid to the rate of antibody infusion, with titration according to toxicity. Further investigation of this agent is warranted, including its use in conjunction with standard chemotherapy.

[0063] The current report summarizes results of a multi-institutional trial of a four-dose course of therapy with this chimeric anti-CD20 antibody.

Patients and Methods

Eligibility

[0064] Adult patients with relapsed low grade or follicular B-cell lymphomas, histologically confirmed and positive for CD20, were eligible. Patients with chronic lymphocytic leukemia (lymphocytes >5x10^9/L) were excluded. Patients had to have either not responded to primary therapy or relapsed (not more than four times), have progressive measurable disease, and sign an institutional review board-approved informed consent. They had to be at least 3 weeks beyond prior standard therapy including corticosteroids, and have recovered from significant toxicities from prior therapies. Patients had to have good performance status (Zubrod 0 to 2) and adequate hematologic, renal, and hepatic function. Patients were excluded if they had lesions >10 cm in diameter, CNS lymphoma, AIDS-related lymphoma, pleural effusions or ascites secondary to lymphoma, active opportunistic infection, serious nonmalignant disease, prior investigational therapies including prior anti-CD20 therapy, or recent major surgery.

Therapy

[0065] The antibody dose was 375 mg/m^2, administered intravenously once weekly for a total of four infusions (days 1, 8, 15, and 22) on an outpatient basis. IDEC-C2B8 was produced and supplied by IDEC Pharmaceuticals Corp. The drug was reconstituted in normal saline to a concentration of 1 mg/ml and given through a 0.22-um in-line filter. Oral premedication with acetaminophen or diphenhydramine was permitted; corticosteroids were prohibited. The initial infusion rate was 50 mg/h, with subsequent infusion rate increase if no toxicity was seen. Guidelines were specified for interruption of infusion, with resumption once adverse events subsided.
Monitoring

[0066] To measure all sites of disease, baseline evaluation included documentation of disease-related signs and symptoms, physical examination, bilateral bone marrow biopsies, and radiographic studies, which included chest x-ray and computed tomography (CT) or magnetic resonance imaging of the neck, chest, abdomen, and pelvis. Laboratory testing included routine hematology, serum chemistries, lymphocyte subset measurement, lgs, serum complement (C3), β₂-microglobulin, and urinalysis.

[0067] Patients were screened for serum anti-CD20 antibody (human antihuman antibody [HACA] using a sandwich enzyme-linked immunosorbent assay [ELISA]. Peripheral blood and bone marrow were studied by the polymerase chain reaction (PCR) for bcl-2 gene rearrangement using previously described methodology (Gribben et al: Detection of residual lymphoma cell by polymerase chain reaction in peripheral blood is significantly less predictive for relapse than detection in bone marrow. Blood 83:3800-3807, 1994).

[0068] Monitoring included frequent hematology and serum chemistry profiles, periodic monitoring of immunglobulins and lymphocyte subsets, and full tumor restaging evaluations at months 1 and 3 following the fourth infusion, then every 3 months for 2 years, and every 6 months thereafter in responders.

[0069] Pharmacokinetic monitoring used microtiter plates coated with polyclonal goat anti-IDE-C2B8 antibody, to which patient serum was added. The goat anti-C2B8 was produced by immunizing a goat with IDE-C2B8. The serum was then purified over a human IgG column to remove the antihuman component and was then run over an IDE-C2B8 column and eluted. The resulting purified antibodies are specific for the C2B8 (idiotype) portion of IDE-C2B8. Goat antihuman IgG conjugated with horseradish peroxidase was used as a detector. Serum samples were obtained from all patients: before and immediately after the last antibody dose. Additional serum samples were drawn from 14 patients at 24, 48, 72, and 96 hours after the first and fourth infusions. Pharmacokinetic analysis used data for all samples that had detectable antibody (>0.5 μg/mL). Levels for the first and fourth infusions were analyzed separately for each patient to assess clearance rates, using the PCNONLIN version 4.0 pharmacokinetic software (SCI Software, Lexington, Ky.).

Definition of End Points

[0070] Complete response (CR) required the resolution of all symptoms and signs of lymphoma, including bone marrow clearing, for at least 28 days. Partial response (PR) required a ≥50% decrease in the sum of the products of perpendicular measurements of lesions, without any evidence of progressive disease for at least 28 days. Patients who did not achieve a CR or PR were considered nonresponders, even if there was a net decrease (<50%) of measurable disease. Time to progression was measured from the first infusion until progression.

[0071] An independent panel of nine radiologists and lymphoma specialists reviewed and verified all CT scans of patients who exhibited a >40% reduction in tumor size as measured by the investigator. This referred response designation (Horning et al: Response criteria and quality assurance of response in the evaluation of new therapies for patients with low-grade lymphoma. Proc Am Soc Clin Oncol 16:18a, 1997 (abstr)) is the one used for this report.

Statistical Methods

[0072] Time to progression was analyzed by the Kaplan-Meier method (Kaplan E. L. et al. Non-parametric estimation from incomplete observations. J Am Stat Assoc 53: 457-481, 1958.) Comparisons of clinical response data by individual prognostic variables were performed using Fisher’s exact test. Comparison of serum concentration data by clinical response was performed using the Wilcoxon rank-sum test. Kaplan-Meier curves were generated using PROC LIFETEST (SAS/STATS Users Guide, Version 6, SAS Institute, Cary, N.C.). A stepwise logistic regression analysis was performed to identify the most relevant prognostic factors to clinical response (SAS: SAS/STAT User’s Guide, Version 6, Cary, N.C., SAS Institute, 1990.).

Results

Patient Features

[0073] The 166 patients were enrolled at 31 centers in the United States and Canada between April 1995 and March 1996. The median age was 58 years (range, 22 to 79). There were 105 men and 61 women. There were 33 with small lymphocytic lymphoma (SL), 67 with follicular small cleaved, 53 with follicular mixed, three with other low grade lymphoma variants, and 10 with follicular large cell (The Non-Hodgkin’s Lymphoma Pathologic Classification Project: National Cancer Institute sponsored study of classifications of non-Hodgkin’s lymphomas. Summary and description of a working formulation for clinical usage. Cancer 49:2112-2135, 1982.). The median time since diagnosis was 4.1 years (range, 0.5 to 25).

[0074] Prior therapy included chemotherapy in 97%, radiotherapy in 25%, and bone marrow or peripheral-blood stem-cell transplantation regimens in 14%. The median number of prior treatments was three (range one to 10). Twenty-two patients had been resistant to all prior chemotherapy (had never achieved a CR or PR), while 45 were resistant to their most recent chemotherapy before study entry.

Response

[0075] The overall response rate for the intent-to-treat group of all 166 patients was 48%, of which 6% were CRs and the remainder PRs.

[0076] A detailed analysis of efficacy was also performed on a subset of 151 patients, excluding 15 patients for the following reasons: one never started treatment for personal reasons; eight received one or more doses of corticosteroids during the evaluation period (a protocol violation that was strictly enforced to avoid any confusion about the efficacy of the antibody); one had surgery within 4 weeks of study entry (an exclusion criterion); one lacked measurable lesions; and four did not complete all four doses because of grade 3 or 4 adverse events (they were included in the toxicity analysis).

[0077] The response rate for these 151 assessable patients was virtually identical to that of the intent-to-treat group, with a 50% response rate, including 6% CRs. Among those who did not achieve a CR or PR, the majority (56 of 75) nonetheless had a net decrease of measurable disease (mean decrease, 32%). With a median follow-up duration of 11.8 months, the projected median time to progression for responders is 13.0 months for the intent-to-treat group and 12.5 months for the assessable group (FIG. 1); 53 of 76
responders have not yet relapsed. To date, only nine patients have died, all of progressive lymphoma.

[0078] Table 1 lists response according to clinical features. Significantly lower response rates were noted for patients with the following: SL lymphoma compared with other cell types; positive bone marrow; ≥ two extranodal sites; and, among the subset of 118 patients with follicular lymphomas, those without detectable bcl-2 gene rearrangement by PCR in the peripheral blood or bone marrow. Unexpectedly, the 23 patients whose prior therapy had included high-dose regimens with stem-cell or bone marrow transplantation had a significantly higher response rate than those who had not received transplant regimens (78% vs 43%, P=0.01). Patients who had achieved a CR or PR with their last prior chemotherapy course had a nonsignificant but somewhat better response to the antibody than those who were resistant to chemotherapy (55% vs 36%, P=0.06). Notable pretreatment features that did not have a significant impact on response in the univariate analysis were elevated lactate dehydrogenase (LDH) level, β2-microglobulin, bulky disease, and older age.

[0079] By logistic regression analysis (Table 2), SL histologic type, resistance to the last course of chemotherapy, and baseline peripheral-blood bcl-2 negativity by PCR emerged as factors that were significantly correlated with lower response to treatment with IDEC-C2B8.

Table 1

<table>
<thead>
<tr>
<th>Feature</th>
<th>No. of Patients</th>
<th>% CR + PR</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>166</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>Assessable patients*</td>
<td>151</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Age ≥ 60 years</td>
<td>67</td>
<td>51</td>
<td>NS</td>
</tr>
<tr>
<td>Sex: male</td>
<td>95</td>
<td>48</td>
<td>NS</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small lymphocytic</td>
<td>30</td>
<td>13</td>
<td><0.01†</td>
</tr>
<tr>
<td>Follicular small cleaved</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Follicular mixed</td>
<td>48</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Follicular large cell</td>
<td>10</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Other†</td>
<td>3</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Elevated LDH†</td>
<td>46</td>
<td>43</td>
<td>NS</td>
</tr>
<tr>
<td>Elevated β2-microglobulin‡</td>
<td>41</td>
<td>36</td>
<td>NS</td>
</tr>
<tr>
<td><5 cm</td>
<td>88</td>
<td>56</td>
<td>NS</td>
</tr>
<tr>
<td>>5 cm</td>
<td>61</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Mzanwi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>66</td>
<td>61</td>
<td>.03</td>
</tr>
<tr>
<td>Positive</td>
<td>83</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>bcl-2 in peripheral blood‡</td>
<td>62</td>
<td>52</td>
<td>.04</td>
</tr>
<tr>
<td>Negative</td>
<td>55</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>bcl-2 in bone marrow‡</td>
<td>60</td>
<td>52</td>
<td>.05</td>
</tr>
<tr>
<td>Positive</td>
<td>52</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>>2 extranodal site</td>
<td>75</td>
<td>39</td>
<td>.01</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Prognostic Factor</th>
<th>X²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histological type (FSC, FM, FL v SL)</td>
<td>22.29</td>
<td><0.001</td>
</tr>
<tr>
<td>bcl-2 at baseline (peripheral blood) (positive v negative by PCR)</td>
<td>5.55</td>
<td>0.18</td>
</tr>
<tr>
<td>Resistance to last chemotherapy (no v yes)†</td>
<td>5.12</td>
<td>0.24</td>
</tr>
<tr>
<td>Bulky disease (less v more)</td>
<td>2.49</td>
<td>0.115</td>
</tr>
<tr>
<td>ABMT history (yes v no)</td>
<td>2.73</td>
<td>0.098</td>
</tr>
<tr>
<td>Age (younger v older)</td>
<td>1.43</td>
<td>0.232</td>
</tr>
</tbody>
</table>

Abbreviations: FSC, follicular small cleaved; FM, follicular mixed; FLG, follicular large cell; ABMT, autologous bone marrow transplant.
†Resistance = failure to achieve CR or PR.

Adverse Events

[0080] Adverse events generally occurred during therapy or within the first 30 days following therapy (Table 3). The majority were observed during the first infusion (FIG. 2) and were grade 1 or 2. After the first infusion, most patients (55%) had no toxicity for the remainder of treatment.

[0081] Adverse events were typically brief The median duration of nausea was 1 hour, fever 3 hours, bronchospasm less than 30 minutes, hypotension 1.6 hours, and rash and pruritus 2 hours. The antibody infusion rate was titrated according to adverse events. The mean duration of the first dose was 5.2 hours (range, 2.5 to 20); 33% of patients had interruptions. During the second, third, and fourth doses, the frequency of interruptions decreased to 6%, 2%, and 1%, respectively, and the mean durations of the infusions were 3.5, 3.3, and 3.3 hours, respectively.

Table 3

<table>
<thead>
<tr>
<th>Event</th>
<th>NCI Grade</th>
<th>% of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>599</td>
<td>18</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>84</td>
<td>—</td>
</tr>
<tr>
<td>Chills</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>Headache</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>Anemia</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Pain</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Pruritus</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Rash</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Urticaria</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Angiodyemia</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>Dizziness</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>Digestive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>Vomiting</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Respiratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchospasm</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Cough increase</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviations: LDH, lactate dehydrogenase; NS, not significant.
*Subset analyses conducted on the assessable group of 151 patients (see text); results for the intent-to-treat group were virtually identical.
†Comparison of SL versus follicular histologies.
‡One each with macrogranulated lymphoid tissue (MALT); low-grade B-cell lymphoma, not otherwise specified; and marginal-zone lymphoma.
§Data available for LDH on 143, β2-microglobulin on 148, bulk on 149, and marrow variants on 149.
||for follicular lymphomas only.
TABLE 3—continued

<table>
<thead>
<tr>
<th>Event</th>
<th>NCI Grade</th>
<th>% of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>1-2</td>
<td>1</td>
</tr>
<tr>
<td>Arhythmia</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Hematologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE.
Includes all grade 3 or 4 events that were considered related to the antibody, and most frequent (≥10% for all patients) or other events (≥10% for any event). “During Therapy” includes from day 1 to 30 days after the fourth infusion for later events, see text.

Abbreviations: NCI, National Cancer Institute.

[0082] Thirteen patients had hemoglobin levels decrease to as low as 8 to 10 g/dL, and four had levels of 7.6 to 7.9; recovery occurred in a median of 7 days. Three patients with pretreatment platelet counts of 76,000 to 85,000 x 10^9/L had counts decrease to 63,000 to 72,000 at a median of 19 days, with recovery by a median of 7 days; one patient with a pretreatment platelet count of 90,000 had a count of 27,000 at day 23, with recovery to 86,000 in 6 days. Fourteen patients had granulocytes decrease to a level of 1 to 1.5 x 10^9/L at median of 41 days, with recovery by a median of 8 days; two patients had granulocytes decrease to 0.5 to 0.9 at day 9 and day 23, with recovery to greater than 2.0 by 6 to 7 days; one had a granulocyte count of 0.1 at day 51, with recovery by 4 days. The remainder of patients, 86% of the population, had no cytopenias. Thus, the median (±SE) values for hemoglobin, platelets, leukocytes, and granulocytes remained within normal limits throughout the treatment period.

[0083] Infections that occurred either during therapy or for up to a year after therapy were predominantly bacterial (37 of 68), and the vast majority were minor (61 of 68 grade 1 or 2; none grade 4). The respiratory tract was the source in 19 and the urinary tract in three; gastroenteritis occurred in three. There were three episodes of bacteremia, one with Listeria detected before the third infusion, one staphylococcal, and one polymicrobial, which was felt to be catheter-related; all resolved with antibiotics. Viral infections included herpes simplex in 10 and herpes zoster in five.

[0084] After therapy and during the first year of follow-up evaluation, a total of 98 related adverse events were reported in 45 patients, of which 81% were grade 1 or 2. The most common late (from 31 days to 1 year after the last antibody infusion) adverse events were hematologic: 13 neutropenia (five grade 3, one grade 4), 10 leukopenia (one grade 3, no grade 4), and one RBC aplasia.

Monitoring of B-Cell and Immunologic Parameters

[0085] The median absolute B-cell count in peripheral blood at baseline was 97.5 cells/mL (normal range, 32 to 341). As illustrated in FIG. 3, the median B-cell count declined with treatment, to undetectable levels after the first dose for the majority. A minority of patients (n=16) did not deplete circulating B cells. These were predominantly SI.

patients (n=13) and nonresponders (n=15). Recovery of B cells started between 6 and 9 months, with recovery to normal between 9 and 12 months.

[0086] Mean serum IgG and IgA levels remained within normal limits throughout the study. The mean serum IgM level had decreased to 41.5 mg/dl (normal range, 45 to 145 mg/dl) at 6 months post treatment and had recovered to 65.1 mg/dl at the 8-month follow-up point. Twenty-three patients had reductions in lg levels by ≥50% to subnormal levels.

[0087] HACA was detected in only one patient, at day 50, and was not associated with any clinical or laboratory abnormalities.

[0088] Median absolute T-cell counts in peripheral blood, using CD3, CD4, and CD8, as well as natural-killer cell counts, remained stable throughout the study. A ≥20% decrease from baseline in serum complement (C3) was noted in 18 patients.

[0089] Cells with bel-2 gene rearrangement were detected pretreatment by PCR in the peripheral blood of 55 patients and in the bone marrow of 52 patients. For those who had serial monitoring, reversion to negative status (no detectable rearranged cells by PCR) occurred in the peripheral blood in 19% following the first infusion (10 of 52 patients). 50% (26 of 52) before the fourth infusion, and 62% (26 of 45) by 3 months. In the bone marrow, reversion to negative was seen in 56% (nine of 16) at 3 months.

Pharmacokinetics

[0090] Median serum antibody levels were higher for responders than nonresponders (Table 4 and FIG. 4). Attainable serum antibody concentrations correlated negatively with the number of circulating B cells, with the size of the largest measurable tumor pretreatment, and with the baseline sum of the products of the diameters of the six largest lesions. Serum levels were significantly lower in patients with SI than other histologic types at the following time points: before the second and fourth infusions; and at 1 week, 1 month, and 3 months post treatment.

[0091] For patients who has detailed pharmacokinetic monitoring, the mean serum half-life after the first infusion was 76.3 hours (range, 31.5 to 152.6), while after the fourth infusion it was 205.8 hours (range, 83.9 to 407.0). The maximum observed concentration was higher after the fourth than after the first infusion (mean, 464.7 v 205.6 µg/mL, respectively), the clearance was slower (0.0092 v 0.0382 L/h), and the area under the curve was greater (86,125 v 16,320 µg-h/mL). A significant correlation was found between the number of circulating B cells at baseline and rapidity of antibody clearance after the first infusion (P=0.01).

Discussion

[0092] The response rate was 50% with this outpatient four-dose course of therapy with IDEC-C2B8 for patients with relapsed low grade or follicular lymphoma. Most of the responses were partial (6% complete), which is typical of single-agent therapy in the setting of relapsed lymphoma. These results are comparable to some of the most encouraging recent chemotherapy results for relapsed indolent lymphoma, such as with fludarabine or 2-chlorodeoxyadenosine (Port-Hoeck C. et al., Purine analogs in the treatment of low-grade lymphomas and chronic lymphocytic leuke-

[0095] Earlier experiences with unconjugated murine monoclonal antibodies noted a low percentage of brief responses, and identified several problems, including rapid antibody clearance, the development of a human antimouse antibody (HAMA) response, (Ndallier et al., Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res 40:3417-3514, 1980) and antigenic modulation (Ritz J et al., Serotherapy of acute lymphoblastic leukemia with monoclonal antibody. Blood 58: 141-152, 1981; Foon K A et al., Effects of monoclonal antibody therapy in patients with chronic lymphocytic leukemia. Blood 64: 1085-1093, 1984; Dillman R O et al., Therapy of chronic lymphocytic leukemia and cutaneous I-cell lymphoma with T101 monoclonal antibody. J Clin Oncol 2: 881-891, 1984.) The use of a chimeric (predominantly human) antibody and the targeting of a surface antigen that does not shed or modulate are key innovations that contributed to the success of the current trial. Murine anti-CD20 antibodies have been used in other successful monoclonal antibody trials, especially recent radioimmunotherapy (RIT) trials with iodine 131 and yttrium 90 (Kaminski M S et al. supra; Press O W et al. supra; Knox S J et al. supra.) Unlike the current trial, RIT programs using 131I involve the additional complexities of patient isolation and radiation safety precautions, as well as, in the myeloablative Seattle approach, (Press O W et al., supra) the need for bone marrow or peripheral-blood stem-cell transplantation.

[0094] The toxicity of the current program was notably mild, particularly with respect to myelosuppressive toxicities that are typical of standard chemotherapy or RIT. Adverse events occurred mainly with the first infusion, in a constellation that typically included modest (grade 1 or 2) and brief (minutes to hours) fever, chills, and aches. By the second and subsequent infusions, the majority of patients experienced no further infusion-related toxicities. By virtue of the modest toxicities of this agent, which do not overlap with the toxicities of standard chemotherapy, this agent lends itself to integration with chemotherapy programs. There is already some early experience with this antibody in conjunction with chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP); the toxicity of CHOP plus Rituximab appeared comparable to that of CHOP alone, so the combination seems feasible. The response rate (73% CRs and 27% PRs) (Czuczman M S et al., Chemoinmunotherapy of low-grade lymphoma with the anti-CD20 antibody IDEC-C2B8 in combination with CHOP chemotherapy. Cancer Invest 14:59-61, 1996 (suppl 1)) was respectable, although in the range of what might be achieved with CHOP alone. Further experience with chemotherapy plus Rituximab programs seems warranted.

[0095] Only one patient in this trial developed an antichimeric antibody response. Even though chimeric antibodies have murine variable regions, it appears from this trial and others (Clelandon N J et al., Phase I/II trials of CAMPATH-1H, a humanized anti-lymphocyte monoclonal antibody, in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Blood 80: 158a, 1992 (suppl 1, abst) that chimeric or humanized antibodies largely circumvent the problem of HAMA. Since this agent depletes normal B cells, it is al notch that the infections that occurred in this trial were both modest and fairly ordinary, in contrast to the experience with the CAMPATH-1H antibody, which depletes both B and T cells and was associated with a substantial number of opportunistic infections. (Pytonau C H et al., Adverse reactions to Campath-1H monoclonal antibody. Lancet 341: 1037, 1993 (letter))

[0096] The high response rate with this antibody was encouraging, including its efficacy in patients with adverse prognostic features, such as high LDH or β2-microglobulin levels, and in patients who often tolerate standard therapies poorly, such as the elderly and those who had undergone prior marrow transplantation. Observations in patient subsets with low response rates were also informative. A rapid clearance of the antibody, which may be related, in part, to high tumor burden (“antigen sink”), correlated with a lower response rate. Conceivably, higher doses or more protracted dosing schedules might overcome this problem. The lower response rate with SL lymphoma, compared with follicular lymphoma, may relate to the lower density of CD20 antigen expression on SL cells. (Almasri N M et al., Reduced expression of CD20 antigen as a characteristic marker for chronic lymphocytic leukemia. Am J Hematol 40:259-263, 1992) However, patients with SL in this trial also typically had higher circulating B-cells counts and consequently a more rapid clearance of the agent than other patients, so the lower response rate in SL lymphoma may also be related to their lower measurable antibody levels.

[0097] It appears paradoxical that bone marrow involvement had an overall correlation with lower response rate, yet bone marrow bcl-2 positivity correlated with a higher response rate. This is partly explained by the lower response rate in SL patients, many of whom had marrow involvement but were bcl-2-negative. There is also some evidence that, among follicular lymphoma patients, those without detectable MBR or mcr bcl-2 gene rearrangement may be less responsive to chemotherapy. (López-Guillermo A et al., The molecular breakpoint site of bcl-2 gene has prognostic importance in indolent follicular lymphoma. Blood 88: 295a, 1996 (suppl 1, abst). Breakpoint-site analysis was not performed in the current trial.

[0098] Many additional issues about this agent remain to be explored. Based on early evidence of synergism between this agent and some chemotherapeutic agents (Demidiek A et al., Chimeric anti-CD20 antibody (IDEC-C2B8) is apoptotic and sensitizes drug resistant human B cell lymphomas and AIDS related lymphomas to the cytotoxic effect of CDOP, VP-16 and toxins. FEBS J 9:2026, 1995 (abstr)). More investigation of combination therapy is planned. With its established efficacy in the setting of measurable disease, the use of this agent in a minimal or subclinical disease setting is a consideration; for such use, an unconjugated antibody such as this one (or an immunotoxin) may be preferable to the RIT approach because of concerns with RIT of toxicity to the mechanisms of action of this agent is needed. Besides its mediation of complement fixation and antibody-dependent cell-mediated cytotoxicity, there is evidence that the CD20 antigen-antibody interaction induces intracellular signaling that can affect cell-cycle entry and proliferation (Teddor T F et al., supra; Maloney D G et al., The anti-tumor effect of monoclonal anti-CD20 antibody
therapy includes direct anti-proliferation activity and induction of apoptosis in CD20 positive non-Hodgkin's lymphoma cell lines. Blood 88:657a, 1996 (suppl 1, abst). On the basis of the 50% response rate in this trial, using this well tolerated, outpatient treatment schedule that is completed in 22 days, further trials with this agent are warranted.

[0099] The overall response rate (ORR) was 48% with a 6% CR and a 42% PR rate (8). The median time to progression (TTP) for responders was 13.2 months and the median duration of response (DR) was 11.6 months. Twenty-two of 80 (28%) responders remain in ongoing remission at 20.9± to 32.9± months (9).

[0100] Administration of Rituximab resulted in a rapid and sustained depletion of B-cells. Circulating B-cells were depleted within the first three doses with sustained depletion for up to six to nine months post-treatment in 83% of patients. Median B-cell levels returned to normal by 12 months following treatment. Although median NK cell counts remained unchanged, a positive correlation was observed between higher absolute NK cell counts at baseline and response to Rituximab (10).

[0101] Several baseline prognostic factors were analyzed to determine their correlation to response. Significantly, in 23 patients relapsed after ABMT or PBSC, the ORR was 78% versus 43% in patients who did not undergo prior high-dose therapy (p<0.01). In a multivariate analysis, the ORR was higher in patients with follicular NHL as compared with small lymphocytic lymphoma (58% vs. 12%, p<0.01), and in patients with chemotherapy-related relapse as compared with chemoresistant relapse (53% vs. 36%, p<0.06). No effect on response rate was associated with: age >60 years, extranodal disease, prior anthracycline therapy, or bone marrow involvement.

[0102] A statistically significant correlation was found between the median serum antibody concentration and response at multiple time points during treatment and follow up (11).

[0103] Serum levels of antibody were higher in patients with follicular NHL compared with small lymphocytic lymphoma. Mean serum antibody was also inversely correlated with measurements of tumor bulk and with the number of circulating B-cells at baseline. The association of lower serum antibody concentrations with higher numbers of circulating NHL cells and with higher tumor bulk suggest that the main mode of antibody clearance is to tumor cells. The association of high serum antibody concentrations with response and lower tumor bulk or circulating cells suggests that higher or more doses of Rituximab may be necessary to induce responses in some subsets of patients, such as those with bulky disease.

[0104] Nevertheless, responses were seen with Rituximab in 43% of patients with tumors >5 cm and in 35% of patients with tumors >7 cm, suggesting that treatment of patients with bulky disease with Rituximab is feasible. This is surprising considering it was long thought that antibody therapy is not conducive to treating bulky disease due to the compact nature of the tumors.

[0105] In a study conducted in Japan (12), patients with relapsed B-cell lymphoma were treated with either 250 mg/m² (N=4) or 375 mg/m² (N=8) of Rituximab weekly times four. Of 11 evaluable patients, 8 had follicular NHL, 2 had diffuse large-cell NHL, and one had mantle-cell lymphoma. Two of the 11 had a CR and 5 had a PR for an ORR of 64%; all responders had follicular histology.

[0106] Because Rituximab serum levels and response were positively correlated in previous studies, a Phase II study of eight weekly doses of 375 mg/m² Rituximab was conducted in low-grade or follicular NHL, patients. The ORR was 60% in evaluable patients, with a 14% CR and a 46% PR rate. Median values for TTP in responders and DR were 13.4± months and 19.4± months, respectively (15). Though it is difficult to compare across studies, it appears that TTP and DR may be improved by using more doses.

[0107] Contrary to early assumptions about antibody therapy being useful only in micrometastatic disease, Rituximab is quite active in high bulk disease. In a separate study, 31 patients with relapsed or refractory, bulky low-grade NHL (single lesion >10 cm in diameter) received 375 mg/m² Rituximab as four weekly infusions. Fifteen of 28 evaluable patients (43%) demonstrated a CR (1, 4%) or PR (11, 39%)(14).

Waldenström’s Macroglobulinemia

[0108] Waldenström’s Macroglobulinemia (WM) is a malignancy wherein B lymphocytes secrete excessive amounts of IgM antibodies. WM usually occurs in people over sixty, but has been detected in adults in their early thirties. WM today is considered a rare incurable indolent malignancy, which has in the past been treated by plasmapheresis to reduce serum viscosity. Chemotherapeutic drugs such as an alkylating agent and a corticosteroid are often prescribed. The most recommended drug for WM has been Leustatin (2CdA).

[0109] A report on seven patients with Waldenström’s macroglobulinemia where the patients were treated with Rituximab (375 mg/m² weekly times 4) (15) noted responses in 4 (57%) of patients. Median progression-free survival was 8 months (range 3-27+ months). Thus, Rituximab should be useful in combined therapeutic protocols, particularly with chemotherapeutic reagents such as 2CdA.

Chronic Lymphocytic Leukemia (CLL)

[0110] CLL is the (leukemic) equivalent of small lymphocytic lymphoma (SLL). Patients with SLL had lower serum levels and a lower response rate when treated with the standard dose of Rituximab than patients with other low-grade NHL subtypes. This is probably due to the very high levels of circulating tumor cells in patients with CLL, and because malignant cells involved in CLL are thought to have reduced levels of expression of CD20 on the cell surface.

[0111] Nevertheless, the present inventors have discovered that hematologic malignancies such as CLL may be treated with Rituximab. A recent clinical study evaluated treatment of CLL patients at higher doses of Rituximab (16). All patients receive a first dose of 375 mg/m² to minimize infusion-relapse side effects. Subsequent weekly dosages (3) remained the same but were given at an increased dose level. Sixteen patients have been treated at dosages of 500-1500 mg/m². Medium age was 60 years (range, 25-78). Eighty-one percent had end-stage III-IV disease. Medium white blood cell count was 40x10⁹/L (range, 2-200). Hgb 11.6 g/dl (range, 7.7-14.7), platelets 75x10⁹/L. (range, 16-160), median β₂ immunoglobulin was 4.5 mg/L (range, 1.9-2.1). Median number of prior therapies was 2.5 (range 1-9). Sixty percent of patients were refractory to treatment. Two patients developed severe hypertension with the first dose (375 mg/m²); another one received further therapy.
Toxicity at subsequent escalated dosages has been mild although no patient at the 1500 mg/m² dose level has been fully evaluated. Eight patients have completed therapy (4 at 500 mg/m², 3 at 650 mg/m², 1 at 825 mg/m²). One patient treated at 560 mg/m² achieved full remission. One patient has progressive lymphocytosis on treatment and all other patients had reduction in peripheral blood lymphocytosis but less effect on lymph nodes. Dose escalation studies are ongoing.

[0112] Another approach to improving response in CLL patients is to upregulate the CD20 antigen using cytokerins. In an in vitro study, mononuclear cells from CLL patients were incubated for 24 hours with various cytokerins. Flow cytometry results showed significant up-regulation by IL-4, GM-CSF, and TNF-alpha (17). In fact, recent data suggests that the upregulation of CD20 observed on CLL cells may be limited to tumor cells (Venogopal et al. Poster—PanPacific Lymphoma meeting, June 1999). Cytokine-induced upregulation of CD20 antigen expression in chronic lymphocytic leukemia (CLL) cells may be limited to tumor cells. Preliminary data also suggest that interferon alpha also upregulates CD20 on CLL cells after only 24 hours when applied at a concentration of 500 to 1000 U/ml.

[0113] Thus, by administering certain cytokines to CLL patients prior to or concurrently with administration of Rituximab, the expression of CD20 on the surface of malignant B-cells may be upregulated, thereby rendering CD20, as well as other cell surface markers such as CD19, a more attractive target for immunotherapy. A collaborative study has been initiated to test for optimal cytokine doses for CD20 upregulation in vivo. The study protocol involves treating patients initially with GM-CSF at 250 mcg/m² SQ QD x3, ten patients with IL-4 mcg/kg SQ QD x3, and ten patients with G-CSF at 5 mcg/kg SQ QD x3. Mononuclear cells will be separated by Ficoll Hypaque centrifugation for apoptotic studies to determine if upregulation of CD20 translates to enhanced killing of tumor cells by Rituximab.

[0114] Antibody treatment of CLL can be combined with other conventional chemotherapeutic treatments known to be useful for the treatment of CLL. The most frequently used single agent for CLL is chlorambucil (LEUKERAN®), given either 1 mg/kg/day daily or 0.4 to 1 mg/kg every 4 weeks. Chlorambucil is often combined with oral prednisone (30 to 100 mg/m²/d), which is useful in the management of autoimmune cytopenias. Cyclophosphamide is an alternative to chlorambucil, the usual dose being 1-2 g/m² every 3-4 weeks together with vincristine and steroids (e.g., COP regimen).

[0115] Various drug combinations have been used for CLL, including COP (cyclophosphamide, ONCOVIN®, and prednisone), and CHOP (these three drugs plus doxorubicin). Fludarabine has shown an effect in the treatment of CLL, and gave an ORR of 50% in a group of patients treated with 25-30 mg/m²/d every 3-4 weeks. http://www.cancer-network.com. Although some patients have been shown to be refractory for fludarabine. Such patients may also be resistant to 2-CAE because often, patients who are refractory for fludarabine are also refractory to 2-CAE (O'Brien et al. N. Engl. J. Med. 330: 319-322 (1994)).

[0116] Hence, anti-CD20 antibody therapy will be particularly useful for patients who are refractory or who have relapsed after treatment with chemotherapeutic drugs. Rituximab therapy may also be combined with radiotherapy in these patients. TBI with a low fraction size of 15 Gy to total doses of 75 to 150 Gy has been shown to be effective in about one-third of patients.

[0117] A Phase II trial is currently being conducted by CALGB in CLL patients. Rituximab and fludarabine are administered concurrently, followed by Rituximab consolidation versus fludarabine induction followed by Rituximab. Rituximab with Myeloablative Therapy

[0118] Myeloablative therapy has yielded responses in indolent lymphomas; however, residual tumor cells may remain despite high-dose therapy and the PBSC reinfused may contain tumor cells. Rituximab is being used before stem cell mobilization and after transplant to reduce residual CD20+ tumor cells and contamination of the bone marrow or stem cells harvested. Interim results demonstrated that no CD20+ cells were detectable in harvested cells. Eighteen of 24 patients achieved engraftment and the treatment was well tolerated. PCR testing is ongoing to evaluate residual tumor cells (18).

Retreatment of Relapsed Low-Grade NHL with Rituximab

[0119] A trial evaluating retreatment of 33 patients who had responded to Rituximab and later relapsed has been reported (19). Seven of 56 evaluable patients (13%) obtained a CR and 16 a PR (29%), for an ORR of 42%. Four patients who had a second response received a third treatment; 3 of these responded.

[0120] After treatment with two courses of Rituximab, one patient’s tumor, initially classified as follicular, small cleaved cell NHL, no longer expressed the CD20 antigen and was unresponsive to Rituximab at the time of transformation to diffuse, large-cell NHL (20).

[0121] Thus, while retreatment with Rituximab is effective for treating patients who have relapsed after prior treatment with Rituximab, there may be an increased incidence of CD20+ tumor cells after secondary treatment. This observation supports the utility of the combined therapeutic treatment regimens described herein.

Combination of Rituximab and CHOP Chemotherapy for Low-Grade NHL

[0122] Chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) is an effective first-line therapy for low-grade or follicular NHL. Though initial response rates are high, relapse eventually occurs and subsequent chemotherapy regimens produce remissions with shorter durations. A Phase II trial was initiated to evaluate the combination of CHOP and Rituximab (21) in newly diagnosed and relapsed low-grade or follicular NHL because their mechanisms of action are not cross-resistant, and Rituximab is synergistic with certain cytotoxic drugs, including doxorubicin (5).

[0123] Twenty-nine of 38 patients received no prior anti-cancer therapy. CHOP was administered at standard doses every three weeks for six cycles with six infusions of Rituximab (375 mg/m²). Rituximab infusions 1 and 2 were administered on Days 1 and 6 before the first CHOP cycle, which started on Day 8. Rituximab infusions 3 and 4 were given 2 days before the third and fifth CHOP cycles, respectively, and infusions 5 and 6 were given on Days 134 and 141, respectively, after the sixth CHOP cycle.

[0125] In this combination study, 100% of the 38 patients treated responded (CR, 58%; PR, 42%). Of 35 evaluable patients who completed treatment, there were 63% CR, and 37% PR (21). Median DR is 35.3+ months with median
progression-free survival not reached after a median observation time of 36.7+ months. Twenty patients are still in remission after 36+ months to 53.4+ months (22). This DR is impressive even for first-line treatment, and 24% of this trial population had relapsed after chemotherapy.

[0126] In a study to be conducted by CALGH, 40 patients with low-grade NHL will receive Rituximab weekly times 8 and oral cyclophosphamide daily starting on Day 8. Twenty patients will receive Rituximab alone for 8 weekly doses.

[0127] A Phase III study conducted by ECOG in patients with low-grade NHL is comparing the combination of cyclophosphamide and fludarabine (Arm A) with standard CVP therapy (Arm B). In the randomization to Arm A or Arm B, patients are stratified by age, tumor burden, histology, and B symptoms. Responders in both arms will undergo a second randomization to Rituximab maintenance therapy (375 mg/m² weekly times 4 every 6 months for 2 years (Arm C) or to observation (Arm D).

Combination of Rituximab with Cytokines

[0128] Rituximab Plus Interferon Alpha

[0129] Interferon is a cytokine involved in modulating the immune system (23). Mechanisms by which interferon may increase the effectiveness of antibodies include the potentiation of antigen expression (24), increased targeting of antibodies into tumors (25, 26), and enhanced cytotoxicity of immunotoxins (27).

[0130] In a combination trial, interferon-alpha (Roferon-A), a cytokine with a single-agent clinical activity in NHL (28), and Rituximab were given to patients with relapsed low-grade or follicular NHL. Interferon-alpha (2.5 or 5 MIU) was administered subcutaneously, three times weekly for 12 weeks. Rituximab was administered by IV infusion weekly for four doses (375 mg/m²) starting on the fifth week of treatment. The ORR was 45% (17/38 patients); 11% had a CR and 34% had a PR. Kaplan-Meier estimates of the median DR and TTP in responders were 22.3+ and 25.2+ months, respectively (29). Previous combination studies of interferon-alpha and chemotherapeutic regimens containing anthracyclines yielded prolonged time to progression, but did not consistently increase response or survival rates (30-32). These early results suggest that the combination of Rituximab and interferon-alpha may prolong the time to progression relative to Rituximab alone.

[0131] Rituximab Plus G-CSF

[0132] In a separate study, Rituximab and G-CSF are being evaluated in relapsed low-grade NHL. It has been demonstrated in vitro as well as in vivo in healthy volunteers that G-CSF, via its effect on myeloid precursor cells, induces FcRl-positive neutrophils that are capable of functioning as effector cells in ADCC. Therefore, a Phase II study was initiated to evaluate the toxicity and efficacy of the combined treatment.

[0133] Both in Phase I and Phase II, patients were administered a standard dose of G-CSF (5 μg/kg/day) administered for three days, starting 2 days before administration of Rituximab. Phase I consisted of a dose escalation of Rituximab (125, 250, or 375 mg/m² weekly x4). Early results in 9 patients evaluated so far yielded an ORR of 67% (44% CR, 22% PR) with minor toxicity in 8 of the 9 patients (33). The most frequent adverse events were fever (4/8 patients), rhabditis (4/8), chills (3/8) and headaches (3/8), which were comparable to the adverse events observed previously in administration of Rituximab alone. The Phase II part of the study has been initiated, which will examine the efficacy of the addition of G-CSF and 375 mg/m² Rituximab x4.

[0134] Rituximab Plus IL-2

[0135] High-dose therapy with autologous peripheral blood stem cells (PBSC) or bone marrow (BM) rescue has been used to treat NHL, however success is often limited by the high risk of relapse, which is 50-80%. In an effort to improve durable remissions post-transplant, immunotherapy including high dose and low dose therapy with IL-2 has been studied in a number of treatment centers. Such studies have suggested that IL-2 therapy does demonstrate early post-transplant anti-Tumor activity.

[0136] Initially following autologous transplant, patients display delayed immune reconstitution which potentially results in diminished immune-mediated tumor eradication (43, 44). Indeed, it has been shown that both CD4+ T cells and cytotoxic CD8+ T cells are depressed (45-49). In vitro assays have demonstrated a profound suppression of T cell cytolytic and proliferative responses as well as decreased production of IL-2 in response to mitogens and soluble antigens. However, soluble IL-2 is able to restore these immune responses suggesting that immune cells in patients after autologous transplant are capable of responding to exogenous IL-2 (47). Peripheral blood NK activity also remains lower following BMT than control values and the NK activity is also augmented by addition of exogenous IL-2 (49). These data suggest that administration of IL-2 to patients shortly after stem cell transplant may enhance immune responsiveness at a critical period when tumor burden is minimal and when immune responsiveness in the absence of IL-2 is lacking.

[0137] For instance, Caliguire et al. have shown that IL-2 (Hoffman-LaRoche) administered at 0.45×10^6 IU/m²/day by 24-hour CIV for 12 weeks was able to expand the absolute number of CD56bright NK cells (50-52). This regimen was administered to non-transplant patients in the outpatient setting with little toxicity.

[0138] Animal models have shown that non-LAK inducing low doses of IL-2 dramatically enhances anti-tumor activity when administered with tumor-specific T effector cells (53). In addition, Soiffer et al. (54) administered low doses of IL-2 to 13 autologous BMT or T cell depleted allogeneic BMT recipients undergoing treatment for relapsed leukemia or lymphoma. Enhanced immunological responsiveness was demonstrated in the laboratory with a 5- to 10-fold increase in circulating CD56 bright CD16+ CD5- NK cells. Moreover, this low dose regimen of IL-2 resulted in augmented in vitro killing of the NK targets K562. When Soiffer et al. (55) updated the outcome of 29 allogeneic BMT patients who received low dose IL-2, they found superior survival for these patients (70%) compared to histological controls (30%, p<0.41).

[0139] Lauria et al. (56) treated 11 patients with high grade NHL at a median of 42 days after ABMT with IL-2 at a dose of 2×10^6 IU/m² qod for two weeks and then 3×10^6 IU/m² twice a week for a year. Phenotypic analysis showed a persistent and significant (p=0.001) increase in the proportion and absolute number of total lymphocytes and especially of both CD16 and CD56 NK cells after 6 months of therapy. None of the patients progressed with a median follow-up of twenty-two months (range 10-42 months) after starting therapy. In addition, two patients with residual
disease after ABMT, one in the liver and second in the lymph nodes, obtained a complete response after 7 and 10 months of IL-2 therapy.

[0140] Vey et al. (57) treated 25 patients with refractory or relapsed HD (11 patients) and NHL (14 patients) with low dose IL-2. 48% of the patients had resistant disease at transplant and 84% achieved CR after ABMT. IL-2 was started at a mean of 54 days after transplant and consisted of a first cycle of 5 days followed by 4 cycles of 2 days every other week. Patients received a mean of 160x10^6 IU/m^2 of IL-2. After a five year follow-up, the probability of survival and DFS is 72% (HD 73% and NHL 70%) and 45% (HD 36% and NHL 48%).

[0141] A group at the Fred Hutchison Cancer Research Center (FHCRC) has recently found that low dose IL-2 therapy was well-tolerated in the outpatient setting, and that remissions in patients treated with low dose IL-2 tended to be longer than without IL-2 treatment. II. therapy was associated with an increase in the number of certain populations of immune cells, including CD8+ and CD69+ cells; CD16+ CD8+ cells; CD16+ CD69+ cells; CD16+ CD56+ cells; CD16+ CD122+ cells; CD16+ Dr+ cells; and CD8+ CD56+ cells. There was also an increase in the expression of lytic activity against the tumor targets K562 and Dauidi, with a median of 5.9-fold and 6.5-fold increase, respectively. Relapses, when they occurred, occurred at a median of 17.8 months after transplant, and therefore remissions were reported to be characteristically longer than what was historically seen in transplant recipients without IL-2 therapy.

[0142] Given the encouraging data gathered from single therapy studies with IL-2 on ABMT transplant recipients, it seemed reasonable to combine IL-2 therapy with Rituximab post transplant, given that Rituximab's biological activity appears to be mediated through ADCC and complement-mediated lytic activity. Thus, a Phase I trial has been initiated in collaboration with the FHCRC to evaluate the safety and potential efficacy of a combined therapeutic regimen.

[0143] A separate Phase II study is also being performed to evaluate the efficacy and the incidence of HACA formation in patients receiving low-dose IL-2 and Rituximab. A specific objective of this study is to assess whether ADCC is enhanced by in vivo exposure to IL-2 and whether ADCC activity correlates with clinical response. Inclusion criteria for patients are histologically confirmed stage II-IV low-grade, follicular B-cell or mantle cell lymphoma. Mantle cell lymphoma, for the purposes of this clinical study, is defined as CD5+, CD23-, (if available) and/or bcl-1+ by immunohistochemistry. Patients who did not respond to or have relapsed following their first treatment with a standard therapy, i.e., chemotherapy, radiotherapy, ABMT and/or immunotherapy, are eligible.

[0144] Rituximab Plus GM-CSF for the Treatment of Relapsed Low Grade or Follicular B-Cell Lymphoma

[0145] Two separate Phase II trials have also been initiated to test the efficacy of combined treatment with Rituximab and GM-CSF. One study involves 40 patients with relapsed low grade B-cell lymphoma, and comprises administering Rituximab at 375 mg/m^2 weekly for 4 (d. 1, 8, 15, 22) and GM-CSF (LEUKINE®, Immunex) at 250 mcg sc three times weekly for 8 weeks, starting one hour before the first dose of Rituximab. This study was used to evaluate the clinical efficacy (overall response rate; ORR), overall complete response rate, time to progression and failure-free survival) of the combined therapeutic regimen, to characterize the safety (qualitative, quantitative, duration and reversibility of adverse events) of the combined therapy, and to determine the effects of the combined therapy on relevant lymphocyte subsets and cytokines. The second study plans to also monitor immunologic parameters to assess the mechanism of killing (complement C3 and C4, CH50, flow cytometry for CD3, CD4, CD8, CD16, CD19 and CD56 and ADCC assay).

[0146] Rituximab Plus Gamma-Interferon

[0147] Gamma-interferon may also be useful in combined therapy with Rituximab for treating patients with low-grade or higher-grade lymphomas. It is has recently been found that gamma-interferon upregulates CD20 expression on multiple myeloma (MM) patient plasma cells, patient B-cells, as well as on normal donor B-cells (Teun et al., Lugano, 1999). In fact, Teun and colleagues have shown that gamma-interferon augments binding of these cells to Rituximab. Induction of CD20 expression on plasma cells occurred in a dose dependent manner, with upregulation seen with as little as 1 U/ml of interferon gamma. A plateau occurred at 100 U/ml at 48 hours. Thus, gamma-interferon may also be beneficial when administered in combination with Rituximab.

Intermediate-Grade And High-Grade NHL

Single-Agent Studies

[0148] In a study conducted in Europe and Australia, alternative dosing schedules were evaluated in 54 relapsed or refractory intermediate- or high-grade NHL patients (34). Rituximab was infused at 375 mg/m^2 weekly for 8 doses or at 375 mg/m^2 once followed by 500 mg/m^2 weekly for 7 doses. The ORR was 31%, (CR 9%, PR 22%) no significant difference between the dosing regimens was observed. Patients with diffuse large-cell lymphoma (N=30) had an ORR of 37% and those with mantle-cell lymphoma (N=12) had an ORR of 33%.

Combination of Rituximab and CHOP Chemotherapy

[0149] In another study, 31 patients with intermediate- or high-grade NHL (19 females, 12 males, median age 49) received Rituximab on Day 1 of each of six 21-day cycles of CHOP (35). Of 30 evaluable patients, there were 19 CR (63%) and 10 PR (33%), for an ORR of 96%. This regimen was considered well tolerated and may result in higher response rates than with Rituximab or CHOP alone.

[0150] The NCI Division of Cancer Treatment and Diagnosis is collaborating with IDEC Pharmaceuticals Corporation to explore Rituximab treatment in other indications. A Phase II trial of CHOP versus CHOP and Rituximab is being conducted by ECOG, CALGB, and SWOG in older patients (>60 years) with mixed, diffuse large cell, and immunoblastic large cell histology NHL (N=630 planned). This study includes a secondary randomization to maintenance with Rituximab versus non-maintenance.

[0151] A Phase III trial of Rituximab and CHOP in 40 patients with previously untreated mantle-cell lymphoma is also ongoing at the Dana Farber Institute. Rituximab is administered on Day 1 and CHOP is given on Days 1-3 every 21 days for 6 cycles. Accrual for this study has been completed. A Phase II trial of CHOP followed by
Rituximab in newly diagnosed follicular lymphoma conducted by SWOG has also been completed. Results of these two trials are being analyzed.

A Phase II trial of CHOP and Rituximab versus CHOP alone in HIV-related NHL conducted by the AIDS Malignancy Consortium is ongoing; 120 patients are planned. Rituximab after Myeloblastic Therapy Relapse

Rituximab has shown promising early results in patients with relapsed intermediate-grade NHL after high-dose therapy with autologous PBSC support. Six of seven patients responded (1 CR and 5 PR) and one patient had stable disease; therapy was well tolerated (36).

Safety Experience

Adverse events and clinical laboratory data from 315 patients in the five single-agent U.S. studies were combined to provide a safety profile of Rituximab in patients with low-grade or follicular NHL. The majority of adverse events were infusion-related and occurred with decreasing frequency after the first infusion. The most common infusion-related events were fever (49%), chills (32%), rashes (18%), flushing (16%), headache (14%), angioedema (13%), pruritus (10%), and occasionally, hypotension (10%) and bronchospasm (8%). During the treatment period (up to 30 days following the last dose), 10% of patients experienced Grade 3 or 4 adverse events, which were primarily infusion-related or hematologic. Thrombocytopenia (<50,000 platelets/mm³) occurred in 1.3% of patients, neutropenia (<1000/ mm³) occurred in 1.9%, and anemia (<8 gm/dl.) occurred in 1.0%. Although Rituximab induced B-cell depletion in 70%-80% of patients, abnormally decreased serum immunoglobulins were observed in a minority of patients and the incidence of infection did not appear to be increased.

Hypotension requiring interruption of the Rituximab infusion occurred in 10% of patients and was Grade 3 or 4 in 1%. Anemia was reported in 13% of patients and was considered serious in one patient. Bronchospasm occurred in 8% of patients; 2% were treated with bronchodilators. A single report of broncholith obliterans was noted. Most patients experienced no further infusion-related toxicities by the second and subsequent infusions. The percentage of patients reporting adverse events upon retreatment was similar to that reported following the first course (14).

Four patients developed arrhythmias during Rituximab infusion. One of the four discontinued treatment because of ventricular tachycardia and supraventricular tachycardias. The other three patients experienced tachycardia (N=1) and irregular pulse (N=2) and did not require discontinuation of therapy. Anemia was reported during infusion and myocardial infarction occurred four days post-infusion in one patient with a prior history of myocardial infarction.

The overall incidence of adverse events and Grade 3 and 4 adverse events was higher in patients with bulky disease than in patients with non-bulky disease. The incidence of dizziness, neutropenia, thrombocytopenia, myalgia, anemia, and chest pain was higher in patients with lesions >10 cm. The incidence of Grade 3 or 4 neutropenia, anemia, hypotension, and dyspnea was also higher in patients with bulky disease compared with patients with lesions <10 cm (19).

Since FDA approval of Rituximab for treatment of relapsed or refractory low-grade or follicular NHL in 1997, an estimated 17,000 patients have been treated. In May, 1998, descriptions of eight post-marketing reports of severe infusion-related adverse events associated with the use of Rituximab that resulted in fatal outcomes were summarized. In seven of the eight fatalities, severe symptoms occurred during the first Rituximab infusion. The cause of death was not reported or remains unknown for two of the eight cases. Severe respiratory events, including hypoxia, pulmonary infiltrates, or adult respiratory distress syndrome contributed to six of the eight reported deaths. One patient had a pretreatment lymphocyte count of 600,000/mm³; another, a creatinine of 8; a third, a respiratory rate of 40; and a fourth, pancytopenia. Patients with a high tumor burden or with a high number of circulating malignant cells may be at higher risk and these patients should be monitored closely throughout each infusion.

Most of the adverse events recently described were previously observed in Rituximab clinical studies. One notable exception is an infusion-related syndrome associated with rapid tumor lysis, that was reported in six patients with high numbers of circulating tumor cells (37, 38). This syndrome was characterized by fever, rashes, bronchospasm with associated hypoxemia, a rapid decline in peripheral lymphocytes, laboratory evidence of tumor destruction, and transient, severe thrombocytopenia. These patients had diagnoses of B-prolymphocytic leukemia (N=2), chronic lymphocytic leukemia (N=2), mantle-cell lymphoma (N=1), or transformed NHL (N=1); all had elevated circulating lymphocytes, bulky adenopathy, and organomegaly. Although five of these six patients required hospitalization, symptoms resolved and subsequent Rituximab treatments were well tolerated; the last patient refused further therapy and died of progressive disease two weeks later.

In a separate report of seven patients with C.I.D. and one patient with mantle-cell lymphoma, tumor lysis syndrome was observed after the first Rituximab infusion in those patients with lymphocyte counts >10¹⁰ L (39). Radiomunotherapy with 90^Y-Ibritumomab Anibody In Combination with Rituximab

Another therapeutic approach to NHL under evaluation is a radiolabeled anti-CD20 antibody (IDEC-Y2B8) in combination with Rituximab. IDEC-Y2B8 (90^Y-ibritumomab tiuxetan) is a murine IgG₁ kappa anti-CD20 antibody conjugated to 90^Y via a chelator, MX-DTPA, which is covalently bound to the antibody. Rituximab (250 mg/m²) is administered prior to IDEC-Y2B8 to deplete peripheral B lymphocytes and improve biodistribution of the radiolabeled antibody.

In a recently reported Phase I/II study (40-42), patients with low-grade NHL (N=34), intermediate-grade NHL (N=14), or mantle-cell lymphoma (N=3) were treated with IDEC-Y2B8. The median age was 60, 71% were male, and 96% were Caucasian. Of 51 patients with relapsed or refractory NHL, 34 (67%) responded to single doses of 0.2, 0.3, or 0.4 mg/kg of IDEC-Y2B8. The ORR was 82% (28/34) for patients with low-grade or follicular NHL and was 43% (6/14) for patients with intermediate-grade lymphoma. No patients with mantle-cell disease responded.

A Phase III randomized study comparing IDEC-Y2B8 with Rituximab (375 mg/m² weekly times 4) for treatment of low-grade follicular or transformed NHL patients is ongoing. Another Phase III trial is also being conducted in patients with relapsed NHL who are refractory to Rituximab.
SUMMARY

[0165] In the absence of curative therapy for NHL, the objective of treatment is to achieve control of the disease for a meaningful duration and provide relief of tumor-related symptoms without undue toxicity. Treatment with Rituximab is a brief, 22-day outpatient therapy with limited adverse events in most patients. In clinical studies, 50% of evaluable relapsed or chemotherapy-refractory low-grade or follicular NHL patients achieved complete or partial responses. These responses were durable without maintenance therapy; the median TTP for responders was 13.2 months and the median DR was 16.6 months in the pivotal study.

[0166] Rituximab is approved as a safe and effective treatment for patients with relapsed low-grade or follicular B-cell NHL. It has significant clinical activity, a novel mechanism of action, and compares favorably with alternative therapies in response rate and response duration. Completion of ongoing studies will verify the role of alternative Rituximab regimens and Rituximab in the treatment of other CD20+ B-lymphocyte malignancies.

REFERENCES

cucients 1995; 8:60.

[0209] 43. Witherspoon R P, Lum L G, Storb R. Immuno

[0214] 48. Caye, S. et al., T-cell ontogeny after bone marrow transplantation: failure to synthesize Interleukin-2 (IL-2) and lack of CD2- and CD3-mediated proliferation by both CD4+ and CD8+ cells even in the presence of exogenous IL-2. Blood 74:2270, 1989.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 2

<210> SEQ ID NO 1
<211> LENGTH: 106
<220> TYPE: PRT
<223> ORGANISM: Mus musculus

<400> SEQUENCE: 1

Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ala Ser Ser Ser Val Ser Tyr Ile
20 25 30

His Trp Phe Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr
35 40 45

Ala Thr Ser Aen Leu Ala Ser Gly Pro Val Arg Phe Ser Gly Ser
50 55 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Val Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Ser Aen Pro Pro Thr
85 90

Phe Gly Gly Thr Lys Leu Gln Ile Lys
100 105

<210> SEQ ID NO 2
<211> LENGTH: 121
<220> TYPE: PRT
<223> ORGANISM: Mus musculus

<400> SEQUENCE: 2

Gln Val Gln Leu Gln Gin Gin Gin Gin Pro Gly Ala Glu Leu Val Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30
1. A method of treating B-cell lymphoma comprising administering to a patient a therapeutically effective amount of an anti-CD20 antibody subsequent to therapeutically effective chemotherapy.

2. The method of claim 1 wherein the chemotherapy is selected from the group consisting of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) and cyclophosphamide, vincristine, and prednisone (CVP).

3. The method of claim 1 wherein the anti-CD20 antibody comprises a chimeric antibody.

4. The method of claim 1 wherein the anti-CD20 antibody comprises rituximab.

5. The method of claim 1 wherein the anti-CD20 antibody comprises a light chain variable region comprising the amino acid sequence in SEQ ID NO: 1 and a heavy chain variable region comprising the amino acid sequence in SEQ ID NO: 2, and comprises human gamma 1 heavy-chain and kappa light-chain constant region amino acid sequences.

6. The method of claim 1 wherein the B-cell lymphoma comprises low grade or follicular non-Hodgkin’s lymphoma (NHL).

7. The method of claim 6 wherein the anti-CD20 antibody is administered subsequent to the chemotherapy as a maintenance therapy.

8. The method of claim 7 wherein the maintenance therapy comprises administering 375 mg/m² anti-CD20 antibody for about 2 years.

9. A method of treating low grade or follicular non-Hodgkin’s lymphoma (NHL) comprising administering to a patient a therapeutically effective amount of rituximab subsequent to therapeutically effective chemotherapy selected from the group consisting of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) and cyclophosphamide, vincristine, and prednisone (CVP), wherein rituximab is administered as maintenance therapy comprising administering 375 mg/m² anti-CD20 antibody for about 2 years.

10. A method of treating low grade or follicular non-Hodgkin’s lymphoma (NHL) comprising administering to a patient a therapeutically effective amount of an anti-CD20 antibody subsequent to therapeutically effective chemotherapy selected from the group consisting of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) and cyclophosphamide, vincristine, and prednisone (CVP), wherein rituximab is administered as maintenance therapy comprising administering 375 mg/m² anti-CD20 antibody for about 2 years, and wherein the anti-CD20 antibody comprises a light chain variable region comprising the amino acid sequence in SEQ ID NO: 1 and a heavy chain variable region comprising the amino acid sequence in SEQ ID NO: 2, and comprises human gamma 1 heavy-chain and kappa light-chain constant region amino acid sequences.

11. The method of claim 9, wherein the chemotherapy is CVP.

12. The method of claim 10, wherein the chemotherapy is CVP.