Disclosed is a heat exchanger comprising a boiling passage and cooling passage defined by opposite sides of metal walls. The heat exchanger is made with high strength alloys of aluminum that have improved creep resistance that maintain tensile strength and yield strength after use in this invention. Layers of brazing material between the metal walls and a spacer member bond components of the heat exchanger together. An enhanced boiling layer (EBL) comprising metal particles bonded to each other and to a boiling side of the metal wall provides nucleate boiling pors to improve heat transfer. The EBL has a melting temperature that is higher than the melting temperature of the brazing material. Also disclosed is a process for assembling the heat exchanger.
METHOD FOR MAKING BRAZED ALUMINUM HEAT EXCHANGER AND APPARATUS

BACKGROUND OF THE INVENTION

[0001] This invention relates to an improved method for making a metal heat exchanger with high heat transfer efficiency. Specifically, this invention relates to the use of high flux-coated aluminum sheets in the fabrication of a brazed heat exchanger.

[0002] Two designs of heat exchanger are presently in general use for boiler-condensers in cryogenic, refinery and chemical applications. One type of heat exchanger in current use is a vertical shell and tube heat exchanger. To achieve a sufficiently high degree of heat transfer at relatively low temperature differences with this design, enhanced boiling layers (EBLs) are used. An EBL typically has a structure comprising a multitude of pores that provide boiling nucleation sites to facilitate boiling. An EBL is applied to the inside of the tubes, and longitudinal flutes are provided on the outside of the tubes to facilitate heat transfer.

[0003] A common heat exchanger used in cryogenic, refinery and chemical applications is the plate-fin brazed aluminum heat exchanger fabricated by disposing corrugated aluminum sheets between aluminum parting sheets or walls to form a plurality of fluid passages. The sheets are either clad with an aluminum brazing layer or a layer of brazing foil is inserted between the surfaces to be bonded. When heated to a predetermined temperature for a predetermined period of time, the brazing foil or cladding melts and forms a metallurgical bond with the adjacent sheets. The resulting heat exchanger contains numerous passages consisting of alternate layers of closely spaced fins. A typical arrangement has alternate layers of passages each containing fins with a density of 6 to 10 fins/cm (15 to 25 fins/inch), and a fin height of 0.5 to 1 cm (0.2 to 0.4 inch). In a common application, a first series of alternating passages can be used as a condenser, while a second series of alternating passages carry a liquid for boiling. Typical brazed aluminum heat exchangers must be able to withstand 2068 to 2758 kPa (300 to 400 psia).

[0004] Prior art patents proposing replacing fins with an enhanced boiling layer in the boiling passages of a brazed heat exchanger include U.S. Pat. No. 5,868,199; U.S. Pat. No. 4,715,431 and U.S. Pat. No. 4,715,433. These patents propose to stack aluminum sheets each with an EBL applied on one side to define boiling channels and with fins on the other side of the aluminum sheets to define condensing channels. Layers of brazing material are disposed between bonding surfaces in the stack, and the stack is subjected to heating over a period of time to obtain a brazed heat exchange core. Such brazed aluminum heat exchangers described in these patents have not been commercialized because EBLs are typically brazed at 565°C to 593°C (1000°F to 1100°F) while the subsequent brazing of the metal components together occur at around 593°C to 621°C (1100°F to 1150°F). Maintaining the integrity and effectiveness of the EBL, particularly the porous structure provided by the mutually bonded metal particles, during the second hotter heat treatment to effect brazing has been difficult. This difficulty accounts for the lack of commercially available brazed heat exchangers with EBL in the boiling passages.

[0005] In US 2004/0251008, the development of brazed aluminum heat exchangers was described. However, since that time the inventors herein have discovered that these prior art brazed aluminum heat exchangers suffer from poor mechanical properties following the initial brazing process. Previously to the present invention, it has been found necessary to provide extensive mechanical support in the open passages of the brazed aluminum heat exchangers in order to prevent excessive sagging or creep of the EBL-coated sheets during the brazing process employed to join the components of the heat exchanger together.

SUMMARY

[0006] We provide an improved method for making a brazed metal heat exchanger and the resulting apparatus. An enhanced boiling layer (EBL) is provided on the walls of the boiling passages. The melting temperature of the brazing material is lower than the melting temperature of the metal particles in the enhanced boiling layer. In an embodiment, the metal in the enhanced boiling layer and/or the brazing layer is an alloy of a first metal and a second metal which alloy has a lower melting temperature than that of the first metal. Different second metals can be used in the EBL and in the brazing material so long as the second metal provides an alloy with a lower melting temperature. In an embodiment, the concentration of the second metal in the brazing material is greater than in the EBL. Even when the brazing temperature gets within about 8.3 Celsius degrees (15 Fahrenheit degrees) of the melting point of the metal in the EBL for an extended period of time, the EBL unexpectedly retains its porosity, and thus its effectiveness. In an embodiment, the condensing passages contain fins to facilitate heat transfer.

[0007] We also provide a metal heat exchanger with EBLs in the boiling passages with undiminished heat transfer capability despite being subjected to brazing temperature during manufacturing.

[0008] The use of certain alloys and tempers of aluminum has been found to provide superior mechanical properties in the sheets used for the brazed metal heat exchanger, and thereby facilitate fabrication of the exchanger.

[0009] The applicants conducted tests on various samples of Alcoa 037x alloys that had been coated with the EBL and compared with similar results for coated samples made with Aluminum Alloy 3003. The results are summarized as follows.

[0010] We discovered that the 037x alloys tended to exhibit less permanent sag in deflection tests when heated to the brazing temperature and then returned to room temperature. It is well known that brazable aluminum alloys lose most of their strength properties (tensile, hardness, etc) when heated above 1000°F; however, permanent deflection ( sag) tests conducted on 25 mm x 152 mm (1” x 6”) coupons of 037x, 0373 alloys of H118 temper that had been heated to 1085°F showed that the center line deflections were only about 60% of the value of comparable deflections on coated samples of Aluminum Alloy 3003-H14 material after furnacing. Partial retention of hardness at brazing temperature would mean that less passage support would be required in the subsequent brazing of heat exchangers using these alloys.

[0011] We found that a porous aluminum EBL, containing Al—Si brazing alloy powder, and developed for application to Aluminum Alloy 3003 wall material, would readily bond to the 037x alloys without loss in seating strength or adhesion.

[0012] According to published Alcoa data, the 037x alloys would be expected to age harden with time, but we discovered that age hardening, and reformation of the Mg2Si phase did
not compromise the future cooling strength, porosity, or adhesion of the EBL particles to themselves or to the base metal.

**BRIEF DESCRIPTION OF THE DRAWINGS**

[0013] FIG. 1 is a perspective view of three heat exchangers.

[0014] FIG. 2 is a perspective view of the core of a heat exchanger in FIG. 1 with layers broken away to reveal internals.

[0015] FIG. 3 is a perspective view of the core of the heat exchanger in FIG. 1 but taken from a different perspective than FIG. 2.

**DETAILED DESCRIPTION**

[0016] Our methods can be used to construct any configuration of heat exchanger by brazing including shell and tube but may be most appropriately applied to plate exchangers. The boiling and cooling passages of the heat exchangers may be oriented to provide cross flow, counter-current flow or co-current flow. Moreover, the heat exchanger may be applied in the context of cryogenic air separation, hydrocarbon processing or any other process that relies on boiling to effect heat exchange. Several types of metals can be used for construction of heat exchangers. Aluminum is the most widely used metal for brazed heat exchangers. Aluminum is suitable for cryogenic applications because it resists embrittlement at lower temperatures. Steel or copper may be used for heating or cooling fluids that may be corrosive to aluminum. For purposes of illustration, our structures will be described with respect to a counter current, aluminum, plate heat exchanger useful in the context of cryogenic air separation.

[0017] FIG. 1 shows a train of typical plate heat exchangers 10 used in cryogenic air separation. The heat exchangers 10 have alternating boiling passages 12 and cooling passages 14 provided in a core 20. A liquid such as liquid oxygen is delivered by conduits 16 to manifolds 18 and distributed to the boiling passages 12. Delivery of liquid to the boiling passages 12 by means other than the conduits 16 or the manifolds 18 underneath the core 20 is contemplated such as by thermosiphoning at the bottom of the boiling passages 12. Moreover, liquid may be delivered to the boiling passages 12 from the side or from the top of the core 20, perhaps through a distribution network that may comprise distributor fins. The liquid boils in the boiling passages 12, thereby indirectly withdrawing heat conducted from the cooling passages 14. Gaseous oxygen from the boiling passages 12 are collected such as by headers 22 and removed through a conduit 24.

Collection of gases from the boiling passages 12 by means other than the conduits 24 or the headers 22 above the core 20 is contemplated such as may be provided in a thermosiphoning arrangement. Moreover, gases may be collected by the boiling passages 12 from the side or from the top of the core 20, perhaps through a collection network that may comprise collection fins. A fluid such as gaseous nitrogen is delivered by conduits 26 to manifolds 28 and distributed to the cooling passages 14. Delivery by means other than by the conduits 26 or the manifolds 28 is also contemplated. A liquid or gas can be cooled in the cooling passages 14. Moreover, if a gas is delivered to the cooling passages 14, it may be cooled to such extent to effect a phase change with or without temperature change depending on the needs of the process. Heat conducted across the walls between the cooling passages 14 and the boiling passages 12 support the boiling in the boiling passages 12 cools the fluid in the cooling passages 14, thereby condensing the nitrogen gas in the case of air separation. Fluid such as liquefied nitrogen from the cooling passages 14 is collected such as by headers 30 and removed through conduits 32. Collection of cooled fluid from the cooling passages 14 by means other than the headers 30 and the conduits 32 is contemplated. Moreover, the delivery and collection manifolds and conduits shown in the embodiment of FIG. 1 may be modified and remain within the scope of our disclosure.

[0018] FIG. 2 shows the core 20 of one of the heat exchangers 10 with parts broken away to reveal internals. A cap sheet 40 is disposed on both ends of the core 20 to define the last channel on each end. Part of the cap sheet 40 illustrated in FIG. 2 is broken away to reveal the boiling passage 12. Vertical spacer bars or spacer members 42 are disposed between opposing edges of the cap sheet 40 and a metal wall 44 with a boiling side 44a covered with an enhanced boiling layer (EBL). 46. The EBL 46 comprises thermoelectrically conductive particles bonded to the boiling side 44a and to each other to form a texture of pores in which nucleating boiler sites are provided. The thermoelectrically conductive particles are metal particles in an embodiment. Hence, the boiling passage 12 is defined by an inner surface of the cap sheet 40, inner edges of the vertical spacer bars 42 and the boiling side of the metal wall 44. Outer vertical margins 48 of the boiling side 44a are devoid of the EBL 46 to provide a bonding surface. Vapor leaves the boiling passages 12 through boiling outlets 49, which may be collected by the boiling headers 22, shown in the embodiment of FIG. 1. Moreover, it is contemplated that the boiling passages 12 may contain fins 52 to further facilitate heat transfer. Behind the broken away metal wall 44 and the vertical spacer bars 42 is the cooling passage 14 including primary fins 52 comprising a corrugated sheet of a primary fin stock 54. The primary fins 52 extend laterally between inner edges of the vertical spacer bars 42 at opposite ends of the cooling passage 14. Distributor fins 56 comprising a distributor fin stock 58 or being integral with the primary fin stock 54 are disposed in an inclined configuration to evenly distribute cooling fluid from cooling inlets 50 along the top and the channels provided by the primary fins 52. In the embodiment of FIG. 2, cooling fluid is received into cooling inlets 50 which may come from the cooling manifold 28 as shown in the embodiment of FIG. 1. Another type of distribution configuration with or without fins may be used to distribute cooling fluid. In another embodiment, the cooling inlets 50 may be considered the tops of the channels provided by the primary fins 52. For purposes of illustrating the tops of the primary fins 52, only one set of the distributor fins 56 is shown in FIG. 2. Cooling outlets 64 which may be defined by collection fins 66 allow cooled fluid to exit the core 20. In the embodiment of FIG. 2, cooling fluid exits through cooling outlets 64 which may enter into the cooling header 30 in the embodiment of FIG. 1. Horizontal spacer bars 60 seal the top and the bottom of the cooling passages 14. The spacer bars 42, 60 and the fins 52, 56, 66 space a cooling side 44b (the opposite side) of the metal wall 44 from the cooling side 44a of the adjacent metal wall 44. In an embodiment, no horizontal spacer bars 60 are provided in the boiling passages 12 to permit entry and exit of fluid to and from the boiling passages 12, respectively. Hence, the vertical spacer bars 42 are sandwiched between opposite ends of each pair of the adjacent metal walls 44, while the horizontal spacer bars 60 are sandwiched only between the adjacent cooling sides 44b. However, if the fins 52, 56, 66 are arranged
and bonded appropriately to withstand operating pressure, it is contemplated that spacer bars 42, 60 can be omitted between the cooling sides 446 in the cooling passage 14. Hence, the fins 52, 56, 66 will provide the spacing function. The walls 44 have an alternating orientation. Except when adjacent to the cap sheet 40, the cooling side 446 of the metal wall 44 is always facing the cooling side 446 of an adjacent wall, and the boiling side 44z of a wall is always facing the boiling side 44z of the adjacent metal wall 44. It is also contemplated in embodiments that the cooling passages 14 include no fins and that the boiling passages 12 be equipped with fins.

[0019] FIG. 3 shows the core 20 of FIG. 2 but from a perspective that shows the bottom of the core 20. All elements in FIG. 2 that are visible in FIG. 3 are referenced with numerals. Additionally, boiling inlets 51 to the boiling passages 12 are shown. In an embodiment, the boiling inlets 51 may receive boiling liquid from boiling manifolds 18 (FIG. 1). Moreover, the bottom of the cap sheet 40 and the first metal wall 44 are broken away to reveal collection fins 66 from a third fin stock 68. The collection fins 66 comprising the third fin stock 68 or being integral with the primary fin stock 54 are disposed in an inclined configuration to evenly collect cooling fluid from cooling outlets 64 along the bottoms of the channels provided by the primary fins 52. Another type of collection configuration with or without fins may be used to collect cooling fluid. In another embodiment, the cooling outlets 64 may be considered the bottoms of the channels provided by the primary fins 52. For purposes of illustrating the bottoms of the primary fins 52, only one set of the collection fins 66 is shown in FIG. 3.

[0020] The EBL is added to the boiling side by any of the methods known in the art, such as by applying a slurry, flame spraying, plasma spraying or by electrodeposition. However, it is critical that the subsequent brazing step not diminish the heat exchange efficiency of the EBL once applied. In an embodiment, the melting point of the EBL is higher than the melting point of the brazing metal. The relative melting points of the brazing metal and EBL may be obtained by alloying a second metal with a first metal that has the effect of providing a melting point of the alloy that is lower than the melting point of the first metal. The concentration of the second metal may be higher in the brazing metal than in the EBL material, so that the EBL has a higher melting point that can withstand the brazing step without loss of structural integrity. In brazed aluminum heat exchangers, aluminum is the first metal and silicon, manganese, magnesium or alloys thereof may be the second metal. In brazed steel heat exchangers, nickel may be the first metal and phosphorous may be the second metal. In brazed copper heat exchangers, copper may be the first metal and phosphorous may be the second metal.

[0021] In the case of copper being the first metal used to provide the EBL and the brazing material, brazing occurs at about 1000° C. (1800° F.) below the melting temperature of copper at about 960° C. (1760° F.). In the case of aluminum being the first metal, brazing occurs at about 49° to 54° C. (120° to 130° F.) below its melting temperature of about 660° C. (1200° F.). If nickel is the first metal, the brazing step in the furnace will take place at a temperature of about 1037° C. (1900° F.) which is 38° C. (100° F.) below the melting temperature of steel. At these temperatures, the second metal lowers the melting point of the alloy with the first metal. The liquefied brazing metal flows and diffuses into the base metal and forms a metallurgical bond. By alloying more of the second metal with the first metal in the brazing material than in the EBL material, the EBL, once applied will be able to withstand the subsequent lower temperature brazing heat treatment.

[0022] It is also contemplated that sintering may be used to form the EBL instead of brazing. In sintering, the metal is heated to the point of molecular agitation and diffuses over a relatively long period of time into an adjacent material to form metallurgical bonds. Sintering may be used to provide the EBL with brazing at a lower temperature to bond the components of the heat exchanger together.

[0023] In an embodiment, the first step of applying the EBL is applying a polymer binder to the boiling side of the metal wall. A metal powder which may comprise the first metal and the second metal are then sprinkled onto the plastic binder. The metal wall with metal powder bound by the plastic thereto is blanketed with an inert atmosphere such as nitrogen and the temperature is raised to a brazing temperature for sufficient time to effect metallurgical bonds between the metal powder particles to each other and to the boiling side of the metal wall. The plastic binder decomposes under heat and evaporates. The circulating inert gas diminishes formation of an oxide film and also purges the decomposition gases from the binder material. The bonded metal powder forms a highly porous, three-dimensional matrix that provides the EBL with nucleate boiling sites.

[0024] Appropriate plastic binders include polyisobutylene, polyvinylidene having a viscosity of at least 4000 cps and sold commercially as METHOCEL, and polystyrene having a molecular weight of 90,000. The binder may be dissolved in an appropriate solvent such as kerosene or carbon tetrachloride for polyisobutylene and polyvinylidene binders and xylene or toluene for polystyrene binder. The boiling side should be cleaned to be free of grease, oil or oxide to obtain proper bonding of the EBL thereto. Before applying the plastic solution, the boiling wall may be flushed with the plastic solution to facilitate wetting, thereby obtaining a more even distribution of plastic binder. The plastic solution may be applied to the boiling side in a way that will achieve a uniform layer such as by spraying, dipping, brushing or paint rolling. After application, the layer is air dried either during or after the application of the metal powder to evaporate away most of the solvent. A solid, self-supporting layer of metal powder and binder is left in place on the metal wall by the binder.

[0025] The metal powder comprising the first and second metal are mixed with a flux. Upon heating, the flux melts and draws oxides from the metal which could inhibit the bonding of the metal particles to each other and to the boiling side. The flux may be a mineral salt such as commercially available potassium aluminum fluoride, which is a mixture of KAlF₄ and KAlF₆. Other fluxes may be suitable.

[0026] The core 20 of the heat exchanger 10 is assembled by stacking layers of components. If the brazing of the core 20 will not be performed in a vacuum furnace, each component should be coated with flux before stacking. A suitable way to coat components with flux components is to mix the flux with denatured alcohol in 1:1 volumetric ratio and brush or spray the flux solution onto the component before stacking. The order of stacking will be described with the side shown in FIGS. 2 and 3 on the bottom. The cap sheet 40 is placed on the bottom of a stacking surface with the outer surface of the cap sheet 40 down. A layer of brazing foil is layered at least on the two vertical margins 48 of an inner surface of the cap sheet 40.
or perhaps over the whole inner surface of the cap sheet 40. The vertical spacer bars 42 are stacked on the vertical margins 48 of the inner surface of the cap sheet 40. The brazing foil may be provided only at the vertical margins 48 of the cap sheet 40 because only the vertical spacer bars 42 will be brazed to the inner surface of the cap sheet 40 that is defining the boiling passage 12 in this case. Typically, no horizontal spacer bars 60 are stacked in the boiling passage 12. However, in an embodiment, if the cap sheet 40 is defining the cooling passage 14, the horizontal spacer bars 60 should be stacked on and brazed to the cap sheet 40. A layer of brazing foil is stacked on top of the vertical spacer bars 42. Strips of the brazing foil may be placed just over the vertical spacer bars 42. The metal wall 44 with the EBL 46 on the boiling side 44a facing downwardly toward the cap sheet 40 and the cooling side 44b facing upwardly is stacked on top of the vertical spacer bars 42. The vertical margins 48 of the boiling side 44a, which are devoid of the EBL 46, will rest on the brazing foil on top of the vertical spacer bars 42. A layer of brazing foil is laid on top of the cooling side 44b of the metal wall 44. The primary fin stock 54 comprising the primary fins 52, the distributor fin stock 58 comprising the distributor fins 56, the collection fin stock 68 comprising the collection fins 66 and the horizontal spacer bars 60 and the vertical spacer bars 42 are all stacked on top of the layer of brazing foil laid on top of the cooling side 44b of the metal wall 44. A layer of brazing foil is laid upon the primary fin stock 54, the distributor fin stock 58, the collection fin stock 68 comprising the collection fins 66 and the spacer bars 42, 60. Next, another metal wall 44 with the cooling side 44b facing downwardly is laid upon the layer of brazing foil. On the top of the metal wall 44, strips of brazing foil are laid down just in the vertical margins 48 of the boiling side 44a outside of the EBL 46. The vertical spacer bars 42 are laid down on top of the strips of brazing foil in the vertical margins 48. Strips of brazing foil are laid on top of the vertical spacer bars 42. An additional metal wall 44 with the boiling side 44a facing downwardly is stacked on top with the vertical margins 48 mating with the strips of brazing material on top of the vertical spacer bars 42. The rest of the core 20 of the heat exchanger 10 is stacked as previously described until the cap sheet 40 is stacked on the top of the stack. It is also contemplated that both sides of the primary fin stock 54, the spacer bars 42, 60 and/or the cooling side 44b of the metal wall 44 may be integrally clad with a layer of brazing material. This would obviate the need for adding layers of brazing foil in the stack constituting the core 20. However, if just the fin stock 54, 58, 68 and/or the spacer bars 42, 60 can be obtained with brazed material clad on both sides, the use of brazing foil may be obviated.

After the core 20 is fully stacked it is inserted into a furnace with an atmosphere of inert gas and heated so that the center 20 of the core attains an elevated temperature. After remaining at the elevated temperature for a period of time, it is allowed to cool. The elevated temperature is above the melting temperature of the brazing material and below the melting temperature of the EBL 46 material upon application and the melting temperature of the base metal. In an embodiment, the elevated temperature may be below the melting temperature of the EBL 46 material after application. In a controlled atmosphere brazing environment, Aluminum Alloy 4047 may be used for the brazing material in which case the elevated brazing temperature would be approximately 607° to about 618° C. (1125° to 1145° F.). Aluminum alloy designations given herein will be pursuant to the convention of alloys used by those of ordinary skill in the art of aluminum brazing. The brazing material melts and forms a metallurgical bond with adjacent metal members to provide a robust metal heat exchanger core. The EBL 46 maintains its highly porous structural integrity. Residues of flux on the surface of the core 20 may remain but will typically wash out without affecting operation.

After brazing the core 20 together, the manifolds 18, 28 and the headers 22, 30 are welded to the core 20 as shown in the embodiment in FIG. 1. The conduits 16, 24, 26, 32 are all affixed to the appropriate manifold 18, 28 or the header 22, 30. Other delivery, distribution, collection and recovery equipment than shown in the embodiment of FIG. 1 may be used.

Alternatively, one or both of the brazing steps may take place in a vacuum oven. Flux becomes unnecessary and a lower temperature is typically used for brazing. However, in the vacuum brazing process, it takes longer for the core to reach the brazing temperature, after which, cooling is allowed. If the stacked core is brazed in a vacuum environment, Aluminum Alloy 4104 may be used for brazing material in which case the elevated brazing temperature would be approximately 582° to about 593° C. (1080° to 1100° F.).

In the present invention, it is important that the sheets be made from a harder tempered alloy of aluminum, such as 4043, which is known to have high strength aluminum alloys or other alloys that have significantly greater tensile and yield strength than the Aluminum Alloy 4000-4114 alloy used in the prior art. The alloy that is used needs to provide superior post-brazed mechanical properties and in some cases may also provide age-hardenable properties. The use of these alloys provide improved creep resistance when subjected to a second brazing cycle. In addition, these alloys have been selected to successfully allow adhering of a High Flux coating to these sheets during the initial brazing process. These sheets will have improved formation during brazing and assembly as well as reduced tendency to sag or creep during the brazing together of the components. Some of the alloys that were found useful contain about 0.15% to about 0.35% magnesium.

It is important, for purposes of this invention, that the EBL be able to withstand the final brazing heat treatment. In a brazed aluminum heat exchanger, brazing material, whether it be powder, foil or cladding may comprise a eutectic alloy of at least about 80 wt-% aluminum and about 10 to about 15 wt-% silicon. In an embodiment, the eutectic alloy comprises about 10 to about 13 wt-% silicon and at least about 85 wt-% aluminum. In a further embodiment, the brazing eutectic alloy may be Aluminum Alloy 4047 and comprise about 12 wt-% silicon and about 88 wt-% aluminum. Other components of the core 20, such as the walls, the fin stock and the spacer bars may comprise Aluminum Alloy 3003 which comprises a highly proportioned aluminum alloy of as low as about 98 wt-% aluminum and as high as about 2 wt-% manganese. Small amounts of magnesium and iron may also be present in Aluminum Alloy 3003. The term “highly proportioned” means greater than 90 wt-%. Other components comprising substantially pure aluminum or highly proportioned aluminum alloys may be suitable. In vacuum brazing applications, about 1 to 5 wt-% of magnesium may be provided in the highly proportioned aluminum alloy. The material comprising the EBL may comprise about 0.5 to about 1.5 wt-% silicon and at least about 95 wt-% substantially pure alumi-
num or highly proportioned aluminum alloy. In an embodiment, the EBL may comprise about 5 to about 11 wt.% brazing material and at least about 85 wt.% substantially pure aluminum or highly proportioned aluminum alloy. In an embodiment, the EBL comprises at least about 90 wt.% pure or highly proportioned aluminum and a eutectic alloy including about 11 to about 13 wt.% silicon and at least about 85 wt.% aluminum. In an embodiment, the eutectic alloy in powder form is mixed with powdered substantially pure or highly proportioned aluminum. To prevent oxidation of the aluminum in nonvacuum brazing ovens, a flux comprising about 5 to about 10 wt.% of a powdered mineral salt should be included in the EBL material upon application.

0032 While not wishing to be bound to any particular detail, brazing trials on each of the two alloy samples were encouraging, with the high flux coating showing good adhesion to both the 0370 and 0373 alloy substrate samples. In addition, post-braze hardness measurements using a webster portable hardness tester showed that the hardness of the 0370 sample was observed to remain relatively constant at 37 Rockwell E after brazing, and the hardness of the 0373 sample was observed to increase from 41 Rockwell E shortly after brazing to a value of 58 Rockwell E about ten days thereafter. Both samples were measured to have pre-braze, as-received hardness readings of 79 Rockwell E. The hardness of the Alumnum Alloy 3003-H14 samples after brazing was similar to values for fully annealed alloy (<20 Rockwell E).

Example

0034 A family of proprietary Al alloys (the 037x family) was tested for potential use in the application herein. The four alloys that comprise this group—0370, 0371, 0372, and 0373—albeit contain about 0.15% Ti and have the same basic chemistry with the following exception: the amount of Mg increases from 0.05% max. in alloy 0370 up to about 0.35% in alloy 0373. The increasing amount of Mg results in the increasing degree of post-braze age-hardening that occurs with these alloys, such that the yield strength and tensile strength increase over time at room temperature or at an accelerated rate at an elevated temperature.

0035 Four 152 mm x 203 mm x 1 mm (6" x 8" x 0.040") sample pieces of 037x—two pieces of 0370 and two pieces of 0373—all in IT18 temper were obtained. Preliminary High Flux coating trials on each of the two alloy samples were encouraging, with the High Flux coating showing good adhesion to both the 0370 and 0373 alloy substrate samples. In addition, post-braze hardness measurements using a webster portable hardness tester showed that the hardness of the 0370 sample was observed to remain relatively constant at 37 Rockwell E after brazing, and the hardness of the 0373 sample was observed to increase from 41 Rockwell E shortly after brazing to a value of 58 Rockwell E about ten days thereafter. Both samples were measured to have pre-braze, as-received hardness readings of 79 Rockwell E. The hardness of the Alumnum Alloy 3003-H14 samples after brazing was similar to values for fully annealed alloy (<20 Rockwell E).

1. A heat exchanger comprising:

   a plurality of metal walls, each metal wall comprising two sides, a boiling side with a porous, enhanced boiling layer comprising brazed, thermally conductive particles comprising a highly proportioned aluminum alloy powder mixed with a eutectic alloy of aluminum and silicon integrally bonded together and metallurgically bonded to the boiling side and a cooling side, said boiling side of said plurality of metal walls defining a boiling passage and said cooling side of said plurality of metal walls defining a cooling passage and each of said plurality of metal walls further including a bonding surface and wherein each of said plurality of metal walls comprise an alloy of aluminum having mechanical properties consistent with a hardness value of at least 35 Rockwell E;

   a spacer member for spacing metal walls from each other;

   a layer of metal between said bonding surfaces of said metal walls and said spacer member in said heat exchanger, said layer of metal having a melting temperature that is less than a melting temperature of said enhanced boiling layer;

   a boiling inlet for delivering liquid to said boiling passage;

   a cooling inlet for delivering fluid to said cooling passage;

   a boiling outlet for recovering vapor from said boiling passage; and

   a cooling outlet for recovering fluid from said cooling passage.

2. The heat exchanger of claim 1, wherein said enhanced boiling layer includes between about 0.5 and about 1.5 wt.% silicon.

3. The heat exchanger of claim 1, wherein the highly proportioned aluminum alloy comprises 92 wt.% of the enhanced boiling layer and the eutectic alloy comprises 8 wt.% of the enhanced boiling layer.

4. The heat exchanger of claim 1, wherein said boiling side has a boiling heat transfer coefficient of above 10,000 BTU/ hr/f°F.

5. The heat exchanger of claim 1, wherein the eutectic alloy is 12 wt.% silicon and 88 wt.% aluminum.

6. A heat exchanger comprising:

   a plurality of metal walls comprising an aluminum alloy having mechanical properties consistent with a hardness value of at least 35 Rockwell E, each metal wall comprising two sides, a boiling side with an enhanced boiling layer comprising thermally conductive particles comprising a highly proportioned aluminum alloy powder mixed with a eutectic alloy of aluminum and silicon integrally bonded together and metallurgically bonded to the boiling side and a cooling side, said thermally conductive particles comprising brazed alloy of a first metal and a second metal, said second metal alloying with said first metal to provide an alloy with a melting temperature that is lower than the melting temperature of said first metal, said boiling sides of said plurality of metal walls defining boiling passages and said cooling sides of said plurality of metal walls defining cooling passages and each of said plurality of metal walls further including a bonding surface;

   a plurality of spacer bars each between pairs of said metal walls, each of said spacer bars having a bonding surface; a layer of metal between each of said bonding surfaces of said metal walls and a bonding surface of an adjacent one of said plurality of spacer bars, said layer of metal
comprising an alloy including said first metal and an elevated brazing temperature of said layer of metal is less than a melting temperature of said enhanced boiling layer;
a boiling inlet for delivering liquid to said boiling passage;
a cooling inlet for delivering fluid to said cooling passages;
a boiling outlet for recovering vapor from said boiling passages; and
a cooling outlet for recovering fluid from said cooling passages.

7. The heat exchanger of claim 6, wherein said layer of metal comprises an additional metal with a greater concentration of said additional metal than a concentration of said second metal in said enhanced boiling layer.

8. The heat exchanger of claim 6, wherein the second metal and the additional metal are silicon.

9. The heat exchanger of claim 6, wherein the enhanced boiling layer includes between 0.5 and 1.5 wt-% silicon.

10. The heat exchanger of claim 6, wherein the highly proportioned aluminum alloy comprises 92 wt-% of the enhanced boiling layer and the eutectic alloy comprises 8 wt-% of the enhanced boiling layer.

11. The heat exchanger of claim 6, wherein said enhanced boiling layer is porous and said thermally conductive particles are metallurgically bonded to the boiling side.

12. A heat exchanger comprising:
   a plurality of metal walls comprising aluminum having mechanical properties consistent with a hardness value of at least 35 Rockwell E, each metal wall comprising two sides, a cooling side and a boiling side with an enhanced boiling layer comprising thermally conductive particles, said thermally conductive particles including a highly proportioned aluminum alloy powder mixed with a eutectic alloy of aluminum and silicon, said thermally conductive particles being integrally bonded together and metallurgically bonded to the boiling side, said boiling side of said plurality of metal walls defining a boiling passage and said cooling side of said plurality of metal walls defining a cooling passage and each of said plurality of metal walls further including a bonding surface;
a spacer member for spacing metal walls from each other; a layer of metal between said bonding surfaces of said metal walls and said spacer member in said heat exchanger, said layer of metal having a melting temperature that is less than a melting temperature of said enhanced boiling layer;
a boiling inlet for delivering liquid to said boiling passage; a cooling inlet for delivering fluid to said cooling passage; a boiling outlet for recovering vapor from said boiling passage; and
a cooling outlet for recovering fluid from said cooling passage.

13. The heat exchanger of claim 12, wherein said boiling side has a boiling heat transfer coefficient of above 10,000 BTU/hr/ft² F.