A device for accessing a body cavity through an opening in tissue is provided. The access device includes a unitary compressible body configured to be received in an opening in tissue. The compressible body includes a central portion, an upper rim located on a proximal end of the body and a lower rim located on a distal end of the body. The central portion defines a slit configured to permit the passage of a hand therethrough in a sealing manner.
HAND ACCESS DEVICE

CROSS REFERENCE TO RELATED APPLICATION

[0001] The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/424,761 filed on Dec. 20, 2010, the entire contents of which are incorporated herein by reference.

BACKGROUND

[0002] 1. Technical Field
[0003] The present disclosure relates to access devices for use in surgical procedures. More particularly, the present disclosure relates to compressible access devices configured for sealed receipt of a hand therethrough.
[0004] 2. Background of Related Art
[0005] Access assemblies configured for reception through an opening or incision into a body cavity are known, as are methods of inserting the access assemblies therethrough. Traditional access assemblies include a rigid cannula that is received through the tissue of the body wall into the body cavity. Endoscopic, laparoscopic and other suitable instruments may then be directed through a housing located on the proximal end of the cannula to access the body cavity in a sealing manner.
[0006] Compressible devices or assemblies configured for accessing a body cavity and permitting reception of instruments therethrough in a sealing manner are also known. Such compressible assemblies are composed of silicone, thermoplastic elastomers (TPE), rubber, foam, gel and other compressible materials and are configured to be compressed to facilitate insertion into an incision. Typically, such assemblies are deformed by a surgeon using his/her fingers or with the assistance of a grasping device, i.e., forceps. Compression of the assembly reduces the profile of the assembly, thereby facilitating reception of the assembly into the incision. Upon release of the compressive force, the previously compressed assembly returns to an uncompressed configuration. One or more endoscopic or laparoscopic devices may then be inserted through one or more lumens in the assembly to complete a procedure.

[0007] Although advances have been made with regards to endoscopic and laparoscopic instrumentation, there is still no comparison to the dexterity and feel of one’s hand. Being able to access a surgical site with a hand enables a surgeon to perform procedures that he/she would not otherwise be able to perform during a closed procedure. Thus, any procedure performed with hand access more closely resembles an open procedure, which a surgeon may be more comfortable performing.

[0008] Therefore, it would be beneficial to have a compressible access device which provides hand access for a surgeon.

SUMMARY

[0009] The present invention, in accordance with an embodiment thereof, relates to an access device comprising a unitary, compressible body configured to be received in an opening in tissue, the compressible body including a central portion, an upper rim located on a proximal end of the body and a lower rim located on a distal end of the body, wherein the central portion defines a slit configured to permit the passage of a hand therethrough in a sealing manner. The compressible body may define a substantially hour-glass shape. The upper and lower rims and the central portion may be substantially circular or substantially oval. The upper and lower rims may be substantially similar. The opening in the tissue may be an incision or a natural orifice. Each of the upper and lower rims may include a width of four inches (4") and a depth of four inches (4"). Alternatively, each of the upper and lower rims may include a width of four inches (5") and a depth of four inches (3"). The slit may include a length of at least two and one-half inches (2.5"). The compressible body may be composed of silicone, thermoplastic elastomers (TPE), rubber, foam and/or gel.

DESCRIPTION OF THE DRAWINGS

[0010] Embodiments of a compressible access device are disclosed herein with reference to the drawings, wherein:
[0011] FIG. 1 is a perspective view of an embodiment of an access device according to the present disclosure;
[0012] FIG. 2 is a top view of the access device of FIG. 1;
[0013] FIG. 3 is a perspective view of the access device of FIGS. 1 and 2, in a compressed condition prior to insertion through an incision;
[0014] FIG. 4 is a perspective view of the access device of FIGS. 1-3, selectively secured within an incision;
[0015] FIG. 5 is a perspective view of an access device according to an alternative embodiment of the present disclosure; and
[0016] FIG. 6 is a top view of the access device of FIG. 5.

DETAILED DESCRIPTION

[0017] Embodiments of the presently disclosed access device will now be described in detail with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views. As is common in the art, the term “proximal” refers to that part or component closer to the user or operator, i.e. surgeon or physician, while the term “distal” refers to that part or component further away from the user. Although the access devices of the present disclosure will be described as relates to accessing an abdominal cavity through an incision in the abdominal wall, the access devices of the present disclosure may be modified for use in other closed procedures, i.e., laparoscopic, arthroscopic, endoscopic. Furthermore, the access devices of the present disclosure may be modified for use in accessing internal cavities through natural orifices, e.g., anus, vagina.

[0018] Referring initially to FIG. 1, an access device according to an embodiment of the present disclosure is shown generically as access device 100. Access device 100 is configured for insertion through an opening in tissue, i.e., an incision, such that after insertion, access device 100 creates a seal within the opening through which a surgeon may insert and manipulate his/her hand “H” (FIG. 4) and/or one or more surgical instruments (not shown) to complete a procedure.

[0019] With reference to FIGS. 1 and 2, access device 100 includes a substantially compressible and/or flexible body 112. Body 112 may be formed of various materials, such as, for example, silicone, thermoplastic elastomers (TPE), rubber, foam, gel, etc. In one embodiment, body 112 includes a TPE material that is infused with an inert gas, e.g., CO₂ or Nitrogen, to form a foam structure. Body 112 may be coated with a lubricant, e.g., Parylene N or C, in order to create a lubricious outer surface. Various other coatings, e.g., hydrophilic, hydrophobic, bio-agents, anti-infection, analgesic,
may also be employed to improve the characteristics of access device 100 or to adapt access device 100 for a specific procedure.

[0020] With reference still to FIGS. 1 and 2, body 112 includes a substantially cylindrical central portion 120, an upper rim 122 located on a proximal end 112a, and a lower rim 124 located at a distal end 112b. In this manner, body 112 defines a substantially hourglass shape when viewed from the side. Upper and lower rims 122, 124 are integrally formed with central portion 120 and define substantially annular members. Central portion 120 is configured to span the thickness of tissue “T”. Upper and lower rims 122, 124 aid in preventing movement of access device 100 longitudinally through incision “I” once access device 100 has been properly received therethrough. As the thickness of tissue depends on the body composition of the patient and the location through which the underlying cavity is being accessed, the length and size of access device 100, generally, and central portion 120, specifically, may be modified to suit a given procedure. In this manner, an adult patient having fatty abdominal tissue requires an access device having a longer central portion 120 than an access assembly sized for a child.

[0021] Still referring to FIGS. 1 and 2, body 112 defines a slit 115 extending longitudinally therethrough. Slit 115 extends the length of body 112 and provides a resetable opening through which a hand “H” of a surgeon may be passed. As shown, slit 115 spans substantially the width of central portion 120. Body 112 is configured such that hand “H” may be passed through slit 115 of access device 100 while maintaining an insufflation gas within a body cavity “C”. In this manner, body 112 of access device 100 forms a seal about the hand and lower arm of the surgeon, to permit sealed passage of hand “H” therethrough. Body 112 may include a coating about slit 115 to prevent tearing and/or to facilitate reception of hand “H” therethrough.

[0022] With reference still to FIGS. 1 and 2, body 112 of access assembly 100 defines a substantially hourglass shape having a height “H”. Upper and lower rims 122, 124 each define substantially circular members having a width “W” and a depth “D”. As shown, each of upper and lower rims 122, 124 have similar sizes and shapes, however, it is envisioned that rims 122, 124 may differ in size and/or shape. Slit 115 defines a planar opening spanning a length “L” of central portion 120. The size of access device 100 is needed to be large enough to permit passage of hand “H” through slit 115 without tearing of body 112, however, access device 100 should not be so large as to create an unnecessarily large opening in tissue “T” of the patient that may be difficult to close and/or may leave a decidedly large scar. As the size of a hand “H” differs from surgeon to surgeon, access device 100 may be provided in various sizes to accommodate the surgeon. In one embodiment, width “W” and depth “D” of first and second rims 122, 124 and height “H” of body 112 each measure between three inches (3”) and five inches (5”), and preferably, four inches (4”). In the same embodiment, slit 115 includes a length “L” of at least two and one-half inches (2.5”).

[0023] The use of access device 100 will now be described with reference to FIGS. 3 and 4. The following discussion will include the use of access device 100 for accessing a body cavity “C” through an incision “I” in tissue “T”. As discussed above, access device 100 may be used for accessing various cavities or lumen through other openings, including naturally occurring orifices, e.g., anus.

[0024] Referring initially to FIG. 3, an incision “I” is created in tissue “T” through which access device 100 is to be inserted to access body cavity “C”. Body 112 of access device is then compressed to reduce the profile of access device 100. This may be accomplished by hand or instead, through the use of an insertion mechanism (not shown). By reducing the profile of access device 100, access device 100 may be more easily inserted through incision “I”.

[0025] Turning to FIG. 4, once received through incision “I”, body 112 of access device 100 is permitted to return to an initial, uncompressed condition. Decompression of access device 100 causes access device 100 to expand within incision “I”, thereby effectively sealing body cavity “C”. Once sealed, body cavity “C” may be insufflated and access device 100 operates in a manner similar to traditional access assemblies configured for use with surgical instruments.

[0026] Removal of access assembly 100 from within incision “I” occurs in the reverse order of insertion. Body 112 is once again compressed to reduce the profile of access device 100. Once compressed, access device 100 may be readily withdrawn from incision “I”. Once access assembly 100 is removed from incision “I”, incision “I” is closed in a conventional manner, i.e., sutures, staples.

[0027] Turning now to FIGS. 5 and 6, an access device according an alternative embodiment of the present disclosure is shown generally as access device 200. Access device 200 is substantially similar to access device 100 described hereinabove, and will only be described as relates to the differences therebetween. Access device 100 includes a body 212 having a central portion 220, an upper rim 222 located on a proximal end thereof and a lower rim 224 located on a distal end thereof. Body 212 defines a slit 215 extending longitudinally through central portion 220. Each of upper and lower rims 222, 224 and central portion 220 define substantially oval members. The oval shape of upper and lower rims 222, 224 and central portion 220 permits a larger slit 215. In this manner, access device 200 is configured to more readily accommodate passage of hand “H”. Upper and lower rims 222, 224 have a width “W”, and a depth “D”. Body 212 includes a height “H1” and slit 215 includes a length “L1”. In one embodiment, upper and lower rims 222, 224 include a width “W1” of about five inches (5”) and a depth “D” of about three inches (3”). Body 212 includes a height “H1” of about three and one-half inches (3.5”) and slit 215 includes a length “L1” of about three inches (3”).

[0028] It will be understood that various modifications may be made to the embodiments disclosed herein. For example, either or both of the upper and lower rims and the central portion may include selectively inflatable cavities configured to facilitate insertion and removal of the access device through an incision. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

1. An access device comprising: a unitary, compressible body configured to be received in an opening in tissue, the compressible body including a central portion, an upper rim located on a proximal end of the body and a lower rim located on a distal end of the body, wherein the central portion defines a slit configured to permit the passage of a hand therethrough in a sealing manner.
2. The access assembly of claim 1, wherein the compressible body defines a substantially hour-glass shape.

3. The access assembly of claim 1, wherein the upper and lower rims and the central portion are substantially circular.

4. The access assembly of claim 1, wherein the upper and lower rims and the central portion are substantially oval.

5. The access assembly of claim 1, wherein the upper and lower rims are substantially similar.

6. The access assembly of claim 1, wherein the opening in the tissue is an incision.

7. The access assembly of claim 1, wherein the opening in tissue is a natural orifice.

8. The access assembly of claim 1, wherein each of the upper and lower rims include a width of four inches (4") and a depth of four inches (4").

9. The access assembly of claim 1, wherein each of the upper and lower rims include a width of four inches (5") and a depth of four inches (3").

10. The access assembly of claim 1, wherein the slit includes a length of at least two and one-half inches (2.5").

11. The access assembly claim 1, wherein the compressible body is composed of at least one of silicone, thermoplastic elastomers (TPE) and rubber.

12. The access assembly claim 1, wherein the compressible body is composed of foam.

13. The access assembly claim 1, wherein the compressible body is composed of gel.

* * * * *