VARACTOR BANK SWITCHING BASED ON NEGATIVE CONTROL VOLTAGE GENERATION

Inventors: Marcel A. Kossel, Reichenburg (CH); Thomas E. Morf, Gross (Einsiedeln) (CH); Jonas R. Weiss, Zurich (CH)

Correspondence Address:
IBM-ACC-Washington
c/o Myers Dawes Andras & Sherman, LLP
19900 MacArthur Blvd., 11th Floor
Irvine, CA 92612 (US)

Assignee: International Business Machines Corporation, Armonk, NY (US)

Related U.S. Application Data
Continuation of application No. 12/059,886, filed on Mar. 31, 2008, now Pat. No. 7,479,839.

Publication Classification
Int.Cl.
H03K 17/687 (2006.01)

U.S. Cl. .. 327/427

ABSTRACT
A method and apparatus for varactor bank switching for a voltage controlled oscillator is disclosed. Varactor bank switching involves generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state, the varactor bank switch comprising a pass-gate circuit including switching transistors. Generating the negative bias voltage signal includes employing an active rectifier circuit running at the speed of an oscillation signal, the negative bias voltage signal maintaining the gate-source voltage of the pass-gate circuit below a threshold voltage to prevent said switching transistors from becoming conductive in an off-state.
for $V_{ctrl}=0$V (switch M1 turned off)
V_{gs} of M1 becomes $>V_t$ during a
certain fraction of the negative
going half-period since the drain
and source nodes of M1 are biased
at 0V.
Fig. 2a
Fig. 2b
Fig. 2c
Fig. 2d
VARIABLE BANK SWITCHING BASED ON
NEGATIVE CONTROL VOLTAGE
GENERATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a Continuation Patent Application
12/059,886, filed on Mar. 31, 2008, incorporated herein by
reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates generally to varactor
bank switching, and in particular to configuration of varactor
bank switches.

[0004] 2. Background Information

[0005] Varactor banks are applied in LC-tank voltage con-
trolled oscillators (VCO) to perform a coarse tuning of the
oscillation frequency. LC-tank oscillators are typically used
in communication systems, such as in generating high fre-
quency oscillator signals in microwave or radio frequency
apparatus. A typical LC-tank circuit includes inductors (L)
and capacitors (C) configured in a circuit such that the in-
ductors and capacitors oscillate because of current or voltage
exchange between inductors and capacitors at a specified
frequency. To achieve a high Cmax/Cmin-ratio, switches are
used in the varactor bank, where Cmax and Cmin denote the
maximum and minimum capacitance values of the varactor at
e.g., a logical low and high biasing voltage. If the process
technology provides varactors with an inherently high vari-
ability of the capacitance, i.e., a high Cmax/Cmin-ratio, the
variable capacitors in the varactor bank can directly be driven
by a control signal (i.e., logical low for Cmax and logical high
for Cmin) and dedicated switches within the varactor banks are
not necessary. This invention, however, assumes that the
process technology available (e.g. a typical digital CMOS
process for mainstream applications) does only provide var-
actors with a low or medium Cmax/Cmin-ratio, which requires
the application of switches to maximize the overall
Cmax/Cmin-ratio of the varactor bank.

[0006] If the varactor bank switches in the off-state become
conductive during certain fractions of the oscillation period,
the phase noise of the LC-tank VCO may significantly
degradate. FIG. 1 shows a schematic of a conventional varactor
bank circuit, illustrating the problem that the varactor bank
switch in the off-state becomes conductive during certain
fractions of the oscillation period. The varactor bank is part of
a tuning capacitance. The circuit in FIG. 1 includes two
MOSFET varactors M4, M5 whose diffusion-side terminals
are connected to the source and drain nodes of a NMOS FET
switch M1. In this configuration the source and drain poten-
tials of M1 are floating in the on-state of the varactor bank.
To prevent uncontrolled variations of the potentials at these
nodes, two additional MOSFET switches M2 and M3 are
connected between ground and the drain and source nodes of
M1. All of the transistors M1-M3 are either turned on if the
varactor bank is enabled or turned off if the varactor bank is
disabled. M1 is much bigger than M2 and M3 because it has
to provide a low impedance path for the oscillator signal
propagating from M5 to M4 and vice versa. M2 and M3 are
only used to provide a high impedance dc path such as to
appropriately bias the source and drain nodes of M1.

[0007] A disadvantage of the circuit in FIG. 1 is that the
switch transistor M1 can get turned on in the off-state, if the
source potential becomes sufficiently negative such that Vgs
of M1 is higher than the threshold voltage Vth despite the gate
potential of M1 is 0V (i.e., the control signal Vctrl is 0V). This
situation typically occurs in the areas around the peak values
of the negative-going half-waves of the oscillation signal and
the described effect increases the larger the signal swing
becomes. This phenomenon occurs in both half-waves of the
oscillation period because the source and drain nodes exchange
their roles in this symmetrical varactor bank design with
respect to the definition of the half-wave directions. During those
fractions of the oscillation period where Vgs>Vth holds true, the switch transistor M1 becomes con-
ductive despite the fact that it should remain turned off. The
time intervals where M1 becomes conductive are indicated by
waveforms in FIG. 1 as horizontal arrows below the actual
oscillation signal curve.

[0008] The impact of these partially conductive states on
the phase noise performance is shown in Table 1 below, which
summarizes certain measured results of a VCO design in 45
nm CMOS technology that applies the varactor bank switching
of FIG. 1. It is clear that the phase noise performance in the
off-state of the varactor banks is worse by at least 12
dBc/Hz compared to the case where the varactor bank
switches are turned on. A phase noise degradation of more
than 12 dBc/Hz can be regarded as being quite significant in
high-Q VCO design.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
</table>
| Measured results of implemented prior art circuit in a 45 nm CMOS technology CMOS SOI 128. The phase noise degradation owing to
 | the partially conductive switches in the off-state of the varactor banks is more than 12 dBc/Hz. Note that the first two columns refer to the
 | additionally implemented inductor switching, which is, however, not directly related to the discussed problem of varactor bank
<table>
<thead>
<tr>
<th>switching.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Banks</td>
</tr>
<tr>
<td>Low</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Mid</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
</tbody>
</table>

SUMMARY OF THE INVENTION

[0009] A method and apparatus for varactor bank switching
for a voltage controlled oscillator, is disclosed. One embodi-
ment involves generating a negative bias voltage signal as a
control signal for a varactor bank switch in an off-state, the
varactor bank switch comprising a pass-gate circuit including
switching transistors, wherein generating the negative bias
voltage signal includes employing an active rectifier circuit
running at the speed of an oscillation signal, the negative bias
voltage signal maintaining the gate-source voltage of the
pass-gate circuit below a threshold voltage to prevent said
switching transistors from becoming conductive in an off-
state.

[0100] Other aspects and advantages of the present inven-
tion will become apparent from the following detailed
description, which, when taken in conjunction with the drawings, illustrate by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] For a fuller understanding of the nature and advantages of the invention, as well as a preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings, in which:

[0012] FIG. 3 shows a schematic of a conventional varactor bank switch, illustrating that the varactor bank switch in the off-state becomes conductive during certain fractions of the oscillation period.

[0013] FIGS. 2a-d show equivalent circuits of an LC oscillator using a PMOS tail current source together with a varactor bank switch connected in parallel to an inductor coil, according to embodiments of the invention.

[0014] FIG. 3 shows details of a varactor bank switching topology implementing negative bias voltage generation for a control signal of varactor bank switch, according to an embodiment of the invention.

[0015] FIG. 4 shows example simulation results of voltage across an LC-tank and currents through varactors and the control voltage applied to a varactor switch if the varactor switch transistor M1 in topology of FIG. 3 is disabled.

[0016] FIG. 5 shows example simulation results of a voltage across an LC-tank and currents through varactors and the control voltage applied to a varactor switch if the varactor switch transistor M1 in topology of FIG. 3 is enabled.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0017] The following description is made for the purpose of illustrating the general principles of the invention and is not meant to limit the inventive concepts claimed herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations. Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.

[0018] The description may disclose several preferred embodiments of varactor banks, as well as operation and/or component parts thereof. While the following description will be described in terms of varactor bank for LC-tank voltage controlled oscillators for clarity and to place the invention in context, it should be kept in mind that the teachings herein may have broad application to all types of oscillators.

[0019] The embodiments described below disclose a new system for varactor bank switching by generating a negative bias voltage signal such as a control signal. According to one general embodiment, varactor bank switching based on generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state is provided that prevents the varactor bank switch from getting turned on during certain fractions of the oscillation signal period despite the varactor bank switch being in the off-state.

[0020] An embodiment of varactor bank switching according to the invention involves generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state, the varactor bank switch comprising a pass-gate circuit including switching transistors; wherein generating the negative bias voltage signal includes employing an active rectifier circuit running at the speed of an oscillation signal, the negative bias voltage signal maintaining the gate-source voltage of the pass-gate circuit below a threshold voltage to prevent said switching transistors from becoming conductive in an off-state.

[0021] The negative bias voltage is generated by an active rectifier circuit that runs at the speed of the oscillation signal. The negative control signal (negative bias voltage) assures that the gate-source voltage of the varactor bank switching transistors remains below their threshold voltage. As a result, the switching transistors do not become conductive when they are in the off-state. The negative bias voltage can either be (1) used as a replacement of a logical low control signal or (2) be superimposed on an already existing logical low control signal applied to the gate nodes of the actual varactor bank switching transistors.

[0022] The invention is applicable to all common mode voltage ranges of the oscillation signal as long as the negative control signal (negative bias voltage) in the off-state of the varactor bank switch is lower than the common mode voltage, minus the threshold voltage of the varactor bank switching transistors.

[0023] FIG. 2a shows a generic equivalent topology (i.e., circuit) of an LC VCO 10, and FIGS. 2b-2d show additional different topologies of LC VCOs 20, 30, 40, respectively, each using a PMOS tail current source 111 together with a varactor bank switch system 12 according to an embodiment of the invention, connected in parallel to the inductor coil 14. The three topologies, 20, 30 and 40, differ by the common mode voltage of the output signal. While topology 20 has a high output common mode voltage because of the center-tapped inductor coil that is connected to the coil current source, the output common mode voltage of topology 40 is low due to the ground connection of the inductor center tap. Topology 30 uses a 2-port inductor that is located in between two PMOS and NMOS cross-coupled transistor pairs and hence the output common mode voltage is in the middle of the supply voltage.

[0024] An example varactor bank switch topology according to the invention is described blow, suitable for VCO topologies. FIG. 3 shows a varactor switch topology 50 implementing the varactor bank system 12 according to an embodiment of the invention. The varactor switch topology 50 includes a varactor switch 51 (pass-gate circuit) and a control voltage circuit 52 generating a negative bias voltage signal as a control signal for the varactor bank switch 51 in an off-state. The output signals outp (positive output of a VCO) and outn (negative output of a VCO) are first ac-coupled (alternate current coupled) via capacitors Cnp, Cnn, to the inputs of two buffers 54. Power-down switches sw2 above both buffers are configured such that the buffers can be disabled.

[0025] The outputs of the buffers preferably have a rail-to-rail swing and are differential or complementary to each other. The buffer outputs are level-shifted using dc-blocking (direct current block) capacitors Cdp, Cdn. Further, resistors R1 and R2 provide a dc path from the source nodes of cross-coupled transistors M4, M5 to ground. The FETs M4 and M5 have a common drain node that is connected to the gate of the actual varactor switching transistor M1.
[0026] The topology 50 is implemented according to the invention in order for the varactor 51 to remain in a non-conductive state while in an off-state, thereby satisfying inequality (1) below:

\[V_{gs,M1(n)} + V_{ctrl(n)} - V_{th} \leq V_{swing}/2 \cdot \sin(2\pi f_{osc}t) - V_{th,M1} \]

(1)

[0027] where \(V_{gs,M1} \) is the gate-source voltage of the switch transistor, \(V_{ctrl} \) denotes the control signal applied to the gate of the varactor switch transistor M1, \(V_{cm} \) is the common mode voltage level at the drain or source nodes of the switch transistor M1, \(V_{swing} \) is the voltage swing of the oscillation signal, \(2\pi f_{osc}t \) denotes the instantaneous phase of the oscillation signal and \(V_{th,M1} \) is the threshold voltage of the switch transistor M1.

[0028] Relation (1) shows that partially conductive states in the off-state of the varactor bank may still occur if either the output common mode voltage is low or the oscillation signal has a high swing. In both cases, the gate-source voltage of the NMOS switch transistor M1 becomes higher than its threshold voltage and the transistor begins to become conductive though it should remain in the off-state. To prevent this, the circuit 52 superimposes the control signal of the varactor switch 51 in the off-state with a negative offset voltage such that the gate voltage of the switch transistor M1 is pulled down below 0V by the value of the negative offset voltage. The inequality in relation (1) can then be extended as shown in relation (2) below by a term \(V_{offset} \), which can be traded for either a lower output common mode voltage or a higher swing:

\[V_{gs,M1(n)} + V_{ctrl(n)} - V_{th} \leq V_{swing}/2 \cdot \sin(2\pi f_{osc}t) - V_{th,M1} - V_{offset} \]

(2)

[0029] Because of the complementary output signals, one of the buffer outputs is high while the other is low. If, for example the buffer buf1 has a low-going output and the buffer buf2 has a high-going output, the transistor M4 is turned on because its gate node is connected to the buffer output and it feeds the negative source control voltage (which became negative due to the level-shifting through \(C_{s,2} \)) to the common drain node 56. If the buffer outputs change, the transistors M4 and M5 also change their roles and M5 starts providing the negative voltage to the common drain node 56. An additional capacitor \(C_{s,2} \) is connected to the common drain node 56 to flatten any ripples that may occur when switching from M4 to M5 and vice versa.

[0030] If the varactor switch 51 must be enabled, the power-down switches sw2 above both buffers buf1, buf2, are opened and the switch sw1 is closed to provide a logical high signal to the gate of the varactor switching transistor M1. The negative bias voltage generation circuit 52 can also be regarded as an active rectifier that operates at the oscillation frequency of the VCO. The generated negative voltage ripples occur at twice the oscillation frequency and can be filtered easily. Hence the ripples should be of no concern for the operation of the extended varactor bank switch within a phase-locked-loop (PLL) circuit.

[0031] FIG. 4 shows an example simulation results of a switching topology method based on a negative bias voltage as the control signal of the varactor switch is in the off-state, according to the invention. In this example the circuit 52 (FIG. 3) generates a constant negative offset voltage of -0.35V. This negative offset voltage is generated with the circuit 52 running at 10 GHz. The voltage across the LC-tank is 90-degree phase-shifted with respect to the current flowing through the varactors C_{var}. FIG. 4 shows the voltage across the LC-tank and currents through the varactors C_{var} as well as the control voltage applied to the varactor switch, if the switch transistor M1 is disabled.

[0032] Referring to the example simulation results of FIG. 5, the same relations are obtained for the case where the varactor switch 51 (FIG. 3) is turned on by a logical high signal applied to the gate of M1. The voltage-to-current phase relationship again 90-degrees. FIG. 5 shows the voltage across the LC-tank and currents through the varactors as well as the control voltage applied to the varactor switch, if the switch transistor M1 is enabled.

[0033] As is known to those skilled in the art, the aforementioned example embodiments described above, according to the present invention, can be implemented in many ways, such as program instructions for execution by a processor, as software modules, as computer program product on computer readable media, as logic circuits, as silicon wafers, as integrated circuits, as application specific integrated circuits, as firmware, etc. Though the present invention has been described with reference to certain versions thereof, however, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.

[0034] Those skilled in the art will appreciate that various adaptations and modifications of the just-described preferred embodiments can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

What is claimed is:

1. A system for varactor bank switching for an oscillator, comprising:

 a voltage controller configured for generating a negative bias voltage signal as a control signal for a varactor bank switch in an off-state, the varactor bank switch comprising a pass-gate circuit including switching transistors, the voltage controller comprising an active rectifier circuit configured for running at the speed of an oscillation signal, the negative bias voltage signal maintaining the gate-source voltage of the pass-gate circuit below a threshold voltage to prevent said switching transistors from becoming conductive in an off-state.

* * * * *