A highly re-configurable article of furniture formed of interlocking elements that may be used as a bar, counter, desk, dining, display or coffee table and may be arranged in a wide variety of shapes, sizes and heights through the addition, removal or repositioning of the elements and varying the height of the supports.
ARTICLE OF FURNITURE ADJUSTABLE IN SIZE, SHAPE AND HEIGHT

[0001] The desire for an article of furniture that can serve varying numbers of guests for varying functions is ubiquitous among domestic and commercial hosts, as evidenced by the many options for leaves, extensions, height adjustments and conversions from desk to counter to dining table to game table too numerous to specify. The prior art has attempted to meet this basic utilitarian and esthetic need by adding elements, such as panels or leaves, either removable or folding, onto the ends or into the expanded center of a supporting element. Or, the prior art has combined separate smaller elements to create a larger article or furniture system. Past attempts to create variation in an article’s size or shape have presented a finite number of options for re-configuration (Cheslow, Laney, Ambrose, Schwartz, Sherman). Several patents show circular or arced articulating surfaces. (Finestone, Ambrose, Machado). Several patents involve elements that articulate in more than one position (Cheslow, Schwartz). Several suggest change in height. (Jacobsson, Novak). Some allow the addition of many units to create a large aggregate (Machado, Schwartz, Ambrose) of several possible shapes.

[0002] Though various shapes are possible in some of the aforementioned aggregating elements (Machado, Schwartz, Ambrose), they still have the limitation of one height and thus one use for either dining table, coffee table, desk, counter or bar. Furthermore, fixed position legs make some of the possible combination shapes cumbersome due to leg interference. Though protective glides are readily available (Long, Podgorski) they frequently break or come off when an article is moved in a lateral or oblique direction. No one of these articles or systems has thus far succeeded in satisfying the needs of a host who requires an article of furniture that may serve as a bar, desk, counter, dining, display or coffee table and accommodate a widely varying number of guests and occasions. Thus, the furniture developed in the prior art suffers from the following disadvantages:

[0003] (a) The number of shapes available in any one invention in the prior art is at most several.
[0004] (b) Many designs become unstable with the addition of more leaves or elements.
[0005] (c) The available height adjustments are either limited or must be accomplished by means of a mechanism requiring strength, tools, or technical skill.
[0006] (d) Some shapes, while possible, are awkward due to legs which do not reposition.
[0007] (e) The great number of elements needed to create a large or complex shape creates a problem of storage when not in use.
[0008] (f) Movement of the article may cause damage to flooring or to the supports of the article.

SUMMARY

[0009] In accordance with one embodiment, the article comprises a number of crescent shaped articulating horizontal elements, supported by height adjustable and repositionable legs, which may configure into a variety of shapes through repositioning along the articulating arc surfaces.

Advantages

[0010] Accordingly, several advantages of one or more aspects are as follows:
[0011] (a) The articulating surfaces may meet in any position and move through all of the positions along those surfaces in an unhindered manner.
[0012] (b) The article may incorporate an unlimited number of expanding elements while remaining stable.
[0013] (c) The legs are adjustable to varying heights with a hidden mechanism, allowing use at bar, counter, desk, dining, display, coffee table or some other predetermined height.
[0014] (d) The legs may be repositioned while still attached to the fully assembled article, allowing for unencumbered access for working, serving or seating.
[0015] (e) The protective glides are laterally stabilized to avoid breakage or dislocation.
[0016] (f) The table may be easily and completely assembled or disassembled by two persons of average capability without tools and stored in a standard domestic closet.
[0017] (g) The hidden nature of the attachment and height adjustment mechanisms is esthetically pleasing and allows for use in formal occasions.
[0018] This embodiment thus presents an exceedingly variable furniture piece that is uniquely articulated, uniquely configurable, uniquely height adjustable and uniquely storable with a variety of options heretofore unavailable in a single article or system of expandable, adjustable or multi-configuration furniture. It is useful for domestic and commercial service as it incorporates a large number of seating, serving and decorative options.

DRAWINGS—FIGURES

[0019] FIG. 1 is an isometric view of one fully assembled element used in accordance with one embodiment.
[0020] FIG. 2 is a diametric front view of one fully assembled element used in accordance with one embodiment.
[0021] FIG. 3 is a plan view of one fully assembled element used in accordance with one embodiment.
[0022] FIG. 4 is a front view of one fully assembled element used in accordance with one embodiment.
[0023] FIG. 5 is an isometric view from bottom of one fully assembled element used in accordance with one embodiment.
[0024] FIG. 6 is an isometric exploded view of the underside of element top, showing grooves and parts affixed thereon in accordance with one embodiment.
[0025] FIG. 7 is an isometric top front view of attachment mechanism showing component parts in accordance with one embodiment.
[0026] FIG. 8 is an isometric top rear view of attachment mechanism showing component parts in accordance with one embodiment.
[0027] FIG. 9a is a side view of attachment mechanism showing component parts in accordance with one embodiment.
[0028] FIG. 9b is a reflected plan view of attachment mechanism showing component parts in accordance with one embodiment.
[0029] FIG. 9c is a front view of attachment mechanism showing component parts in accordance with one embodiment.
[0030] FIG. 10 is an isometric front exploded view of attachment mechanism showing component parts in accordance with one embodiment.
[0031] FIG. 11a is an isometric rear view of attachment mechanism showing operation in detached position in accordance with one embodiment.
FIG. 11a is an isometric rear view of an attachment mechanism showing operation in a loosely attached and moveable position in accordance with one embodiment.

FIG. 11b is an isometric rear view of an attachment mechanism showing operation in tightly attached position in accordance with one embodiment.

FIG. 12a is an isometric front view of attachment mechanism showing operation in detached position in accordance with one embodiment.

FIG. 12b is an isometric front view of attachment mechanism showing operation in loosely attached and moveable position in accordance with one embodiment.

FIG. 13a is a side view of attachment mechanism showing operation in detached position in accordance with one embodiment.

FIG. 13b is a side view of attachment mechanism showing operation in loosely attached and moveable position in accordance with one embodiment.

FIG. 13c is a side view of attachment mechanism showing operation in tightly attached position in accordance with one embodiment.

FIG. 14a is a plan view of a circular element in accordance with one embodiment.

FIG. 14b is an isometric view of a circular element in accordance with one embodiment.

FIG. 14c is a side view of a circular element in accordance with one embodiment.

FIG. 15 is a top isometric exploded view of a circular element showing associated component parts from the underside in accordance with one embodiment.

FIG. 16 is a bottom isometric exploded view of a circular element showing associated component parts from the underside and recesses in underside in accordance with one embodiment.

FIG. 17a shows a side view of a supporting member in accordance with one embodiment.

FIG. 17b shows an isometric view of a supporting member in accordance with one embodiment.

FIG. 18a shows an isometric partially exploded view of a supporting member and component parts in accordance with one embodiment.

FIG. 18b shows an isometric exploded view of component parts of a supporting member in accordance with one embodiment.

FIG. 19 is an isometric view of a supporting member showing section lines for subsequent figures in accordance with one embodiment.

FIG. 20 is a cross section view of assembled support member showing interior components in accordance with one embodiment.

FIG. 21 is a cross section of a support member tube in accordance with one embodiment.

FIG. 22 is an interior view from the bottom of a support member tube showing stops in accordance with one embodiment.

FIG. 23a is a plan view of a compression guide attached to the top of the inner post within the hollow tube in accordance with one embodiment.

FIG. 23b is a top isometric view of a compression guide attached to the top of the inner post within the hollow tube in accordance with one embodiment.

FIG. 24a is a plan view of a compression ring that fits around the lower end of the inner post and within the hollow tube in accordance with one embodiment.

FIG. 24b is an isometric view of a compression ring that fits around the lower end of the inner post and within the hollow tube in accordance with one embodiment.

FIG. 25a is a plan view of stabilizing ring that secures the ring of FIGS. 24a-b in accordance with one embodiment.

FIG. 25b is an isometric view of stabilizing ring that secures the ring of FIGS. 24a-b in accordance with one embodiment.

FIGS. 26a-d show various views of a cylindrical flanged protective device in accordance with one embodiment.

FIG. 27a is a plan view of disc resting on top of the support member in accordance with one embodiment.

FIG. 27b is an isometric view of disc resting on top of the support member in accordance with one embodiment.

FIG. 28a is a reflected plan view of a component part of a supporting member in accordance with one embodiment.

FIG. 28b is a bottom isometric view of a component part of a supporting member in accordance with one embodiment.

FIG. 28c is a front view of a component part of a supporting member in accordance with one embodiment.

FIG. 28d is a side view of a component part of a supporting member in accordance with one embodiment.

FIGS. 29a-c are side views showing the operations of attachment mechanism in accordance with one embodiment.

FIG. 29a shows detached position of attachment mechanism in accordance with one embodiment.

FIG. 29b shows loosely attached and moveable position of attachment mechanism in accordance with one embodiment.

FIG. 29c shows tightly attached position of attachment mechanism in accordance with one embodiment.

FIG. 29d is a top isometric view of elements articulating, with cross section lines for subsequent figures in accordance with one embodiment.

FIG. 31 is a cross section view of the operation of attachment mechanism in accordance with one embodiment.

FIG. 32 is a cross section view of the operation of a morrise and tenon in accordance with one embodiment.

FIG. 33 is a top isometric view of a fully assembled element with some of the possible support member positions and showing cross section lines for FIGS. 35a-d in accordance with one embodiment.

FIG. 34 is a bottom isometric view of a fully assembled element with some of the possible support member positions in accordance with one embodiment.

FIGS. 35a-d show cross section detail of internal mechanism for movement and securing of support member in accordance with one embodiment.

FIGS. 36a-p show various possible additional embodiments with differently arranged elements in plan view.
FIGS. 37a-c show plan views of alternative embodiments with differently shaped elements.

FIGS. 38a-d show alternative embodiments of differently shaped support members.

FIG. 39 shows an isometric view of an alternative embodiment with a suspended orientation.

FIG. 40 shows an isometric view of an alternative embodiment with upholstered elements.

FIG. 41 shows an isometric view of an alternative embodiment with a vertical orientation.

[0084] 50 Element
[0085] 52 Element Body
[0086] 54 Attachment Mechanism Rail
[0087] 56 Support Member Track
[0088] 58 Element Tenon
[0089] 60 Attachment Mechanism
[0090] 62 Attachment Mechanism Body
[0091] 64 Attachment Mechanism Hook
[0092] 66 Attachment Mechanism Handle
[0093] 68 Attachment Mechanism Handle Pivot Rod
[0094] 70 Attachment Mechanism Pressure Plate
[0095] 72 Attachment Mechanism Springs
[0096] 74 Support Member
[0097] 76 Support Member Tube
[0098] 78 Support Member Threaded Clamp
[0099] 80 Support Member Washer
[0100] 82 Telescoping Post
[0101] 84 Telescoping Post Protective Device
[0102] 86 Length Adjustment Mechanism
[0103] 88 Length Adjustment Mechanism Frame
[0104] 90 Length Adjustment Mechanism Ring Guide Retainer
[0105] 92 Length Adjustment Mechanism Ring Guide
[0106] 94 Telescoping Post Top Guide
[0107] 96 Length Adjustment Mechanism Frame Pin
[0108] 98 Terminus Element
[0109] 100 Terminus Element Body
[0110] 102 Terminus Element Attachment Mechanism Rail
[0111] 104 Terminus Element Circular Support Member Track
[0112] 106 Terminus Element Circular Inner Support Member Track

Detailed Description—FIGS. 1-10, 14-28—One Embodiment

One embodiment of the article of furniture employs a plurality of interlocking elements 50 which articulate and move into various positions while loosely attached and then may be fixed into a sturdy, stable structure in a desired position or shape. These elements rest upon support members adjustable in position and length. One such element is shown in FIGS. 1-6 in several views. The support member 74 inserts by means of the support member threaded clamp 78 into the support member track 56 on the underside of the element body 52, as shown in FIG. 5.

The element tenon 58 partially fits into recesses on either side of the opening through which the attachment mechanism hook protrudes. The finished arrangement of tenon 58 and hook 64 is shown in several views of the concave edge of the element in FIGS. 1-5. The attachment mechanism 60, support member track 56 and attachment mechanism rail 54 affix to the underside of the element body 52, fitting into recesses created for that purpose, shown in FIG. 6.

The element bodies 52 interlock by means of an attachment mechanism 60, shown assembled in several views in FIGS. 7-9 and disassembled in FIG. 10. The attachment mechanism 60 has the component parts of body 62, hook 64, handle 66, handle pivot rod 68, pressure plate 70 and springs 72.

The terminus element 98, in this embodiment shaped as a circle, differs from the other elements in that it does not make use of an attachment mechanism 60. FIGS. 14a-d show the terminus element 98 in plan, isometric, side and cross section views. The terminus element 98 accepts the attachment mechanisms 60 of other elements 50 by means of the terminus element attachment mechanism rail 102. As in the regular element, this attachment rail is on the underside along the outer edge. The terminus element 98 accepts support members 74 by means of the circular support member track 104 and circular inner support member track 106. The combination of these tracks allow the terminus element 98 flexibility in arrangement as the center of a closed circle or ovoid, the end of a free-form figure, the apex of an angle or one element within a figure. FIGS. 14a-c show the terminus element body 100 in several views while FIGS. 15-16 show exploded views of the terminus element 98 from plan and underside views, making visible the orientation of the circular support member track 104, circular inner support member track 106, and terminus element attachment mechanism rail 102.

The support member 74, shown assembled in FIGS. 17a and b and disassembled in FIG. 18 is composed of a hollow support member tube 76 which houses the telescoping post 82 and length adjustment mechanism 86, comprised of frame 88, ring guide 90, ring guide retainer 92, and frame pin 96. Affixed to the top of the support member 74 is the support member threaded clamp 78. The support member washers 80 sit between clamp 78 and tube 76. FIG. 19 shows a fully assembled support member 74. FIG. 20 shows a cross section of an assembled support member 74 and FIG. 21 shows a cross section of the support member tube 76 showing stops for the length adjusting mechanism. FIGS. 23-28 show the support member component parts in detail. Note: the longer center projection on the underside of the threaded clamp 78 in FIGS. 28b-d is threaded.

Operation—FIGS. 11a-c, 12a-c, 13a-c, 29a-c, 31-33

The interlocking elements 50 are abutted without gap or spaces with the concave tenon 58, shown in FIG. 6, fitting above the attachment mechanism rail 54 affixed to the convex reveal of the adjacent element 50, FIGS. 6 and 30. The elements 50 are secured by the attachment mechanism 54 shown in several views in FIGS. 7-13. The attachment mechanism 60 articulates with the attachment mechanism rail 54 in three possible positions: (1) detached, (2) loosely attached and moveable, and (3) tightly attached or fixed. These positions are shown in several views in FIGS. 11-13. FIGS. 11a, 12a and 13a show the attachment mechanism 60 in the detached position with the hook 64 and handle 66 parallel to the attachment mechanism body 62. The detached position allows for un-coupling of one element body 52 from another and is the position in which two element bodies are moved together for purposes of interlocking. FIGS. 11b, 12b and 13b show the attachment mechanism in the loosely attached and moveable position with the hook 64 and handle 66 perpendicular...
dicular to the attachment mechanism body 62. In this perpendicular orientation, the hook 64 fits over the attachment mechanism rail 54 and keeps the two element bodies 52 attached and aligned in one horizontal plane, but preserves the amount of space or play necessary to slide the articulating surfaces along one another as a means of achieving the desired position between the two adjacent elements 50. FIGS. 11c, 12c and 13c show the attachment mechanism 60 in the tightly attached or locked position, with the hook 64 perpendicular to the attachment mechanism body 62 and the handle 66 pressed against the surface of the attachment mechanism body 62. In the tightly latched position, the pressure plate 70 is now engaged and the hook 64 is pulled tightly against the rail 54, locking the attached element bodies 52 in place with each other. FIGS. 29a-c show the attachment mechanism 60 in relation to the rail 54 as it operates in practice. FIG. 29a shows the detached position. Notice that the hook 64 is facing the viewer and is not articulated with the rail 54. FIG. 29b shows the loosely attached and moveable position. Notice that the attachment mechanism 60 is engaged, but there is still space between the hook 64 and rail 54, allowing for movement. FIG. 29c shows the tightly attached position. Notice that there is no space between the hook 64 and rail 54 and thus the element bodies 52 cannot move in relation to each other. FIGS. 30-32 illustrate the process of bringing two element bodies 52 together, in isometric and cross section views. Notice how the open circle, representing the facing end of the attachment mechanism hook 64 will slide over the top edge of the attachment mechanism rail 54 in FIG. 31 and how the element tenon 58 will slide into the same space over the rail in FIG. 32, creating a stable connection all along the articulating surface while still allowing for movement.

[0119] The support member 74 may be changed in length by means of the length adjustment mechanism frame 86 housed inside the support member tube 76 and surrounding the telescoping post 82, as shown in FIGS. 18a-b. When assembled as shown in FIGS. 18-19, the telescoping post top guide 94 (FIG. 23a-c) and length adjustment mechanism ring guide 90 (FIG. 24a-b) exert a radial outward pressure which prevents wobble and accommodates for imperfections in the inner surface of the support member tube 76. The ring guide retainer 92, FIG. 25a-b, secures the ring guide 90. An assembled support member 74 held aloft or shaken will remain stable and appear as one finished piece. A downward tug on the telescoping post 82 will, however, dislodge both the telescoping post 82 and length adjustment mechanism frame 86 from the tube 76 allowing for adjustment, as shown in FIG. 18b. One removes the frame pin 96, moves the telescoping post 82 through the ring guide 90 and ring guide retainer 92, replaces the frame pin 96 in the desired hole and replaces the entire assembly within the tube FIG. 18c. The length adjustment is accomplished quickly without tools or special skills. The support member 74 does not outwardly appear flimsy or “adjustable” and is therefore suitable for formal occasions. The bottom end of the telescoping post 82 is affixed with a protective device 84 equipped with a cylindrical flange that provides lateral stability while the support member is moved across a floor. FIG. 26a-d.

[0120] Every single element 50 need not have a support member 74, as the element body 52 is rigid enough and the attachment mechanism 60 and element tenon 58 are secure enough to accommodate a span of five element bodies 52 between support members 74. Accordingly, the support members 74 are removable and repositionable by means of the support member threaded clamp 78 affixed to the top end and the support member track 56 affixed to the underside of the element body. FIGS. 33-34 show plan and underside views of a selection of available positions the support member 74 may assume while secured in the track 56. The track 56 is configured so as to accept the uniquely shaped threaded clamp 78 and allow the support member 74 to move in a loosely attached and moveable manner, as shown in FIG. 34. When the desired position is achieved, the support member 74 is secured by turning the support member tube 76 to tighten the support member against the support member track 56 into an unmovable position. FIGS. 36a-d illustrate the action of the support member threaded clamp 78 in cross section. FIGS. 35a and 35c show the threaded clamp 78 in a loosely attached and moveable position. Notice the space between the support member track 56 and the support member washer 80. FIGS. 35b and 35d show the threaded clamp 78 in the tightly attached and unmovable position. Notice that there is no space between the support member track 56 and support member washer 80.

FIGS. 36 a-e—Additional Embodiments

[0121] Additional embodiments shown in FIGS. 36 a-p suggest the possibilities for many, but not all of the possible shapes available with the crescent. These figures are meant to be suggestive, but not complete, examples of various possible shapes and arrangements of the article of furniture.

FIGS. 37-42—Alternative Embodiments

[0122] In accordance with other embodiments, the elements 50 may be shaped differently while still able to articulate along arced surfaces. For example, the terminus element 98 may present a number of rounded protrusions, FIG. 37a, to articulate with different lines of abutted elements 50 or be a different proportion to create a large end or middle of a shape. The terminus element 98 may also be fitted with a lazy susan mechanism. The element bodies 52 themselves may have a rounded, sausage-like shape, FIG. 37b. The element bodies 52 may be proportioned so that varying numbers of crescents make up a closed circle. FIG. 37d shows six elements making a closed circle, but many other possible embodiments exist.

[0123] In accordance with another embodiment, the support members 74 may have different shapes or cross sections. FIGS. 38a-d suggest some of many possible shapes.

[0124] In accordance with another embodiment, arced articulating elements 50 may be suspended as a light fixture, artwork or mobile. FIG. 39 suggests one of many possible uses in this embodiment.

[0125] In accordance with another embodiment, one or more elements 50 may be upholstered and used as reconfigurable seating or bedding. FIG. 40 suggests one of many possible uses in this embodiment.

[0126] In accordance with another embodiment, arced articulating elements 50 may be suspended or supported in a vertical orientation as shown in FIG. 41. This embodiment could be used as a screen, partition, or wall mounted decoration.

Advantages

[0127] From the description above, a number of advantages of some embodiments of my article of furniture become evident:
A length adjustment mechanism internal to said support member that secures said telescoping post at various predetermined lengths,
(g) a support member track affixed to the underside center of said element to provide a guide for locking, attachment and repositioning of said support member,
(h) one or more support member tracks affixed to the underside of said terminus element to provide a guide for locking, attachment and repositioning of a predetermined number of said support members.
(i) a support member threaded clamp attached to the top end of said support member which articulates with said support member track that may lock said support member in a secure position, attach in a moveable position or detach to allow for removal or repositioning of said support member.
(j) a telescoping post protective device inserted into a hole in the bottom end of said telescoping post having a cylindrical flange which secures said, protective device in place while said element is moved along a floor.

2. The article of furniture of claim 1 wherein the body of said elements is composed of wood, shaped as a crescent and proportioned so that twelve crescents may be joined together to create a closed circle, said terminus element is circular and composed of wood, said support member is composed of nickel plated steel, said mechanisms and devices are composed of nickel plated steel, said protective device is composed of ultra high molecular weight plastic and said telescoping post is composed of wood.

3. The article of furniture of claim 1 wherein the composition of said element and/or said terminus element is composed of; veneered or laminated singly or in combination with wood, one or several of various furniture grade skins or leathers, melamine, plastic, metal paper, cloth, rubber, or other composite material.

4. The article of furniture of claim 1 wherein the composition of said elements, said terminus element, said support members, and/or other named component parts is of molded or molded plastic, nylon or resin.

5. The article of furniture of claim 1 wherein the surface of said element and/or said terminus element is composed of, etched, plated, patinated, painted, lacquered or otherwise covered with paint, varnish, wax, lacquer or gilding material.

6. The article of furniture of claim 1 wherein said elements are colored in gradient, complementary or contrasting colors.

7. The article of furniture of claim 1 wherein there are zero or more terminus elements.

8. The article of furniture of claim 1 wherein said article of furniture is arranged into the shape of a closed, open or ovoid circle, an arc of various radii, a diamond, a cross, a question mark, an exclamation point, a polygon, a spiral, a zigzag, an upright or inverted heart, an alphabet-inspired, or freeform open or closed figure.

9. The article of furniture of claim 1 wherein said article of furniture is one of various shapes or makes use of various articulating surfaces of various dimensions or proportions which allow for movement of the co-jointed elements.
11. The article of furniture of claim 1 with the addition of a mechanism to guide a predetermined number of said elements into a fixed shape, a shape of varying size or a range of related shapes.

12. The article of furniture of claim 1 wherein said terminus element is one of various shapes that may articulate with said attachment mechanism of said element, also one of various shapes.

13. The article of furniture of claim 1 wherein the cross section of said support member and said telescoping post is of a circular, ovoid, triangular, square or rectilinear shape.

14. The article of furniture of claim 1 in which said terminus element employs a lazy susan mechanism and is used at the same or a varying height to said interlocking elements.

15. The article of furniture of claim 1 lacking said support members and affixed with a guide or other mechanism that holds said elements in a vertical position for use as a screen, partition or wall mounted decoration.

16. The article of furniture of claim 1 lacking said support members and affixed with a guide or frame that suspends said elements above floor level, possibly for use as a re-configurable light fixture, artwork or mobile.

17. The article of furniture of claim 1 in which one or more said elements are upholstered, possibly for use as reconfigurable seating or bedding.

18. A furniture system, comprising:
 (a) a plurality of interlocked and moveable elements
 (b) an internal attachment mechanism that allows locked, loosely attached while moveable and detached positions,
 (c) a device affixed to the underside edge of said element to secure and guide said internal attachment mechanism
 (d) a height adjustable and/or moveable support, member that may reposition along the underside of said element
 (e) a device affixed to the underside of said element to secure and guide said height adjustable and/or moveable support member
 (f) a laterally stabilized protective glide inserted into a hole on the end of the internal post of said height adjustable and/or support member.

19. A tabletop, either fixed or moveable, comprising two or more crescents or arced shapes affixed or nested concave to convex and with or without one or more corresponding circles, arranged into the shape of a closed, open or ovoid circle, an arc of various radii, a diamond, a cross, a question mark, an exclamation point, a polygon, a spiral, a zigzag, an upright or inverted heart, an alphabet-inspired, or freeform open or closed figure.

20. A horizontally or vertically oriented utilitarian or decorative surface, either fixed or moveable, comprising two or more crescents or arced shapes affixed or nested concave to convex and with or without one or more corresponding circles, arranged into the shape of a closed, open or ovoid circle, an arc of various radii, a diamond, a cross, a question mark, an exclamation point, a polygon, a spiral, a zigzag, an upright or inverted heart, an alphabet-inspired, or freeform open or closed figure.

* * * * *