PYRROLOPYRAZINE KINASE INHIBITORS

Inventors: Daisy Joe DuBois, Palo Alto, CA (US); Todd Richard Elworthy, Los Altos, CA (US); Robert Than Hendricks, San Carlos, CA (US); Johannes Cornelius Hermann, San Francisco, CA (US); Raman K. Kondru, Sunnyvale, CA (US); Yan Lou, San Jose, CA (US); Timothy D. Owens, Mountain View, CA (US); David Bernard Smith, San Mateo, CA (US)

Correspondence Address:
ROCHE PALO ALTO LLC
PATENT LAW DEPT. M/S A2-250
3431 HILLYVIEW AVENUE
PALO ALTO, CA 94304 (US)

Publication Classification

- Int. CL A61K 31/4985 (2006.01)
- C07D 487/04 (2006.01)
- A61P 35/00 (2006.01)

U.S. Cl. 514/249; 544/350

ABSTRACT

The present invention relates to the use of novel pyrrolopyrazine derivatives of Formula 1, wherein the variables Q and R are defined as described herein, which inhibit JAK and SYK and are useful for the treatment of auto-immune and inflammatory diseases.

Related U.S. Application Data

Provisional application No. 61/031,035, filed on Feb. 25, 2008, provisional application No. 61/146,514, filed on Jan. 22, 2009.
PYRROLOPYRAZINE KINASE INHIBITORS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is entitled to the benefit of U.S. provisional patent applications Ser. No. 61/031,035 filed on Feb. 25, 2008 and Ser. No. 61/146,514 filed on Jan. 22, 2009, the disclosures of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to the use of novel pyrrolopyrazine derivatives which are JAK and SYK inhibitors and selectively inhibit JAK3 and are useful for the treatment of auto-immune and inflammatory diseases.

BACKGROUND OF THE INVENTION

[0003] Protein kinases constitute one of the largest families of human enzymes and regulate many different signaling processes by adding phosphate groups to proteins; particularly tyrosine kinases phosphorylate proteins on the alcohol moiety of tyrosine residues. The tyrosine kinase family includes members that control cell growth, migration, and differentiation. Abnormal kinase activity has been implicated in a variety of human diseases including cancers, autoimmune and inflammatory diseases. Since protein kinases are among the key regulators of cell signaling they provide a means to modulate cellular function with small molecule inhibitors of kinase activity and thus make good drug design targets. In addition to treatment of kinase-mediated disease processes, selective and efficacious inhibitors of kinase activity are also useful for investigation of cell signaling processes and identification of other cellular targets of therapeutic interest.

[0004] The JAKs (Janus Kinases) are a family of cytoplasmic protein tyrosine kinases including JAK1, JAK2, JAK3 and TYK2. Each of the JAKs is preferentially associated with the intracytoplasmic portion of discrete cytokine receptors (Annu. Rev. Immunol. 16 (1998), pp. 293-322). The JAKs are activated following ligand binding and initiate signaling by phosphorylating cytokine receptors that, per se, are devoid of intrinsic kinase activity. This phosphorylation creates docking sites on the receptors for other molecules known as STAT proteins (signal transducers and activators of transcription) and the phosphorylated JAKs bind various STAT proteins. STAT proteins, or STATs, are DNA binding proteins activated by phosphorylation of tyrosine residues, and function both as signaling molecules and transcription factors and ultimately bind to specific DNA sequences present in the promoters of cytokine-responsive genes (Leonard et al., (2000), J. Allergy Clin. Immunol. 105:877-888).

[0005] JAK/STAT signaling has been implicated in the mediation of many abnormal immune responses such as allergies, asthma, autoimmune diseases such as transplant (allograft) rejection, rheumatoid arthritis, ankylosing spondylitis and multiple sclerosis, as well as in solid and hematologic malignancies such as leukemia and lymphomas.

[0006] Thus, the JAKs and STATs are components of multiple potentially intertwined signal-transduction pathways (Oncomgene 19 (2000), pp. 5662-5679), which indicates the difficulty of specifically targeting one element of the JAK-STAT pathway without interfering with other signal transduction pathways.

[0007] The JAK kinases, including JAK3, are abundantly expressed in primary leukemic cells from children with acute lymphoblastic leukemia, the most common form of childhood cancer, and studies have correlated STAT activation in certain cells with signals regulating apoptosis (Demoulin et al., (1996), Mol. Cell. Biol. 16:4710-6; Jutland et al., (1997), Blood 89:446-52; Kaneko et al., (1996), Clin. Exp. Immun. 109:185-193; and Nakamura et al., (1996), J. Biol. Chem. 271: 19483-8). They are also known to be important to lymphocyte differentiation, function and survival. JAK3 in particular plays an essential role in the function of lymphocytes, macrophages, and mast cells. Given the importance of this JAK kinase, compounds which modulate the JAK pathway, including those selective for JAK3, can be useful for treating diseases or conditions where the function of lymphocytes, macrophages, or mast cells is involved (Kudlacz et al., (2004) Am. J. Transplant. 4:51-57; Changdian (2003) Science 302:875-878). Conditions in which targeting of the JAK pathway or modulation of the JAK kinases, particularly JAK3, are contemplated to be therapeutically useful include, leukemia, lymphoma, transplant rejection (e.g., pancreas islet transplant rejection, bone marrow transplant applications (e.g., graft-versus-host disease), autoimmune diseases (e.g., diabetes), and inflammation (e.g., asthma, allergic reactions). Conditions which can benefit for inhibition of JAK3 are discussed in greater detail below.

[0008] However, in contrast to the relatively ubiquitous expression of JAK1, JAK2 and Tyk2, JAK3 has a more restricted and regulated expression. Whereas some JAKs (JAK1, JAK2, Tyk2) are used by a variety of cytokine receptors, JAK3 is used only by cytokines that contain y chain in their receptor. JAK3, therefore, plays a role in cytokine signaling for cytokines which receptor was shown to date to use the common gamma chain; IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. JAK1 interacts with, among others, the receptors for cytokines IL-2, IL-4, IL-7, IL-9 and IL-21, whereas JAK2 interacts with, among others, the receptors for IL-9 and TNE-alpha. Upon the binding of certain cytokines to their receptors (e.g., IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21), receptor oligomerization occurs, resulting in the cytoplasmic tails of associated JAK kinases being brought into proximity and facilitating the trans-phosphorylation of tyrosine residues on the JAK kinase. This trans-phosphorylation results in the activation of the JAK kinase.

[0009] Animal studies have suggested that JAK3 not only plays a critical role in B and T lymphocyte maturation, but that JAK3 is constitutively required to maintain T cell function. Modulation of immune activity through this novel mechanism can prove useful in the treatment of T cell proliferative disorders such as transplant rejection and autoimmune diseases.

[0010] In particular, JAK3 has been implicated in a variety of biological processes. For example, the proliferation and survival of murine mast cells induced by IL-4 and IL-9 have been shown to be dependent on JAK3- and gamma chain-signaling (Suzuki et al., (2000), Blood 96:2172-2180). JAK3 also plays a crucial role in IgE receptor-mediated mast cell degranulation responses (Malaviya et al., (1990), J. Biophys. Res. Commun. 257:807-813), and inhibition of JAK3 kinase has been shown to prevent type I hypersensitivity reactions, including anaphylaxis (Malaviya et al., (1999), J. Biol. Chem. 274:27028-27038). JAK3 inhibition has also been shown to result in immune suppression for allograft rejection (Kirklen, (2001), Transpl. Proc. 33:3268-3270).

[0011] JAK3 inhibitors are useful therapy as immunosuppressive agents for organ transplants, xeno-transplantation, lupus, multiple sclerosis, rheumatoid arthritis, psoriasis, Type I diabetes and complications from diabetes, cancer, asthma, atopic dermatitis, autoimmune thyroid disorders, ulcerative colitis, Crohn’s disease, Alzheimer’s disease, Leukemia and other indications where immunosuppression would be desirable.

[0012] Non-hematopoietic expression of JAK3 has also been reported, although the functional significance of this has yet to be clarified (J. Immunol. 168 (2002), pp. 2475-2482). Because bone marrow transplants for SCID are curative (Blood 103 (2004), pp. 2009-2018), it seems unlikely that JAK3 has essential non-redundant functions in other tissues or organs. Hence, in contrast with other targets of immunosuppressive drugs, the restricted distribution of JAK3 is appealing. Agents that act on molecular targets with expression limited to the immune system might lead to an optimal efficacy-toxicity ratio. Targeting JAK3 would, therefore, theoretically offer immune suppression where it is needed (i.e. on cells actively participating in immune responses) without resulting in any effects outside of these cells populations. Although defective immune responses have been described in various STAT1 strains (J. Investig. Med. 44 (1996), pp. 304-311;Curr. Opin. Cell Biol. 9 (1997), pp. 233-239), the ubiquitous distribution of STAT1’s and the fact that those molecules lack enzymatic activity that could be targeted with small-molecule inhibitors has contributed to their non-selection as key targets for immunosuppression.

[0013] SYK (Spleen Tyrosine Kinase) is a non-receptor tyrosine kinase that is essential for B-cell activation through BCR signaling. SYK becomes activated upon binding to phosphorylated BCR and thus initiates the early signaling events following BCR activation. Mice deficient in SYK exhibit an early block in B-cell development (Cheng et al. Nature 378: 303, 1995; Turner et al. Nature 378:298, 1995). Therefore inhibition of SYK enzymatic activity in cells is proposed as a treatment for autoimmune disease through its effects on autoantibody production.

[0014] In addition to the role of SYK in BCR signaling and B-cell activation, it also plays a key role in FceRI mediated mast cell degranulation and eosinophil activation. Thus, SYK is implicated in allergic disorders including asthma (reviewed in Wong et al. Expert Opin Investig Drugs 13:743, 2004). SYK binds to the phosphorylated gamma chain of FceRI via its SH2 domains and is essential for downstream signaling (1996), pp. 304-311;Curr. Opin. Cell Biol. 9 (1997), pp. 233-239). The ubiquity of SYK’s and the fact that those molecules lack enzymatic activity that could be targeted with small-molecule inhibitors has contributed to their non-selection as key targets for immunosuppression.

[0015] In view of the numerous conditions that are contemp lated to benefit by treatment involving modulation of the JAK and/or SYK pathways it is immediately apparent that new compounds that modulate JAK and/or SYK pathways and methods of using these compounds should provide substantial therapeutic benefits to a wide variety of patients. Provided herein are novel pyrrolyrazine derivatives for use in the treatment of conditions in which targeting of the JAK and/or SYK pathways or inhibition of JAK or SYK kinases, particularly JAK3, and are therapeutically useful for the treatment of auto-immune and inflammatory diseases.

SUMMARY OF THE INVENTION

[0016] The novel pyrrolyrazine derivatives provided herein selectively inhibit JAK3 and are useful for the treatment of auto-immune and inflammatory diseases. The compounds of the invention modulate the JAK and/or SYK pathways and are useful novel pyrrolyrazine derivatives for the treatment of auto-immune and inflammatory diseases, wherein preferred compounds selectively inhibit JAK3. For example, the compounds of the invention may inhibit JAK3 and SYK, wherein preferred compounds are selective for JAK3 of the JAK kinases and are useful novel pyrrolyrazine derivatives for the treatment of auto-immune and inflammatory diseases. Furthermore, the compounds of the invention may inhibit JAK3 and JAK2, wherein preferred compounds are selective for JAK3 of the JAK kinases, and are useful novel pyrrolyrazine derivatives for the treatment of auto-immune and inflammatory diseases. Similarly, the compounds of the invention may inhibit JAK3 and JAK1, wherein preferred compounds are selective for JAK3 of the JAK kinases, and are useful novel pyrrolyrazine derivatives for the treatment of auto-immune and inflammatory diseases.

[0017] The application provides a compound of Formula I

![Chemical structure](image)

wherein:

R is R¹, R², R³, or R⁴;

[0018] R¹ is lower alkyl, lower alkoxy, phenyl, benzyl, heteroaryl, cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally substituted with one or more R¹⁻;

[0019] R¹⁻ is R¹⁻ or R¹⁻;

[0020] R¹⁻ is halogen, oxo, hydroxy, or =CN;

[0021] R¹⁻ is -CO(O)(R¹⁻), -CO(O)(CH₂)m(R¹⁻), -O(CH₂)n(R¹⁻), -S(R¹⁻), -S(O)₂(R¹⁻), or -S(O)O(R¹⁻), lower alkyl, lower alkoxy, amino,
amido, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, cycloalkylolkoxy, or heterocycloalkoxylkoxy optionally substituted with one or more R^[2b];

[0022] R^[1d] is H, halogen, hydroxy, lower alkyl, amino, lower alkoxy, or lower haloalkyl;

[0023] R^[1'] is H, lower alkyl, lower alkoxy, cyano, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;

[0024] R^[2] is H, lower alkyl, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;

[0025] m is 0, 1, or 2;

[0026] R^2 is N(R^[2b]);

[0027] each R^[2b] is independently H or R^2;

[0028] each R^[2b] is independently lower alkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, or heterocycloalkyl alkylene, optionally substituted with one or more R^[2c];

[0029] R^[2c] is R^[2d] or R^[2e];

[0030] R^[2d] is halogen, oxo, or hydroxy;

[0032] each R^[2f] is independently H, halogen, lower alkyl, lower alkoxy, lower haloalkyl, cycloalkyl, or phenyl;

[0033] R^[3b] is —C(=O)R^[2b];

[0034] each R^[3b] is independently H or lower alkyl;

[0035] R^[3] is —O(R^[4]);

[0036] R^[5] is H or R^[4];

[0037] R^[6] is lower alkyl, phenyl, benzyl, lower haloalkyl, cycloalkyl, heterocycloalkyl, heteroaryl, optionally substituted with one or more R^[7];

[0038] R^[7] is halogen, hydroxy, lower alkyl, lower haloalkyl, cycloalkyl, or lower alkoxy;

[0039] Q^+ is Q^+/ or Q^+;

[0040] Q^- is H, hydroxy, cyano, or halogen;

[0041] Q^+ is lower alkyl, lower alkenyl, lower haloalkyl, lower hydroxyalkyl, amino, or lower haloalkyl, optionally substituted with one or more Q^-;

[0042] Q^- is Q^+/ or Q^+;

[0043] each Q^- is independently halogen, hydroxy, or cyano;

[0044] each Q^- is independently lower alkyl, lower haloalkyl, lower alkoxy, amino, lower cycloalkyl, phenyl, heterocycloalkyl, or heteroaryl, optionally substituted with one or more Q^-;

[0045] Q^+ is Q^+/ or Q^+; with the proviso that when R is R^2, R^3 is —O(R^[4]), R^4 is H, and Q^- is Q^+, then Q^- is not H; or a pharmaceutically acceptable salt thereof.

[0046] In one embodiment of Formula I, R is R'.

[0047] In one variation of the above embodiment, R' is lower alkyl.

[0048] In one variation of the above embodiment of Formula I, the lower alkyl is tert-butyl.

[0049] In another variation of the above embodiment of Formula I, R' is —CH(CH_3)_3.

[0050] In another variation of the above embodiment of Formula I, R' is iso-butyl.

[0051] In another variation of the above embodiment of Formula I, R' is iso-propyl.

[0052] In one embodiment of Formula I, R' is cycloalkyl.

[0053] In one embodiment of Formula I, R is heterocycloalkyl.

[0054] In one embodiment of Formula I, R' is benzyl.

[0055] In one embodiment of Formula I, R' is phenyl.

[0056] In one embodiment of Formula I, R is R'.

[0057] In one embodiment of Formula I, R is R' and R^2 is NH(R^[2]);

[0058] In one embodiment of Formula I, R is R', R^2 is NH(R^[2]) and R^2 is R^2;

[0059] In one embodiment of Formula I, R is R', R^2 is NH(R^[2]) and R^2 is R^[2] and R^2 is lower alkyl.

[0060] In one embodiment of Formula I, R is R', R^2 is NH(R^[2]) and R^2 is R^[2] and R^2 is iso-propyl.

[0061] In one embodiment of Formula I, R is R', R^2 is NH(R^[2]) and R^2 is R^2 and R^2 is heterocycloalkyl.

[0062] In one embodiment of Formula I, R is R', R^2 is NH(R^[2]) and R^2 is R^[2] and R^2 is cycloalkyl.

[0063] In one embodiment of Formula I, R is R', R^2 is NH(R^[2]) and R^2 is R^[2] and R^2 is heterocycloalkylalkene.

[0064] In one embodiment of Formula I, R is R', R^2 is NH(R^[2]) and R^2 is R^[2] and R^2 is pyrrolidine.

[0065] In one embodiment of Formula I, R is R', R^2 is NH(R^[2]) and R^2 is R^[2] and R^2 is pyrrolidinylmethylene.

[0066] The application provides a compound of Formula I selected from the group consisting of:

[0067] 1-(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-3-methyl-hutag-1-one;

[0068] 5H-Pyrrole[2,3-b]pyrazine-7-carboxylic acid isopropylamide;

[0069] 2-Chloro-5H-pyrrole[2,3-b]pyrazine-7-carboxylic acid isopropylamide;

[0070] 2-Isoprophenyl-5H-pyrrole[2,3-b]pyrazine-7-carboxylic acid isopropylamide;

[0071] 2-Isoprophenyl-5H-pyrrole[2,3-b]pyrazine-7-carboxylic acid isopropylamide;

[0072] 1-(2-Chloro-5H-pyrrole[2,3-b]pyrazine-7-yl)-2,2-dimethyl-propen-1-one;

[0073] (2-Bromo-5H-pyrrole[2,3-b]pyrazine-7-yl)-(1-methyl-cyclohexyl)-methanone;

[0074] (2-Bromo-5H-pyrrole[2,3-b]pyrazine-7-yl)-(1-methyl-cyclohexyl)-methanone;

[0075] (2-Isoamphetamine-5H-pyrrole[2,3-b]pyrazine-7-yl)-2,2-dimethyl-propen-1-one;

[0076] (2-Bromo-5H-pyrrole[2,3-b]pyrazine-7-yl)-(1-methyl-cyclopentyl)-methanon;

[0077] (2-Hexyl-5H-pyrrole[2,3-b]pyrazine-7-yl)-(1-methyl-cyclopentyl)-methanon;

[0078] (2-Ethyl-5H-pyrrole[2,3-b]pyrazine-7-yl)-2,2-dimethyl-propen-1-one;

[0079] (2-Bromo-5H-pyrrole[2,3-b]pyrazine-7-yl)-2,2-dimethyl-3-phenyl-propen-1-one;

[0080] (1-Hydroxy-ethyl)-5H-pyrrole[2,3-b]pyrazine-7-yl)-2,2-dimethyl-propen-1-one;

[0081] (1-Hydroxy-2-methyl-propyl)-5H-pyrrole[2,3-b]pyrazine-7-yl)-2,2-dimethyl-propen-1-one;
[0082] 1-[2-(Hydroxy-o-toly1-methyl)-5H-pyrrolo[2,3-b]
pyrazin-7-yl]-2,2-dimethyl-propan-1-one;

[0083] 1-[2-(Hydroxy-phenyl-methyl)-5H-pyrrolo[2,3-b]
pyrazin-7-yl]-2,2-dimethyl-propan-1-one;

[0084] 1-[2-(Hydroxy-pyridin-4-yl-methyl)-5H-pyrrolo
[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one;

[0085] 1-[2-(Hydroxy-pyridin-3-yl-methyl)-5H-pyrrolo
[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one;

[0086] (2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-(3aS,
6aS)-1-methyl-octahydro-pentalen-1-yl-methane;

[0087] (2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-(1S,
2S)-1,2-dimethyl-cyclopentyl-methane;

[0088] (2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-(1-methy1-
cycloheptyl)-methane;

[0089] (2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-(1-methy1-
cyclopentyl)-methane;

[0090] (2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-(1-methy1-
cycloheptyl)-methane;

[0091] Adamantan-1-yl-(2-bromo-5H-pyrrolo[2,3-b]
pyrazin-7-yl)-methane;

[0092] (4-Benzoyloxy-1-methyl-cyclohexyl)-(2-bromo-
5H-pyrrolo[2,3-b]pyrazin-7-yl)-methane;

[0093] (4-Benzoyloxy-1-methyl-cyclohexyl)-(5H-pyrrolo
[2,3-b]pyrazin-7-yl)-methane;

[0094] 1-(2-Ethynyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-
dimethyl-propyl-1-one;

[0095] 1-(2-Isopropenyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-
2,2-dimethyl-propyl-1-one;

[0096] 1-(2-Chloro-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-
dimethyl-propyl-1-one; and

[0097] 1-(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-3-methy1-
butan-1-one.

[0098] In one embodiment, the application provides a com-
und of Formula I

\[R \]

\[\text{O} \]

\[\text{N} \]

wherein:

R is R'1, R'2, R'3, or R'4;

R' is lower alkyl, lower alkoxy, phenyl, benzyl, hetero-
aryl, cycloalkyl, heterocycloalkyl, or cycoalkylalkyl,
optionally substituted with one or more R'16;

R'16 is R'17 or R'18;

R'17 is halogen, hydroxy, or CN;

R'18 is \(-C(O)(OR')_2\), \(-C(O)(CH_3)_n\)
(R'19), \(-O(CH_3)_n\), \(-S(OR')_2\), \(-S(O)(OR')_2\),
or \(-S(O)(R')_2\), lower alkyl, lower alkoxy, amino,
amido, lower halalkyl, phenyl, heteroaryl,
cycloalkyl, heterocycloalkyl, cycloalkylalkoxy, or het-
ercycloalkylalkoxy optionally substituted with one or
more R'16;

R'19 is H, halogen, hydroxy, lower alkyl, amino, lower halalky,
or lower halalkyl;

R'20 is H, lower alkyl, lower alkoxy, cyan, lower halalkyl,
phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl;

R'21 is H, lower alkyl, lower halalkyl, phenyl,
heteroaryl, cycloalkyl, or heterocycloalkyl;

R'22 is H, lower alkyl, lower halalkyl, phenyl,
heteroaryl, cycloalkyl, or heterocycloalkyl;

R'23 is 1, 0, or 2;

R'24 is N(R'25);

R'25 is independently H or R'2b;

R'26 is independently lower alkyl, phenyl, heteroaryl,
cycloalkyl, heterocycloalkyl, or heterocyclo-
alkylalkyne, optionally substituted with one or
more R'2c;

R'27 is R'2d or R'2c;

R'28 is halogen, oxo, or hydroxy;

R'29 is \(-N(R'25)\), \(-C(O)(OR')_2\),
\(-C(=O)(OR')_2\), \(-C(=O)(O)(R'25)\), \(-C(=O)(N(R'25)\),
\(-C(O)(O)(R'25)_2\), \(-S(=O)(O)(R'25)_2\), \(-S(=O)(OR')_2\),
\(-S(O)(OR')_2\), \(-S(O)(OR')_2\), lower alkyl, lower alkoxy,
lower halalkyl, phenyl, heteroaryl, heteroaryloxy,
cycloalkyl, or heterocycloalkyl, optionally substi-
tuted with one or more R'2c;

each R'29 is independently H, halogen, lower alkyl,
lower alkoxy, lower halalkyl,
each R'30 is independently H, lower alkyl,
lower alkoxy, lower halalkyl, or phenyl;

R'31 is \(-C(=O)(OR')_2\);

R'32 is lower alkyl, lower alkoxy, phenyl, or
N(R'25);2;

R'33 is independently H or lower alkyl;

R'34 is \(-OR'35);\)

R'35 is H or R'46;

R'36 is lower alkyl, phenyl, benzyl, lower halalkyl,
cycloalkyl, heterocycloalkyl, heteroaryl,
optionally substituted with one or more R'46;

R'37 is halogen, hydroxy, lower alkyl, lower halalkyl,
or lower alkoxy;

Q' is Q'30 or Q'31;

Q'30 is halogen;

Q'31 is lower alkyl, lower alkenyl, lower alkynyl,
lower hydroxyalkyl, amino, or lower halalkyl,
optionally substituted with one or more Q'30;

Q'32 is Q'40 or Q'41;

Q'40 is independently halogen, hydroxy, or
cyan;

Q'41 is independently lower alkyl, lower halalkyl,
lower alkoxy, amino, cycloalkyl, phenyl,
heterocycloalkyl, heteroaryl, optionally substi-
tuted with one or more Q'32;

Q'42 is independently lower alkyl, lower halalkyl,
lower alkoxy, amino, cycloalkyl, phenyl,
heterocycloalkyl, heteroaryl, optionally substi-
tuted with one or more Q'32;

Q'43 is Q'42 or Q'42;
[0127] In certain embodiments of formula I, the compounds are more specifically of formula II:

![Chemical structure diagram](image)

[0128] R' is lower alkyl, lower alkoxy, phenyl, benzyl, heteroaryl, cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally substituted with one or more R'

[0129] R' is R' or R'

[0130] R' is halogen, oxo, hydroxy, or —CN

[0131] R' is —C(=O)O(R'), —C(=O)(CH)₂(R'),(R'), —O(CHR)₂(R'), —S(=O)(R'), or —S(=O)(R')₂, lower alkyl, lower alkoxy, amino, amido, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, or heterocycloalkylalkoxy optionally substituted with one or more R'.

[0132] R' is H, halogen, hydroxy, lower alkyl, amino, lower alkoxy, or lower haloalkyl

[0133] R' is II, lower alkyl, lower alkoxy, cyano, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl

[0134] R' is II, lower alkyl, lower haloalkyl, phenyl, heteroaryl, cycloalkyl, or heterocycloalkyl

[0135] m is 0, 1, or 2; and

[0136] Q' is as defined herein.

[0137] In certain embodiments of formula II, R' is lower alkyl, preferably tert-butyl.

[0138] In certain embodiments of formula I, the compounds are more specifically of formula III:

![Chemical structure diagram](image)

[0139] each R' is independently lower alkyl, phenyl, cycloalkyl, heterocycloalkyl, or heterocycloalkylalkyl, optionally substituted with one or more R'

[0140] R' is R' or R'

[0141] R' is halogen, oxo, or hydroxy

[0142] R' is —N(R')₂(=O)(R')₂, —C(=O)O(R'), —C(=O)N(R')₂, —N(=O)(R')₂, —N(=O)(R')₂, —S(=O)(R')₂, —S(=O)(R')₂, —S(=O)(R')₂, lower alkyl, lower alkoxy, lower haloalkyl, phenyl, heteroaryl, heterocycloalkyl, or heterocycloalkylalkyl, optionally substituted with one or more R'

[0143] each R' is independently H, halogen, lower alkyl, lower alkoxy, lower haloalkyl;

[0144] each R' is independently H, lower alkyl, lower alkoxy, lower haloalkyl, or phenyl; and

[0145] Q' is as defined herein.

[0146] In certain embodiments of formula III, R' is lower alkyl optionally substituted with one or more R' as defined herein.

[0147] In certain embodiments of formula III, R' is lower alkyl.

[0148] In certain embodiments of either formulæ I, II or III, Q' is H, hydroxy, cyano, or halogen, with the proviso that when R is R', R' is —O(R'), R' is II, then Q' is not H.

[0149] In certain embodiments of either formulæ I, II or III, Q' is is lower alkyl, lower alkoxy, or lower haloalkyl, optionally substituted with one or more Q' as defined herein.

[0150] In certain embodiments of either formulæ I, II or III, Q' is is lower alkyl, lower alkoxy, lower haloalkyl, lower hydroxyalkyl, amino, or lower haloalkyl, optionally substituted with one or more Q' as defined herein.

[0151] In certain embodiments of either formulæ I, II or III, Q' is is lower alkyl, lower alkoxy, lower haloalkyl, lower hydroxyalkyl optionally substituted with one phenyl or heteroaryl, optionally substituted with one lower alkyl.

[0152] In certain embodiments of formulæ I, II or III, Q' is is lower alkyl, lower alkoxy, lower haloalkyl, lower hydroxyalkyl.

[0153] In one aspect, the application provides a method for treating an inflammatory and/or autoimmune condition comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

[0154] In one variation of the above method, the above method further comprises administering an additional therapeutic agent selected from a chemothapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating diabetes, or an agent for treating immunodeficiency disorders.

[0155] In one aspect, the application provides a method for treating an inflammatory condition comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I, wherein R is R'.

[0156] In one aspect, the application provides a method for inhibiting T-cell proliferative disorder comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

[0157] In one aspect, the application provides a method for inhibiting T-cell proliferative disorder comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I, wherein R is R'.

[0158] In one variation of the above method, the proliferative disorder is cancer.

[0159] In one aspect, the application provides a method for treating a B-cell proliferative disorder comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula I.

[0160] In one aspect, the application provides a method for treating an immune disorder including lupus, multiple sclerosis, rheumatoid arthritis, psoriasis, Type I diabetes, compli-
cations from organ transplants, xeno transplantation, diabetes, cancer, asthma, atopic dermatitis, autoimmune thyroid disorders, ulcerative colitis, Crohn’s disease, Alzheimer’s disease, and Leukemia, comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula 1.

[0161] In one aspect, the application provides a method for preventing or treating all forms of organ rejection, including acute allograft or xenograft rejection and chronic allograft or xenograft rejection, of vascularized or non-vascularized transplants, comprising administering to a patient in need thereof a therapeutically effective amount of the compound of Formula 1.

[0162] In one aspect, the application provides a method for inhibiting JAK3 activity comprising administering the compound of Formula 1, wherein the compound exhibits an IC_{50} of 50 micromolar or less in an in vitro biochemical assay of JAK3 activity.

[0163] In one variation of the above method, the compound exhibits an IC_{50} of 100 nanomolar or less in an in vitro biochemical assay of JAK3 activity.

[0164] In one variation of the above method, the compound exhibits an IC_{50} of 10 nanomolar or less in an in vitro biochemical assay of JAK3 activity.

[0165] In one aspect, the application provides a method for inhibiting SYK activity comprising administering the compound of Formula 1, wherein the compound exhibits an IC_{50} of 50 micromolar or less in an in vitro biochemical assay of SYK activity.

[0166] In one variation of the above method, the compound exhibits an IC_{50} of 100 nanomolar or less in an in vitro biochemical assay of SYK activity.

[0167] In one variation of the above method, the compound exhibits an IC_{50} of 10 nanomolar or less in an in vitro biochemical assay of SYK activity.

[0168] In one aspect, the application provides a method for treating an inflammatory condition comprising co-administering to a patient in need thereof an anti-inflammatory compound in combination with a therapeutically effective amount of the compound of Formula 1.

[0169] In one aspect, the application provides a method for treating an immune disorder comprising co-administering to a patient in need thereof an immunosuppressant compound in combination with a therapeutically effective amount of the compound of Formula 1.

[0170] The application provides a pharmaceutical composition comprising the compound of Formula 1, admixed with at least one pharmaceutically acceptable carrier, excipient or diluent.

[0171] In one variation, the above pharmaceutical composition further comprises an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating diabetes, and an agent for treating immunodeficiency disorders.

[0172] In one aspect, the application provides a use of the compound of Formula 1 in the manufacture of a medicament for the treatment of an inflammatory disorder.

[0173] In one aspect, the application provides a use of the compound of Formula 1 in the manufacture of a medicament for the treatment of an autoimmune disorder.

DETAILED DESCRIPTION OF THE INVENTION

[0174] The phrase “a” or “an” entity as used herein refers to one or more of that entity; for example, a compound refers to one or more compounds or at least one compound. As such, the terms “a” (or “an”), “one or more”, and “at least one” can be used interchangeably herein.

[0175] The phrase “as defined herein above” refers to the broadest definition for each group as provided in the Summary of the Invention or the broadest claim. In all other embodiments provided below, substituents which can be present in each embodiment and which are not explicitly defined retain the broadest definition provided in the Summary of the Invention.

[0176] As used in this specification, whether in a transitional phrase or in the body of the claim, the terms “comprise(s)” and “comprising” are to be interpreted as having an open-ended meaning. That is, the terms are to be interpreted synonymously with the phrases “having at least” or “including at least”. When used in the context of a process, the term “comprising” means that the process includes at least the recited steps, but may include additional steps. When used in the context of a compound or composition, the term “comprising” means that the compound or composition includes at least the recited features or components, but may also include additional features or components.

[0177] As used herein, unless specifically indicated otherwise, the word “or” is used in the “inclusive” sense of “and/or” and not the “exclusive” sense of “either/or”.

[0178] The term “independently” is used herein to indicate that a variable is applied in any one instance without regard to the presence or absence of a variable having that same or a different definition within the same compound. Thus, in a compound in which R appears twice and is defined as “independently carbon or nitrogen”, both R’s can be carbon, both R’s can be nitrogen, or one R can be carbon and the other nitrogen.

[0179] When any variable (e.g., R, R’, or Q) occurs more than one time in any moiety or formula depicting and describing compounds employed or claimed in the present invention, its definition on each occurrence is independent of its definition at every other occurrence. Also, combinations of substituents and/or variables are permissible only if such compounds result in stable compounds.

[0180] The symbols “—” at the end of a bond or “-----” drawn through a bond each refer to the point of attachment of a functional group or other chemical moiety to the rest of the molecule of which it is a part. Thus, for example:

![Chemical Structure](attachment:image)

\[\text{MeC(O)OR} \quad \text{wherein} \quad R = \text{or} \]

[0181] A bond drawn into ring system (as opposed to connected at a distinct vertex) indicates that the bond may be attached to any of the suitable ring atoms.

[0182] The term “optional” or “optionally” as used herein means that a subsequently described event or circumstance may, but need not, occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not. For example, “optionally substituted” means that the optionally substituted moiety may incorporate a hydrogen or a substituent.
The phrase "come together to form a bicyclic ring system" as used herein means to join to form a bicyclic ring system, wherein each ring may be made up of either 4-7 carbon atoms or 4-7 carbon and heteroatoms, and may be saturated or unsaturated.

The term "about" is used herein to mean approximately, in the region of, roughly, or around. When the term "about" is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term "about" is used herein to modify a numerical value above and below the stated value by a variance of 20%.

The definitions described herein may be appended to form chemically-relevant combinations, such as "het- eroalkylaryl," "heteroaryloctroyaryl," "arylalkylheteroc- cyclyl," "alkylcarbonyl," "alkoxyalkyl," "cycloalkylalkyl" and the like. When the term "alkyl" is used as a suffix following another term, as in "phenylalkyl," or "hydroxyalkyl," this is intended to refer to an alkyl group, as defined above, being substituted with one to two substituents selected from the other specifically-named group. Thus, for example, "phenyl- alkyl" refers to an alkyl group having one to two phenyl substituents, and thus includes benzyl, phenylethyl, and biphenyl. An "alkylaminealkyl" is an alkyl group having one to two alkylamino substituents. "Hydroxyalkyl" includes 2-hydroxyethyl, 2-hydroxypropyl, 1-(hydroxymethyl)2-methylpropyl, 2-hydroxyethyl, 2,3-dihydroxybutyl, 2-(hydroxymethyl), 3-hydroxypropyl, and so forth. Accordingly, as used herein, the term "hydroxyalkyl" is used to define a subset of heteroalkyl groups defined below. The term -(ar) alkyl refers to either an unsubstituted alkyl or an aralkyl group. The term (hetero)aryl or (het)aryl refers to either an aryl or a heteroaryl group.

Compounds of formula I may exhibit tautomerism. Tautonomic compounds can exist as two or more interconvertible species. Prototropic tautomers result from the migration of a covalently bonded hydrogen atom between two atoms. Tautomers generally exist in equilibrium and attempts to isolate an individual tautomer usually produce a mixture whose chemical and physical properties are consistent with a mixture of compounds. The position of the equilibrium is dependent on chemical features within the molecule. For example, in many aliphatic aldehydes and ketones, such as acetaldheyde, the keto form predominates while, in phenols, the enol form predominates. Common prototropic tautomers include keto/enol (C==O-CH==C(==O)-OH-CH==), amide/imide acid (C==O-CONH2C(==O)-OH-N==) and amide (C==O-NH2C(==O)-N==) tautomers. The latter two are particularly common in heteroaryl and heterocyclic rings and the present invention encompasses all tautomeric forms of the compounds.

Technical and scientific terms used herein have the meaning commonly understood by one of skill in the art to which the present invention pertains, unless otherwise defined. Reference is made herein to various methodologies and materials known to those of skill in the art. Standard references for general principles of pharmacology include Goodman and Gilman's *The Pharmacological Basis of Therapeutics*, 10th Ed., McGraw Hill Companies Inc., New York (2001). Any suitable materials and/or methods known to those of skill can be utilized in carrying out the present invention. However, preferred materials and methods are described. Materials, reagents and the like to which reference are made in the following description and examples are obtainable from commercial sources, unless otherwise noted.

The term "acyl" as used herein denotes a group of formula C(==O)R wherein R is hydrogen or lower alkyl as defined herein. The term or "acylcarbonyl" as used herein denotes a group of formula C(==O)R wherein R is alkyl as defined herein. The term C10H10 acyl refers to a group C(==O)R containing 6 carbon atoms. The term "arylcarbonyl" as used herein means a group of formula C(==O)R wherein R is an aryl group; the term "benzoyl" as used herein an "aryl- carbonyl" group wherein R is phenyl.

The term "alkyl" as used herein denotes an unbranched or branched chain, saturated, monovalent hydrocarbon residue containing 1 to 10 carbon atoms. The term "lower alkyl" denotes a straight or branched chain hydrocarbon residue containing 1 to 6 carbon atoms. C10H10 alkyl as used herein refers to an alkyl composed of 1 to 10 carbons. Examples of alkyl groups include, but are not limited to, lower alkyl groups include methyl, ethyl, propyl, t-propyl, n-butyl, t-butyl, isopentyl, isoamyl, n-pentyl, hexyl, heptyl, and octyl.

When the term "alkyl" is used as a suffix following another term, as in "phenylalkyl," or "hydroxyalkyl," this is intended to refer to an alkyl group, as defined above, being substituted with one to two substituents selected from the other specifically-named group. Thus, for example, "phenyl-alkyl" denotes the radical R'N==C(==O)-, wherein R' is a phenyl radical, and R" is an alkyl radical as defined herein with the understanding that the attachment point of the phenylalkyl moiety is on the alkylic radical. Examples of aryalkyl radicals include, but are not limited to, benzyl, phenylethyl, 3-phenylpropyl. The terms "aryalkyl", "aryl alkyl", or "arylalkyl" are interpreted similarly except R' is an aryl radical. The terms "heteroaryl alkyl" or "heteroaryloctroyl" are interpreted similarly except R' is optionally an aryl or a heteroaryl radical.

The term "haloalkyl" as used herein denotes a unbranched or branched chain alkyl group as defined above wherein 1, 2, 3 or more hydrogen atoms are substituted by a halogen. The term "lower haloalkyl" denotes a straight or branched chain hydrocarbon residue containing 1 to 6 carbon atoms, wherein 1, 2, 3 or more hydrogen atoms are substituted by a halogen. Examples are 1-fluoromethyl, 1-chloromethyl, 1-bromomethyl, 1-iodomethyl, difluoromethyl, trichloromethyl, chloroform, triiodomethyl, 1-fluoroethyl, 1-chloroethyl, 1-bromoethyl, 1-iodoethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 1,2-dichloroethyl, 3-bromopropyl or 2,2,2-trifluoroethyl.

The term "alkylene" as used herein denotes a divalent saturated linear hydrocarbon radical of 1 to 10 carbon atoms (e.g., CH2)n or a branched saturated divalent hydrocarbon radical of 2 to 10 carbon atoms (e.g., —CHMe— or —CH2CH(i-Pr)CH2—), unless otherwise indicated. Except in the case of methylene, the open valences of an alkylenic group are not attached to the same atom. Examples of alkylenic radicals include, but are not limited to, methylene, ethylene, propylene, 2-methyl-propylene, 1,1-dimethyl-ethylene, butylene, 2-ethylbutylene.

The term "alkoxy" as used herein means an —O-alkyl group, wherein alkyl is as defined above such as methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, t-butoxy, pentoxy, hexoxy, including their isomers. "Lower alkoxy" as used herein denotes an alkoxy
group with a “lower alkyl” group as previously defined. “C₁₋₁₀ alkoxyl” as used herein refers to an O-alkyl wherein alkyl is C₁₋₁₀.

[0194] The term “alkoxyalkyl” as used herein refers to the radical RR’-, wherein R’ is an alkyl radical as defined herein, and R” is an alkylene radical as defined herein with the understanding that the attachment point of the alkoxyalkyl moiety will be on the alkylene radical. C₄₋₆ alkoxyalkyl denotes a group wherein the alkyl portion is comprised of 1-6 carbon atoms exclusive of carbon atoms in the alkoxy portion of the group. C₃₋₆ alkoxyl-C₆₋₆ alkyl denotes a group wherein the alkyl portion is comprised of 1-6 carbon atoms and the alkoxyl group is 1-3 carbons. Examples are methoxyethoxymethyl, methoxyethyl, methoxypropyl, ethoxyethoxymethyl, ethoxyethyl, ethoxypropyloxymethyl, methoxybutyl, ethoxybutyl, propyloxbutyl, butyloxbutyl, t-butyloxbutyl, methoxyethyl, ethoxypentyl, propyloxypentyl including their isomers.

[0195] The term “hydroxyalkyl” as used herein denotes an alkyl radical as herein defined wherein one to three hydrogen atoms on different carbon atoms is/are replaced by hydroxyl groups.

[0196] The term “cycloalkyl” as used herein refers to a saturated carboxylic ring containing 3 to 8 carbon atoms, i.e. cyclopentyl, cyclohexyl, cyclohexyl, adamantyl, cycloheptyl, cyclooctyl or octahydro-pentalen-1-yl. “C₃₋₇ cycloalkyl” as used herein refers to an cycloalkyl composed of 3 to 7 carbons in the carboxylic ring.

[0197] The term “halogen” or “halo” as used herein means fluoride, chloride, bromine, or iodine.

[0198] The term “heteroaryloxy” or “heteroaromatic” as used herein means a monocyclic, bicyclic, or tricyclic radical of 5 to 18 ring atoms having at least one aromatic ring containing four to eight atoms per ring, incorporating one or more N, O, or S heteroatoms, the remaining ring atoms being carbon, with the understanding that the attachment point of the heteroaryl radical will be on an aromatic ring. As well known to those skilled in the art, heteroaryl rings have less aromatic character than their all-carbon counter parts. Thus, for the purposes of the invention, a heteroaryl group need only have some degree of aromatic character. Examples of heteroaryl moieties include monocyclic aromatic heterocycles having 5 to 6 ring atoms and 1 to 3 heteroatoms included, but is not limited to, pyridinyl, pyrimidinyl, pyrazinyl, pyrazolyl, pyrazolyl, imidazolyl, oxazol, isoxazol, thiazole, isothiazole, triazole, thiazidazole and oxadiazolone which can optionally be substituted with one or more, preferably one or two substituents selected from hydroxy, amino, alkyl, alkoxy, halo, lower haloalkoxy, alkythio, halo, halosulfonyl, alkyloxysulfanyl, halogen, amino, alkylamino, dialkylamino, aminoalkyl, alkylaminooxyl, and dialkylaminooxyl, nitro, alkoxybenzyl and carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, arylocarbamoyle, alkylcarboxylym and arylcarboxylamino and arylcarb

[0199] The term “heteroalkoxy” as used herein means an O-(heteroaryl) group wherein heteroaryl is defined herein.

[0200] The term (hetero)aryl as used herein refers to an aryl or a heteroaryl moiety as each is defined herein.

[0201] The term “heterocycloalkyl”, “heterocyclyl” or “heterocycle” as used herein denotes a monovalent saturated cyclic radical, consisting of one or more rings, preferably one or two rings, or three rings, of three to eight atoms per ring, incorporating one or more ring carbon atoms and one or more ring heteroatoms (chosen from N, O or S(=O)₂⁻), wherein the point of attachment can be through either a carbon atom or a heteroatom, and which can optionally be independently substituted with one or more, preferably one or two or three substituents selected from hydroxy, oxo, cyano, lower alkyl, lower haloalkoxy, alkythio, halo, haloalkyl, hydroxyalkyl, nitro, alkoxyarnbonyl, amino, alkylamino, alkyloxysulfanyl, aroyl, alkyloxysulfanyl, alkyloxysulfonylaminooxyl, alkyloxysulfonamido, alkylaminooxyl, alkylcarboxylamino, alkylcarbonylamino, alkylcarbonylamino, unless otherwise indicated. Examples of heterocyclic radicals include, but are not limited to, azetidinyl, pyrrolidinyl, hexahydroazepinyl, oxazepanyl, tetrahydrofuranyl, tetrahydroothiofhenyl, oxazolidinyl, thiazolidinyl, isoxazolidinyl, morpholinyl, piperazinyl, piperidinyl, tetrahydro-1-pyrrolinyl, thiomorpholinyl, quinuclidinyl and imidazolidinyl.

[0202] The term “heterocycloalkoxy” as used herein means an O-(heterocycloalkyl) group wherein heterocycloalkyl is defined herein.

[0203] The phrase “organ rejection” includes acute allograft or xenograft rejection and chronic allograft or xenograft rejection in the setting of vascularized and/or non-vascularized (e.g. bone marrow, pancreatic islet cells) transplants.

[0204] Commonly used abbreviations include: acetyl (Ac), amino (NH₂), isobutyryl (AIBN), atmospheres (Atm), 9-borabicyclo[3.3.1]nonane (9-BBN or BBN), tert-butyloxycarbonyl (BOC), di-tert-butyl pyrocarbonate or boc anhydride (BOC-O₂), benzyl (Bz), butyl (Bu), Chemical Abstracts Registration Number (CASRN), benzylloxycarbonyl (CBZ) or 2-carboxybenzyl diimidazolide (CDI), 1,4-diazabicyclo[2.2.2]octane (DABCO), diethylaminosulphur trifluoride (DAST), dibenzylidenecyclohexane (DBH), 1,5-diazabicyclo[4.3.0]non-5-ene (DIN), 1,8-diazabicyclo[5.4.0]dec-7-ene (DBU), N,N'-dicyclohexylcarbodiimide (DCC), 1,2-dichloroethane (DCE), dichloromethane (DCM), diethyl azodicarboxylate (DEAD), di-isopropylazodicarboxylate (DIAD), di-isobutylylaminohydride (DIBAL) or DIBAL-H, di-isopropyl-ethylamine (DPEA), N,N-dimethyl acetamide (DMA), 4-N,N-dimethylamino pyridine (DMAP), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 1H-isopropylidenephosphono)ethane (dppe), 1,1-bis(diphenylphosphino)ferrocene (dpf), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI), ethyl (Et), ethyl acrylate (EcoAc), ethanol (EtOH), 2-ethoxy-2H-quinoline-1-carboxylic acid ethyl ester (EDQD), diethyl ether (Et₂O), O-(7-azabenzotriazol-1-yl)-7,N,N',N'-tetramethyluronium hexafluorophosphate acetic acid (HATU), acetic acid (HOAc), 1-N-hydroxybenzotriazole (HOBt), high pressure liquid chromatography (HPLC), iso-propanol (IPA), lithium hexamethyl disilazane (LHMDS), methanol (MeOH), melting point (mp), MeSO₃ — (mexyl or Ms), methyl (Me), acetonitrile (MeCN), m-chloroperbenzoic acid (MCPBA), mass spectrum (ms), methyl t-butyl ether (MTBE), N-bromosuccinimide (NBS), N-carboxyanhydride (NCA), N-chlorosuccinimide (NCS), N-methylmorpholine (NMM), N-methylpyrrolidone (NMP), pyridinium chlorochromate (PCC), pyridinium dichromate (PDC), phenyl (Ph), propyl (Pr), isopropyl (i-Pr), pounds per square inch (psi), pyridine (pyr), room temperature (rt or RT), tert-butylimidemethylsilyle 1,2,2,6,6-
tetramethylpiperidine 1-oxyl (TEMPO), triflate or CF₃SO₂— (Tf), trifluoroacetic acid (TFA), 1,1′-bis-2,2,6,6-tetramethylheptane-2,6-dione (TMHD), O-benzoaziridin-1-yl-N,N,N′, N′-tetramethylyuronium tetrafluoroborate (TBTU), thin layer chromatography (TLC), tetrahydrofuran (THF), trimethylsilyl or Me₃Si (TMS), p-toluenesulfonic acid monohydrate (TsOH or pTsOH), 4-Me-C₆H₄SO₂— or tosyl (Ts), N-urethane-N-carboxyanhydride (UNCA). Conventional nomenclature including the prefixes normal (n), iso (i), secondary (sec), tertiary (tert) and neo have their customary meaning when used with an alkyl moiety. (J. Rigaudy and D. P. Klesney, *Nomenclature in Organic Chemistry*, IUPAC 1979 Pergamon Press, Oxford.)

Compounds and Preparation

[0205] Examples of representative compounds encompassed by the present invention and within the scope of the invention are provided in the following Table. These examples and preparations which follow are provided to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.

[0206] In general, the nomenclature used in this Application is based on AUTONOM™ v.4.0, a Beilstein Institute computerized system for the generation of IUPAC systematic nomenclature. If there is a discrepancy between a depicted structure and a name given that structure, the depicted structure is to be accorded more weight. In addition, if the stereochemistry of a structure or a portion of a structure is not indicated with, for example, bold or dashed lines, the structure or portion of the structure is to be interpreted as encompassing all stereoisomers of it.

TABLE I

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>SYSTEMATIC NAME</th>
<th>STRUCTURE</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>1-(2-Bromo-5H-pyrrrolo[2,3-b]pyrazine-7-yl)-3-methyl-butan-1-one</td>
<td></td>
<td>183-187.5</td>
</tr>
<tr>
<td>I-2</td>
<td>5H-Pyrrol[2,3-b]pyrazine-7-carboxylic acid isopropylamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-3</td>
<td>2-Chloro-5H-pyrrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide</td>
<td></td>
<td>278-279</td>
</tr>
<tr>
<td>I-4</td>
<td>2-Isopropanlyl-5H-pyrrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOUND</td>
<td>SYSTEMATIC NAME</td>
<td>STRUCTURE</td>
<td>MP</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>1-5</td>
<td>2-Isopropyl-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-6</td>
<td>1-(2-Chloro-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td>209-210</td>
</tr>
<tr>
<td>1-7</td>
<td>(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-(1-methyl-cyclohexyl)methanone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-8</td>
<td>1-(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td>213.0-214.0</td>
</tr>
<tr>
<td>1-9</td>
<td>1-(5-Isopropenyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td>(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-(1-methyl-cyclopentyl)methanone</td>
<td></td>
<td>206.9-207.9</td>
</tr>
<tr>
<td>COMPOUND</td>
<td>SYSTEMATIC NAME</td>
<td>STRUCTURE</td>
<td>MP</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>I-11</td>
<td>1-(2-Hexyl-5H-pyrido</td>
<td></td>
<td>229.0-231.0</td>
</tr>
<tr>
<td>I-12</td>
<td>1-(2-Ethyl-5H-pyrido</td>
<td></td>
<td>215.0-216.0</td>
</tr>
<tr>
<td>I-13</td>
<td>1-(2-Bromo-5H-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-14</td>
<td>1-[2-(1-Hydroxy-ethyl)-5H-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-15</td>
<td>1-[2-(1-Hydroxy-2-methyl-propyl)-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOUND</td>
<td>SYSTEMATIC NAME</td>
<td>STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>I-16</td>
<td>1-[2-(Hydroxy-ethyl-methyl)-5H-pyrido[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one</td>
<td>![Structure I-16]</td>
<td></td>
</tr>
<tr>
<td>I-17</td>
<td>1-[2-(Hydroxy-phenyl-methyl)-5H-pyrido[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one</td>
<td>![Structure I-17]</td>
<td></td>
</tr>
<tr>
<td>I-18</td>
<td>1-[2-(Hydroxy-pyridin-4-yl-methyl)-5H-pyrido[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one</td>
<td>![Structure I-18]</td>
<td></td>
</tr>
<tr>
<td>I-19</td>
<td>1-[2-(Hydroxy-pyridin-3-yl-methyl)-5H-pyrido[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one</td>
<td>![Structure I-19]</td>
<td></td>
</tr>
<tr>
<td>I-20</td>
<td>(2-Bromo-5H-pyrido[2,3-b]pyrazin-7-yl)-(3aS,6aS)-1-methyl-3,6-dihydro-9H-pentalen-1-yl)methanone</td>
<td>![Structure I-20]</td>
<td></td>
</tr>
<tr>
<td>COMPOUND</td>
<td>SYSTEMATIC NAME</td>
<td>STRUCTURE</td>
<td>MP</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>I-21</td>
<td>(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl) (1S,2S)-1,2-dimethylcyclopentylmethane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-22</td>
<td>(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl) (1-methylcyclohexyl) methane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-23</td>
<td>(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl) (1-methylcyclopropylmethane)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-24</td>
<td>(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl) (1-methylcyclohexylmethane)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-25</td>
<td>adamantane-1-yl (2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl) methane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-26</td>
<td>(4-Butyloxy-1-methylcyclohexyl) (2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl) methane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOUND</td>
<td>SYSTEMATIC NAME</td>
<td>STRUCTURE</td>
<td>MP</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>I-27</td>
<td>(4-Benzoyloxy-1-methyl-cyclohexyl)-(3H-pyrrolo[2,3-b]pyrazin-7-yl)-methane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-28</td>
<td>1-(2-Ethynyl-3H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-29</td>
<td>1-(2-Ethyl-3H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-30</td>
<td>1-(2-Isopropenyl-3H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-31</td>
<td>1-(2-Chloro-3H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dosage and Administration

The compounds of the present invention may be formulated in a wide variety of oral administration dosage forms and carriers. Oral administration can be in the form of tablets, coated tablets, dragées, hard and soft gelatine capsules, solutions, emulsions, syrups, or suspensions. Compounds of the present invention are efficacious when administered by other routes of administration including continuous (intravenous drip) topical parenteral, intramuscular, intravenous, subcutaneous, transdermal (which may include a penetration enhancement agent), buccal, nasal, inhalation and suppository administration, among other routes of administration. The preferred manner of administration is generally oral using a convenient daily dosing regimen which can be adjusted according to the degree of affliction and the patient's response to the active ingredient.

A compound or compounds of the present invention, as well as their pharmaceutically useable salts, together with one or more conventional excipients, carriers, or diluents, may be placed into the form of pharmaceutical compositions and unit dosages. The pharmaceutical compositions and unit dosage forms may be comprised of conventional ingredients in conventional proportions, with or without additional active compounds or principles, and the unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed. The pharmaceutical compositions may be employed as solids, such as tablets or filled capsules, semisolids, powders, sustained release formulations, or liquids such as solutions, suspensions, emulsions, elixirs, or filled capsules for oral use; or in the form of suppositories for rectal or vaginal administration; or in the form of sterile injectable solutions for parenteral use. A typical preparation will contain from about 5% to about 95% active compound or compounds (w/w). The term “preparation” or “dosage form” is intended to include both solid and liquid formulations of the active compound and one skilled in the art will appreciate that an active ingredient can exist in different preparations depending on the target organ or tissue and on the desired dose and pharmacokinetic parameters.

The term "excipient" as used herein refers to a compound that is useful in preparing a pharmaceutical composition, generally safe, non-toxic and neither biologically nor otherwise undesirable, and includes excipients that are acceptable for veterinary use as well as human pharmaceutical use. The compounds of this invention can be administered alone but will generally be administered in admixture with one or more suitable pharmaceutical excipients, diluents or carriers selected with regard to the intended route of administration and standard pharmaceutical practice.

"Pharmaceutically acceptable" means that which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic, and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary as well as human pharmaceutical use.

"A "pharmaceutically acceptable salt" form of an active ingredient may also initially confer a desirable pharmacokinetic property on the active ingredient which were absent in the non-salt form, and may even positively affect the pharmacodynamics of the active ingredient with respect to its therapeutic activity in the body. The phrase "pharmaceutically acceptable salt" of a compound means a salt that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. Such salts include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanesulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-toluenesulfonic acid, camphorsulfonic acid, 4-methylcyclo[2.2.2]-oct-2-ene-1-carboxylic acid, glucoheptonic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfonic acid, gluconic acid, glutamic acid, hydroxypropionic acid, salicylic acid, stearic acid, muconic acid, and the like; or (2) salts formed when an acidic proton present in the parent compound either is replaced by a metal ion, e.g., an alkali metal ion, an alkaline earth ion, or an aluminum ion, or coordinates with an organic base such as ethanalamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like.

Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier may be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. In powders, the carrier generally is a finely divided solid which is a mixture with the finely divided active component. In tablets, the active component generally is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired. Suitable carriers include but are not limited to magnesium carbonate, magne-
sium stearate, talc, sugar, lactose, pectin, dextrose, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. Solid form preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.

[0214] Liquid formulations also are suitable for oral administration include liquid formulation including emulsions, syrups, elixirs, aqueous solutions, aqueous suspensions. These include solid form preparations which are intended to be converted to liquid form preparations shortly before use. Emulsions may be prepared in solutions, for example, in aqueous propylene glycol solutions or may contain emulsifying agents such as lecithin, sorbitan monoleate, or acacia. Aqueous solutions can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizing, and thickening agents. Aqueous suspensions can be prepared by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents.

[0215] The compounds of the present invention may be formulated for parenteral administration (e.g., by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, for example solutions in aqueous polyethylene glycol. Examples of oily or nonaqueous carriers, diluents, solvents or vehicles include propylene glycol, polyethylene glycol, vegetable oils (e.g., olive oil), and injectable organic esters (e.g., ethyl oleate), and may contain formulatory agents such as preserving, wetting, emulsifying or suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilization from solution for constitution before use with a suitable vehicle, e.g., sterile, pyrogen-free water.

[0216] The compounds of the present invention may be formulated for topical administration to the epidermis as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also containing one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents. Formulations suitable for topical administration in the mouth include lozenges comprising active agents in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycérin or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.

[0217] The compounds of the present invention may be formulated for administration as suppositories. A low melting wax, such as a mixture of fatty acid glycerides or cocoa butter is first melted and the active component is dispersed homogeneously, for example, by stirring. The molten homogeneously mixture is then poured into convenient sized molds, allowed to cool, and to solidify.

[0218] The compounds of the present invention may be formulated for vaginal administration. Pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

[0219] The compounds of the present invention may be formulated for nasal administration. The solutions or suspensions are applied directly to the nasal cavity by conventional means, for example, with a dropper, pipette or spray. The formulations may be provided in a single or multidose form. In the latter case of a dropper or pipette, this may be achieved by the patient administering an appropriate, predetermined volume of the solution or suspension. In the case of a spray, this may be achieved for example by means of a metering atomizing spray pump.

[0220] The compounds of the present invention may be formulated for aerosol administration, particularly to the respiratory tract and including intranasal administration. The compound will generally have a small particle size for example of the order of five (5) microns or less. Such a particle size may be obtained by means known in the art, for example by micronization. The active ingredient is provided in a pressurized pack with a suitable propellant such as a chlorofluorocarbon (CFC), for example, dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoroethane, or carbon dioxide or other suitable gas. The aerosol may conveniently also contain a surfactant such as lecithin. The dose of drug may be controlled by a metered valve. Alternatively the active ingredients may be provided in a form of a dry powder, for example a powder mix of the compound in a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropyl methyl cellulose and polyvinylpyrrolidone (PVP). The powder carrier will form a gel in the nasal cavity. The powder composition may be presented in unit dose form for example in capsules or cartridges of e.g., gelatin or blister packs from which the powder may be administered by means of an inhaler.

[0221] When desired, formulations can be prepared with enteric coatings adapted for sustained or controlled release administration of the active ingredient. For example, the compounds of the present invention can be formulated in transdermal or subcutaneous drug delivery devices. These delivery systems are advantageous when sustained release of the compound is necessary and when patient compliance with a treatment regimen is crucial. Compounds in transdermal delivery systems are frequently attached to an skin-adhesive solid support. The compound of interest can also be combined with a penetration enhancer, e.g., Azone (1-dodecylaza-cycloheptan-2-one). Sustained release delivery systems are inserted subcutaneously into the subdermal layer by surgery or injection. The subdermal implants encapsulate the compound in a lipid soluble membrane, e.g., silicone rubber, or a biodegradable polymer, e.g., polylactic acid.

A skilled formulation scientist may modify the formulations within the teachings of the specification to provide numerous formulations for a particular route of administration without rendering the compositions of the present invention unstable or compromising their therapeutic activity.

[0223] The modification of the present compounds to render them more soluble in water or other vehicle, for example, may be easily accomplished by minor modifications (salt formulation, esterification, etc.), which are well within the ordinary skill in the art. It is also well within the ordinary skill of the art to modify the route of administration and dosage regimen of a particular compound in order to manage the pharmacokinetics of the present compounds for maximum beneficial effect in patients.

[0224] The term “therapeutically effective amount” as used herein means an amount required to reduce symptoms of the disease in an individual. The dose will be adjusted to the individual requirements in each particular case. That dosage can vary within wide limits depending upon numerous factors such as the severity of the disease to be treated, the age and general health condition of the patient, other medications with which the patient is being treated, the route and form of administration and the preferences and experience of the medical practitioner involved. For oral administration, a daily dosage of between about 0.01 and about 1000 mg/kg body weight per day should be appropriate in monotherapy and/or in combination therapy. A preferred daily dosage is between about 0.1 and about 500 mg/kg body weight, more preferred 0.1 and about 100 mg/kg body weight and most preferred 1.0 and about 10 mg/kg body weight per day. Thus, for administration to a 70 kg person, the dosage range would be about 7 mg to 0.7 g per day. The daily dosage can be administered as a single dosage or in divided dosages, typically between 1 and 5 dosages per day. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect for the individual patient is reached. One of ordinary skill in treating diseases described herein will be able, without undue experimentation and in reliance on personal knowledge, experience and the disclosures of this application, to ascertain a therapeutically effective amount of the compounds of the present invention for a given disease and patient.

[0225] The pharmaceutical preparations are preferably in unit dosage forms. In such form, the preparation is subdivided into units containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.

[0226] The following examples illustrate the preparation and biological evaluation of compounds within the scope of the invention. These examples and preparations which follow are provided to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.

EXAMPLES

Example 1

2-Bromo-6-methyl-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid ethyl ester

[0228] To a flask charged with 20 ml of anhydrous N-methylpyrrolidine at 0°C was added 60% NaH (840 mg, 21 mmol). After stirring 15 min, ethyl acetocetate (2.73 g, 10.8 mmol) was added slowly. After stirring an additional 20 min, 3,5-dibromo-pyrazin-2-ylamine (5.04 g, 20 mmol) The reaction vessel was then removed from the ice bath and heated to 140°C for 3 days. The dark mixture was cooled to rt and diluted with diethyl ether and water. The mixture was filtered and then partitioned. The organic layer was washed with water and then brine, dried over Na2SO4, filtered, and concentrated to afford a dark red oil. This was purified by silica gel chromatography (4:1 Hexanes:EtOAc) to afford 290 mg of 2-Bromo-6-methyl-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid ethyl ester.

Example 2

2-Isopropenyl-5H-pyrrolo[2,3-b]pyrazine

2-Bromo-5H-pyrrolo[2,3-b]pyrazine (400 mg, 2 mmol), prop-1-en-2-ylboronic acid (190 mg, 2.2 mmol), potassium carbonate (838 mg, 6 mmol) and 1,1'-bis(diphenylphosphino)ferrocene-palladium(II) dichloride (249 mg, 0.3 mmol) were combined in dioxane (40 ml) and water (10 ml) and heated at 105°C for 1 hour. The mixture was poured into ethyl acetate, extracted with ethyl acetate. Then the combined extracts were washed with brine, dried (Na2SO4), filtered, and purified on silica gel to obtain 134 mg.

[0231] 2-[3-(3,3-Dimethyl-pyrrolidin-1-yl)-phenyl]-5H-pyrrolo[2,3-b]pyrazine was prepared from 2-bromo-5H-pyrrolo[2,3-b]pyrazine following general procedures described in these Examples.
Example 3

7-Iodo-2-isopropenyl-5H-pyrrolo[2,3-b]pyrazine

[0233] 7-Iodo-2-isopropenyl-5H-pyrrolo[2,3-b]pyrazine. 2-Iso-ropenyl-5H-pyrrolo[2,3-b]pyrazine (89 mg, 0.56 mmol) was dissolved in DMF (5 mL) and potassium hydroxide (200 mg) was added, followed by dropwise addition of iodine (199 mg, 0.78 mmol) dissolved in DMF (1.5 mL). After stirring 3 h, the reaction was poured into water and extracted with ethyl acetate. The combined extracts were washed with water followed by brine, dried (Na₂SO₄), filtered, and volatiles removed under reduced pressure. The crude reaction mixture was purified on silica gel to give 92 mg.

Example 4

2-Iso-ropenyl-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide

[0238] 2-Iso-ropenyl-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide. 2-Iso-ropenyl-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide (60 mg, 0.25 mmol) was dissolved in ethanol (10 mL) and palladium on carbon was added (8 mg). The reaction mixture was shaken for 2 h on a Parr hydrogenator under 55 psi hydrogen, followed by filtration through celite. Volatiles were removed under reduced pressure to give 60 mg.

Example 6

A solution of 2-Chloro-5H-pyrrolo[2,3-b]pyrazine (0.62 g, 4 mmol) in 20 mL dimethylformamide at 0°C under argon atmosphere was treated with potassium hydroxide (0.47 g, 8.4 mmol, crushed) and iodine was added in portions (1.03 g, 4 mmol). The mixture was warmed to ambient temperature and stirred at that temperature for 10 h. The mixture was then diluted with ethyl acetate and washed with saturated aqueous sodium bisulfite. The aqueous layer was washed with ethyl acetate four times, then the combined organic
layers were dried over magnesium sulfate, filtered, and concentrated to carry on to the next example.

Example 7

![Chemical Structure](image)

2-Chloro-7-iodo-5-trisopropylsilyl-5H-pyrrolo[2,3-b]pyrazine

A solution of the 2-Chloro-7-iodo-5H-pyrrolo[2,3-b]pyrazine from the previous step in 30 mL of tetrahydrofuran stirring at 0°C under argon atmosphere was treated with lithium hexamethyldisilazide (6 mL, 1 M in hexanes, 6 mmol) followed by trisopropylsilylethyl chloride (1.1 mL, 5.2 mmol). After 30 minutes at 0°C, the solution was warmed to ambient temperature and diluted with 20% ethyl acetate in hexanes, then washed twice with water and once with brine. After drying the organic layer over magnesium sulfate, filtration was followed by solvent removal and flash chromatography of the resultant residue using 2.5% ethyl acetate in hexanes, to furnish 2-Chloro-7-iodo-5-trisopropylsilyl-5H-pyrrolo[2,3-b]pyrazine (1.68 g, 95% over two steps).

Example 8

![Chemical Structure](image)

1-(2-Chloro-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

The residue from the previous example was dissolved in 30 mL of methylene chloride and treated with the Dess-Martin periodinane (0.76 g). After 10 minutes, the reaction was diluted with ethyl acetate and washed successively with saturated aqueous sodium bisulfite, saturated aqueous sodium bicarbonate and brine. After drying over magnesium sulfate, filtration, and solvent removal, the residue was taken up in 30 mL of tetrahydrofuran and treated with 10 drops each of 1 M sodium hydroxide and saturated aqueous sodium bicarbonate. The mixture was stirred for 2 hours, then diluted with ethyl acetate and washed two times with saturated aqueous sodium bicarbonate and once with brine. The organic layer was dried over magnesium sulfate, filtered, and concentrated under reduced pressure. Flash chromatography using 20% ethyl acetate in hexanes then furnished the desired 1-(2-Chloro-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one (0.18 g, 59% for the sequence). The material was a solid, m.p. 209-210°C.
Example 10

1-(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

Example 12

1-(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

Example 11

1-(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

Example 12

2-bromo-7-iso-5-trisopropylsilanyl-5H-pyrrolo[2,3-b]pyrazine: 2.4 g of 2-bromo-7-iso-5H-pyrrolo[2,3-b]pyrazine (7.4 mmol, 1 eq) was dissolved in 24 mL of tetrahydrofuran. The reaction flask was cooled in an ice bath and 8 mL lithium bis(trimethylsilyl)amide (1M hexanes solution, 8 mmol, 1.08 eq) was added dropwise. The reaction solution was stirred at room temperature for 20 min. The reaction was cooled in an ice bath and 1.7 mL of trisopropylsilylethyl chloride (7.94 mmol, 1.07 eq) was then added slowly. After 1 hr at room temperature, more lithium bis(trimethylsilyl)amide (0.4 mL, 0.4 mmol, 0.05 eq) and triisopropylsilylethyl chloride (0.2 mL, 0.9 mmol, 0.12 eq) were added. After 1 hr, the reaction was complete. The reaction flask was cooled in an ice bath and ethyl acetate, water, and sodium bicarbonate solution were added. The layers were separated and the aqueous layer was extracted once more with ethyl acetate. The ethyl acetate layers were washed with saturated sodium chloride solution, dried over sodium sulfate, filtered, and evaporated. The crude residue was purified by silica gel chromatography (ethyl acetate/hexanes) to give 2.3 g (64%) of product and 0.84 g of starting material (35%).
Example 13

![Chemical structure](image)

Example 14

![Chemical structure](image)

Example 15

![Chemical structure](image)

Example 16

![Chemical structure](image)

Example 17

![Chemical structure](image)
centrated, and the remaining aqueous solution was extracted with ethyl acetate (3×). The organic layers were collected, dried over MgSO₄, filtered, and concentrated giving a greenish oil. The residue was purified by silica gel chromatography using 20-50% EtOAc in hexanes as eluant to provide 144 mg (85%) of (2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-(1-methyl-cyclohexyl)-methanone as a light yellow solid. MP 198-199°C, M+H=322.

Example 16

![Chemical structure](image)

Potassium tert-butoxide (1.0 M in tetrahydrofuran, 45.6 mL, 45.6 mmol) was added dropwise to a solution of 3,5-bis-(trimethylsilyl)ethyl-5H-pyrrolo[2,3-b]pyrazin-2-ylamine (4.36 g, 15.2 mmol) in 60 mL of tetrahydrofuran. The reaction mixture was heated to reflux and stirred for 15 h, allowed to cool to RT, then treated with 100 mL of water. The resulting mixture was diluted with 250 mL of ethyl acetate and filtered through a plug of Celite, rinsing with 200 mL of ethyl acetate and 100 mL of water. The filtrate layers were separated, and the organic layer sequentially washed with two 200 mL portions of water and 200 mL of a sat. aq. NaCl solution, dried over MgSO₄, filtered and concentrated to 0.111 g (45%) of 2-ethyl-5H-pyrrolo[2,3-b]pyrazine as an impure brown solid that was used without further purification.

Example 17

![Chemical structure](image)

1-(2-(1-Hydroxy-ethyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one

Step 1

1-(2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one (1.5 g, 5.3 mmol) was partly dissolved in 18 mL toluene, and ethylene glycol (0.9 mL, 15.9 mmol) and then p-toluenesulfonic acid hydrate were added. The mixture was refluxed with a Dean-Stark-type trap attached for 24 hr. The reaction was cooled to room temperature and ammonium chloride solution, water and ethyl acetate were added. The layers were separated and the aqueous layer was extracted twice more with ethyl acetate. The combined ethyl acetate layers were washed with saturated sodium chloride solution and dried over sodium sulfate. After filtration and evaporation the residue was purified by silica gel chro-
matography (ethyl acetate/hexanes to give 1.44 g (83%) of 2-bromo-7-(2-tet-butyl-1,3-dioxolan-2-yl)-5H-pyrrolo[2,3-b]pyrazine.

Step 2

[0266] 2-bromo-7-(2-tet-butyl-1,3-dioxidolan-2-yl)-5H-pyrrolo[2,3-b]pyrazine (0.2 g, 61 mmol) was dissolved in 6 ml tetrahydrofuran. Sodium hydride (49 mg, 1.22 mmol, 60% mineral oil dispersion) was added and the mixture stirred for 15 min. The mixture was cooled in a dry ice/acetone bath and butyl lithium (0.37 ml, 0.92 mmol, 2.5M hexanes solution) was added slowly. After 5 min, acetaldehyde (85 ml, 1.52 mmol) was added. After a further 1 hr, ammonium chloride solution was added, then water and ethyl acetate. The layers were separated and the aqueous layer was extracted once more with ethyl acetate. The combined ethyl acetate layers were washed with saturated sodium chloride solution and dried over sodium sulfate. After filtration and evaporation of the residue was purified by silica gel chromatography (methanol/ dichloromethane) and recrystallized from ethyl acetate/hexanes to give 65 mg (73%) of product. MP=152-155 C. (M+H)+=248.

Prepared Following General Procedures described in these Examples.

[0267] 1-[7-(2-tet-Butyl-1,3-dioxolan-2-yl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,3-bpyrazin-2-yl)ethanol (105 mg, 0.36 mmol) was dissolved in 4 ml of 1,4-dioxane. 3M hydrochloric acid (1.2 ml) was added and the mixture was stirred for 18 hr. The reaction was neutralized by addition of sodium bicarbonate solution, and ethyl acetate and water were added. The layers were separated and the aqueous layer was extracted once more with ethyl acetate. The combined ethyl acetate layers were washed with saturated sodium chloride solution and dried over sodium sulfate. After filtration and evaporation of the residue was purified by silica gel chromatography (methanol/dichloromethane) and recrystallized from ethyl acetate/hexanes to give 65 mg (73%) of product. MP=152-155 C. (M+H)+=248.

Prepared Following General Procedures described in these Examples.

[0268] 1-[1-(2-Hydroxy-2-methyl-propyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,3-dimethyl-propan-1-one. Substituting isobutylaldehyde for acetaldehyde in Step 2. MP=148-150 C. (M+H)+=276. 7-(2,2-Dimethyl-propionyl)-5H-pyrrolo[2,3-b]pyrazine-2-carboxylic acid isopropylamide Substituting carbon dioxide for acetaldehyde in Step 2. Then following general procedures described in these Examples, using iso-propylamine and continuing with Step 3. MP=206-208 C. (M+H)+=289. 1-(2-Acetyl-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one. The product of Step 3 was treated with Dess-Martin periodinane, following general procedures described in these Examples. MP=221-223 C. (M+H)+=246.

[0269] 1-(2-Isobutyryl)-5H-pyrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one. 1-[1-(2-Hydroxy-2-methyl-propyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one was treated with Dess-Martin periodinane, following general procedures described in these Examples. MP=233-235 C. (M+H)+=274.

[0272] 2,2-Dimethyl-1-[2-(2-methyl-benzoyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one was treated with Dess-Martin periodinane, following general procedures described in these Examples. MP=152-154 C. (M+H)+=329.

[0273] 1-[2-Benzyloyl-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one. 1-[2-(Hydroxy-phenyl-methyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one was treated with Dess-Martin periodinane, following general procedures described in these Examples. MP=190-192 C. (M+H)+=308.

[0276] 2,2-Dimethyl-1-[2-(pyridine-4-carboxyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one. 1-[2-(Hydroxy-pyridin-4-yl-methyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one was treated with Dess-Martin periodinane, following general procedures described in these Examples. MP=218-220 C. (M+H)+=309.

[0277] 2,2-Dimethyl-1-[2-(pyridine-3-carboxyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one. 1-[2-(Hydroxy-pyridin-3-yl-methyl)-5H-pyrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one was treated with Dess-Martin periodinane, following general procedures described in these Examples. MP=218-220 C. (M+H)+=309.

Example 20

(2-Bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-(1-methyl-cycloheptyl)-methanone

[0278] A suspension of 2-bromo-5H-pyrrolo[2,3-b]pyrazine (100 mg, 0.505 mmol) in anhydrous dichloromethane (10 ml) was cooled to 0° C. under N2. Diethyl aluminum chloride (1M in hexanes, 1.50 ml, 1.50 mmol) was added quickly, and the reaction mixture was stirred for 30 minutes. 1-Methyl-cycloheptanecarbonyl chloride (882 mg, 5.05 mmol) was added dropwise, and the reaction mixture was refluxed overnight. The reaction mixture was cooled to 0° C. and quenched with saturated aqueous NaHCO3. The biphasic solution was concentrated, and the remaining aqueous solution was extracted with ethyl acetate. The organic layers were collected, dried over MgSO4, filtered, and concentrated giving a pale brown solid. The residue was purified by silica gel chromatography using 19-74% EtOAc in hexanes as eluant providing 55 mg (32%) of (2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-(1-methyl-cycloheptyl)-methanone as a white solid. MP=197.7-198.2°C. (M+H)+=336.

Example 21

4-Benzoxyl-1-methyl-cyclohexene-carboxylic acid (1.71 g, 6.89 mmol) in thionyl chloride (10
Example 22

(4-Benzoylxy-1-methyl-cyclohexyl)-(2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-methanone

A solution of 2-bromo-5H-pyrrolo[2,3-b]pyrazine (531 mg, 2.68 mmol) and 4-benzoylxy-1-methyl-cyclohexa-carbonyl chloride (2.15 g, 8.05 mmol) in anhydrous Toluene (16 ml) was treated with Et3AlCl (1M in Hexanes, 5.36 ml, 5.36 mmol), dropwise. The reaction mixture was stirred at 90°C for 16 hours. The reaction mixture was cooled to room temperature, quenched at sat. NaHCO3, and extracted with ethyl acetate (3x). The organic layers were collected, dried over MgSO4, filtered, and concentrated giving a dark brown oil. Silica gel chromatography using 0-50% Et2O in DCM as eluant provided 205 mg (18%) of (4-benzoylxy-1-methyl-cyclohexyl)-(2-bromo-5H-pyrrolo[2,3-b]pyrazin-7-yl)-methanone as a pale yellow solid. M+H=426.

Example 23

(4-Benzoylxy-1-methyl-cyclohexyl)-(5H-pyrrolo[2,3-b]pyrazin-7-yl)-methanone

A solution of (4-benzoylxy-1-methyl-cyclohexyl)-(5H-pyrrolo[2,3-b]pyrazin-7-yl)-methanone (13 mg, 0.03 mmol), KOH (1 mg, 0.02 mmol), and 10% Pd/C (10 mg), in EtOH (8 ml), was hydrogenated for 2 days under H2 atmosphere (1 atm). The reaction mixture was filtered through a plug of celite using THF and DCM. The filtrate was concentrated to a white solid, which was purified by silica gel chromatography using 0-70% Et2O in DCM as eluant providing 9 mg (82%) of (4-benzoylxy-1-methyl-cyclohexyl)-(5H-pyrrolo[2,3-b]pyrazin-7-yl)-methanone as a white solid. M+H=350.

JAK Assay Information

Determination of IC50 of Janus Kinase (JAK) Inhibition:

[0283] Enzymes and peptide substrate used are described below:

[0284] JAK1: Recombinant human kinase domain from Invitrogen (Cat # PV4774)

[0285] JAK3: Recombinant human kinase domain from Millipore (Cat #14-629) or prepared.

[0286] JAK2: Recombinant human kinase domain from Millipore (Cat #14-640)

[0287] Substrate: N-terminally biotinylated 14-mer peptide derived from activation loop of JAK1 with sequence of the peptide substrate: Biotin-KAIETDKEYTVKDK

[0288] Assay conditions_used are described below:

[0289] Assay Buffer: JAK Kinase Buffer: 50 mM Hepes [pH 7.2], 10 mM MgCl2, 1 mM DTT, 1 mg/ml BSA. The assay is carried out in this buffer.

[0290] Assay Format: The kinase activity of all three JAK kinases is measured using a radioactive, endpoint assay and with trace amounts of 33P-ATP. The assays are carried out in 96-well polypropylene plates.

Experimental Method:

[0291] All concentrations are final in the reaction mixture and all incubations are carried at room temperature. Assay steps are described below:

[0292] 1) Compounds are serially diluted in 100% DMSO typically at a 10x starting concentration of 1 mM. Final concentration of DMSO in the reaction is 10%.

[0293] 2) Compounds are preincubated with enzyme (0.5 nM JAK3 (commercially available), 0.2 nM JAK3 (prepared), 1 nM JAK2, 5 nM JAK1) for 10 minutes.

[0294] 3) Reactions are initiated by the addition of a cocktail of the two substrates (ATP and peptide preincubated in the JAK Kinase Buffer). In the JAK2/JAK3 assays, ATP and the peptide are used at concentrations of 1.5 μM and 50 μM, respectively. JAK1 assay is carried out at an ATP concentration of 10 μM and a peptide concentration of 50 μM.

[0295] 4) The duration of the assay for JAK2 and JAK3 is 20 minutes. JAK1 assay is carried out for 40 minutes. With all three enzymes, reactions are terminated by the addition of 0.5M EDTA to a final concentration of 100 mM.

[0296] 5) 25 μl of terminated reactions are transferred to 150 μl of a 7.5% (v/v) slurry of streptavidin-coated sepharose beads in MgCl2—in CaCl2-free 1x Phosphate Buffered Solute containing 50 mM of EDTA in 96-well, 1.2 um MultiScreen-BV filter plates.

[0297] 6) After a 30-minute incubation, the beads are washed under vacuum with the following buffers:

[0298] a. 3 to 4 washes with 200 μl of 2M NaCl.

[0299] b. 3 to 4 washes with 200 μl of 2M NaCl plus 1% (v/v) phosphoric acid.

[0300] c. 1 wash with water.

[0301] 7) Washed plates are dried in a 60°C oven for between 1 to 2 hours.
SYK Assay Information

Determination of IC₅₀ of Spleen Tyrosine Kinase (SYK) Inhibition:

[0304] SYK kinase assay is a standard kinase assay adapted to a 96 well plate format. This assay is performed in 96-well format for IC₅₀ determination with 8 samples which represented 10 half log dilutions and a 40 µL reaction volume. The assay measures the incorporation of radiolabeled 3²P-βATP into an N-terminally biotinylated peptide substrate, derived from naturally occurring phosphoacceptor consensus sequence (Biotin-11am DY*E). Phosphorylated products were detected upon termination of reactions with EDTA and the addition of Streptavidin coated beads. Representative results are in Table II above.

[0305] Assay plates: 96-well MultiScreen 0.65 um filter plates (Millipore Cat. No.: MADVNO810)

[0306] Streptavidin coated beads: Streptavidin Sepharose™ suspension 5.0 mL, in 50 mM EDTA/PBS diluted (1:100), (Amersham, Cat. No.: 17-5113-01)

[0307] Compounds: 10 mM in 100% dimethylsulfoxide (DMSO), final conc.: compound 0.003-100 µM in 10% DMSO

[0308] Enzyme: SYK RPA purified, truncated construct of Spleen Tyrosine Kinase as 360-635, stock solution 1 mg/mL, MW: 31.2 kDa, final conc.: 0.0005 µM.

[0309] Peptide 1: biotinylated peptide is derived from a naturally occurring phosphor-acceptor consensus sequence (Biotin-EPGVDYEVL1). Special order from QCB, stock solution 20 mM, final conc.: 5.0 µM

[0310] ATP: Adenosine-5′-triphosphate 20 mM, (ROCHE Cat. No.: 93202720), final concentration: 20 µM

[0311] Buffer: HEPES: 2-Hydroxyethyl piperazine-2-ethanesulfonic acid (Sigma, Cat. No.: H-3375) final concentration: 50 mM HEPES pH7.5

[0312] BSA: Bovine Serum Albumin Fraction V, fatty acid free (Roche Diagnostics GmbH, Cat. No.: 9100221) diluted to a final concentration of 0.1%

[0313] EDTA: EDTA stock solution 500 mM, (GIBCO, Cat. No.: 15575-038) final concentration: 0.1 mM

[0314] DTT: 1,4-Dithiothreitol (Roche Diagnostics GmbH, Cat. No.: 197777), final conc.: 1 mM

[0315] MgCl₂, H₂O: MERCk, Cat. No.: 105833.1000, final concentration: 10 mM Assay Dilution Buffer (ADB): 50 mM HEPES, 0.1 mM MgCl₂, 0.1 mM Na Vanadate, 0.1 mM β-glycerophosphate, 10 mM MgCl₂, 1 mM DTT, 0.1% BSA, pH 7.5

[0316] Bead wash buffer: 10 g/L PBS (Phosphate buffered saline) with 2 mM NaCl, 1% phosphoric acid.

Experimental Method:

[0317] In 40 µL volume, 26 µL of ADB diluted, purified recombinant human SYK360-635 [0.5 mM] was mixed with 4 µL of 10x concentrations of the test compounds, [usually 100 µM-0.003 µM] in [10%] DMSO and the mixture was incubated for 10 min at RT.

[0318] The kinase reaction was initiated by the addition of 10 µL 4x substrate cocktail containing the DY*E peptide substrate [0 or 5 µM], ATP [20 µM] and ²²²P-βATP [2 µCi/µl]. After incubation at 30°C for 15 min, the reaction was terminated by the transfer of 25 µL of the reaction sample to a 96 well 0.65 µm Millipore MADVNOB membrane plate containing 200 µL 5 mM EDTA and 20% Streptavidin coated beads in PBS.

[0319] The bound radiolabeled nucleotides were washed under vacuum with 3x250 µL 2M NaCl; 2x250 µL 2M NaCl+1% phosphoric acid; 1x250 µL H₂O. After the last wash membrane/plates were transferred to an adaptor plate, heat dried for 15 min at 60°C, and 50 µL scintillation cocktail was added to each well and 4 h later the amount of radioactivity was counted in a top counter.

[0320] The percent inhibition was calculated based on the uninhibited enzyme rate:

% Inhibition = 100/([IC₅₀/(Inhibitor Conc.)])

[0321] The IC₅₀ was calculated using a non-linear curve fit with XLfit software (ID Business Solution Ltd., Guilford, Surrey, UK).

[0322] The foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity and understanding. It will be obvious to one of skill in the art that changes and modifications may be practiced within the scope of the appended claims. Therefore, it is to be understood that the above description is intended to be illustrative and not restrictive. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the following appended claims, along with the full scope of equivalents to which such claims are entitled.

[0323] All patents, patent applications and publications cited in this application are hereby incorporated by reference in their entirety for all purposes to the same extent as if each individual patent, patent application or publication were so individually denoted.

What is claimed:

1. A compound of Formula I

wherein:

R is R₁, R₂, R₃, or R₄;
R₁ is lower alkyl, lower alkoxy, phenyl, benzyl, heteroaryl, cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally substituted with one or more R₂;
R₂ is R₅ or R₆;
R₅ is halogen, hydroxyl, or —CN;
R₆ is —(O)₉(R₁), —(O)(CH₂)₉(R₁), —O(CH₂)₉(R₁), —S(R₁), —S(O)₂(R₁), or
R₇ is lower alkyl, lower alkoxy, phenyl, benzyl, heteroaryl, cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally substituted with one or more R₈;
R₈ is R₉ or R₁₀;
R₉ is halogen, hydroxyl, or —CN;
R₁₀ is —(O)₉(R₁), —(O)(CH₂)₉(R₁), —O(CH₂)₉(R₁), —S(R₁), —S(O)₂(R₁),
R^2 is N(R(R^2)^2); each R^2 is independently H or R^2; each R^2 is independently lower alkyl, phenyl, heteroaryl, cycloalkyl, heterocycloalkyl, or heterocyclicalkylalkylene, optionally substituted with one or more R^2; R^2 is R^2 or R^2; R^2 is halogen, oxo, or hydroxy; R^2 is N(R(R^2)^2), —C(=O)(R(R^2)), —C(=O)O(R(R^2)), —C(=O)N(R(R^2))_2, —N(R(R^2))_2C(=O)(R(R^2)), —S(=O)(R(R^2)), —S(=O)N(R(R^2))_2, lower alkyl, lower alkoxy, lower haloalkyl, phenyl, heteroaryl, heteroaryloxy, cycloalkyl, or heterocycloalkyl, optionally substituted with one or more R^2; each R^2 is independently H, halogen, lower alkyl, lower alkoxy, lower haloalkyl; each R^2 is independently lower alkyl, lower alkoxy, lower haloalkyl, or phenyl.

R^3 is —C(=O)R(R^3); R^3 is lower alkyl, lower alkoxy, phenyl, or N(R(R^3)^2); each R^3 is independently H or lower alkyl.

R^4 is —O(R^4)^2; R^4 is H or R^4; R^4 is lower alkyl, phenyl, benzy1, lower haloalkyl, cycloalkyl, heterocycloalkyl, heteroaryl, optionally substituted with one or more R^4; R^4 is halogen, hydroxy, lower alkyl, lower haloalkyl, or lower alkoxy.

Q^1 is Q^1 or Q^2; each Q^1 is independently halogen, hydroxy, or cyano; each Q^1 is independently lower alkyl, lower alkenyl, lower alkylnyl, lower hydroxalkyl, amino, or lower haloalkyl, optionally substituted with one or more Q^3; Q^2 is Q^1 or Q^3; each Q^3 is independently halogen, hydroxy, or cyano; each Q^3 is independently lower alkyl, lower haloalkyl, lower alkenyl, lower alkylnyl, lower hydroxalkyl, amino, or lower haloalkyl, optionally substituted with one or more Q^5; each Q^5 is independently hydroxy, halogen, lower alkyl, lower alkenyl, oxo, lower haloalkyl, lower alkoxy, lower hydroxalkyl or amino; with the proviso that when R^2 is R^3, R^5 is —O(R^4)^2, R^6 is H, and Q^6 is Q^6, then Q^6 is not H; or a pharmaceutically acceptable salt thereof.

5. The compound of claim 3, wherein the lower alkyl is —CH(CH_3)_2.

6. The compound of claim 3, wherein the lower alkyl is iso-butyl.

7. The compound of claim 3, wherein the lower alkyl is iso-propyl.

8. The compound of claim 2, wherein R^1 is cycloalkyl.

9. The compound of claim 2, wherein R^1 is heterocycloalkyl.

10. The compound of claim 2, wherein R^1 is benzyl.

11. The compound of claim 2, wherein R^1 is phenyl.

12. The compound of claim 1, wherein R^1 is R^2.

13. The compound of claim 12, wherein R^2 is NH(R(R^2))_2 and R^6 is R^6.

14. The compound of claim 13, wherein R^2 is lower alkyl.

15. The compound of claim 14, wherein the lower alkyl is iso-propyl.

16. The compound of claim 13, wherein R^2 is heterocycloalkyl.

17. The compound of claim 13, wherein R^2 is cycloalkyl.

18. The compound of claim 13, wherein R^2 is heterocycloalkylalkylene.

19. The compound of claim 18, wherein the heterocycloalkyl is pyrrolidine.

20. The compound of claim 18, wherein the alkylene is methylene.

21. A compound selected from the group consisting of:

1-(2-Bromo-5H-pyrrrolo[2,3-b]pyrazin-7-yl)-3-methyl-butan-1-one;

5H-Pyrrrolo[2,3-b]pyrazin-7-carboxylic acid isopropylamide;

2-Chloro-5H-pyrrrolo[2,3-b]pyrazin-7-carboxylic acid isopropylamide;

2-isopropenyl-5H-pyrrrolo[2,3-b]pyrazin-7-carboxylic acid isopropylamide;

2-isopropenyl-5H-pyrrrolo[2,3-b]pyrazin-7-carboxylic acid isopropylamide;

1-(2-Chloro-5H-pyrrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;

1-(2-Chloro-5H-pyrrrolo[2,3-b]pyrazin-7-yl)-(1-methyl-cyclohexyl)-methanonone;

1-(2-Bromo-5H-pyrrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;

1-(2-Iso-5H-pyrrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;

1-(2-Iso-5H-pyrrrolo[2,3-b]pyrazin-7-yl)-(1-methyl-cyclopentyl)-methanonone;

1-(2-Iso-5H-pyrrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;

1-(2-Iso-5H-pyrrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;

1-(2-Iso-5H-pyrrrolo[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;

1-(2-Hydroxy-ethyl)-5H-pyrrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one;

1-(2-Hydroxy-phenyl)-5H-pyrrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one;

1-(2-Hydroxy-phenyl)-5H-pyrrrolo[2,3-b]pyrazin-7-yl]-2,2-dimethyl-propan-1-one;
1-[(2-(Hydroxy-pyridin-3-yl-methyl)-5H-pyrimido[2,3-b] pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
(2-Bromo-5H-pyrimido[2,3-b]pyrazin-7-yl)-(3aS,6aS)-1 methyl-octahydropentalen-1-yl)-methanone;
(2-Bromo-5H-pyrimido[2,3-b]pyrazin-7-yl)-1(1S,2S)-1,2 dimethyl-cyclopropenyl)-methanone;
(2-Bromo-5H-pyrimido[2,3-b]pyrazin-7-yl)-1(1-methyl-cyclohexyl)-methanone;
(2-Bromo-5H-pyrimido[2,3-b]pyrazin-7-yl)-1(1-methyl-cyclopropenyl)-methanone;
(2-Bromo-5H-pyrimido[2,3-b]pyrazin-7-yl)-1(1-methyl-cyclohexyl)-methanone;
Adamantan-1-yl-(2-bromo-5H-pyrimido[2,3-b]pyrazin-7-yl)-methanone;
(4-Benzoyloxy-1-methyl-cyclohexyl)-(2-bromo-5H-pyrimido [2,3-b]pyrazin-7-yl)-methanone;
(4-Benzoyloxy-1-methyl-cyclohexyl)-(2-bromo-5H-pyrimido [2,3-b]pyrazin-7-yl)-methanone;
1-(2-Ethynyl-5H-pyrimido[2,3-b]pyrazin-7-yl)-2,2-dimethyl-propan-1-one;
1-(2-Isopropenyl-5H-pyrimido[2,3-b]pyrazin-7-yl)-2,2 dimethyl-propan-1-one;
1-(2-Chloro-5H-pyrimido[2,3-b]pyrazin-7-yl)-2,2-dimethyl propan-1-one;
1-(2-Bromo-5H-pyrimido[2,3-b]pyrazin-7-yl)-3-methyl butan-1-one.
22. A compound of Formula I

\[
\text{R is } R^1, R^2, R^3, \text{ or } R^4; \\
R^1 \text{ is lower alkyl, lower alkoxy, phenyl, benzyl, heteroaryl,} \\
\text{cycloalkyl, heterocycloalkyl, or cycloalkylalkyl, optionally} \\
\text{substituted with one or more } R^{15}; \\
R^{16} \text{ is } R^{17} \text{ or } R^{18}; \\
R^{15} \text{ is halogen, oxo, hydroxy, or } -CN; \\
R^{14} \text{ is } -\text{O}(\text{CH}_{2})_{3}(\text{R}^{13}), -\text{O}(\text{CH})_{2}(\text{R}^{13}), -\text{S}(\text{R}^{15}), -\text{SO}_{2}(\text{R}^{15}), \text{ or} \\
-\text{OR}^{(1)}(\text{R}^{14}), \text{ lower alkyl, lower alkoxy, amino,} \\
amido, lower haloalkyl, phenyl, heteroaryl, \\
cycloalkyl, heterocycloalkyl, cycloalkylalkoxy, or \\
heterocycloalkylalkoxy optionally substituted with one \\
or more } R^{14}; \\
R^{13} \text{ is } R^{15}; \\
R^{12} \text{ is } H, \text{ halogen, hydroxy, lower alkyl, amino,} \\
lower alkoxy, or lower haloalkyl; \\
R^{14} \text{ is } H, \text{ lower alkyl, lower alkoxy, cyano, lower} \\
haloalkyl, phenyl, heteroaryl, cycloalkyl, or hetero \\
cycloalkyl; \\
R^{15} \text{ is } H, \text{ lower alkyl, lower haloalkyl, phenyl, hetero} \\
aryl, cycloalkyl, or heterocycloalkyl; \\
m \text{ is } 0, 1, \text{ or } 2; \\
R^2 \text{ is } N(\text{R}^{25}); \\
each } R^{25} \text{ is independently } H \text{ or } \text{R}^{26}; \\
each } R^{26} \text{ is independently lower alkyl, phenyl, hetero} \\
aryl, cycloalkyl, heterocycloalkyl, or hetero \\
cycloalkylalkylene, optionally substituted with one \\
or more } R^{27}; \\
R^{27} \text{ is } R^{28} \text{ or } R^{29}; \\
R^{28} \text{ is halogen, oxo, or hydroxy; } \\
R^{29} \text{ is } -\text{N}(\text{R}^{29}), -\text{C}(\text{O})(\text{R}^{29}), -\text{C}(\text{O})(\text{R}^{29}) \text{ or} \\
-\text{C}(\text{O})(\text{R}^{29}) \text{ or } -\text{N}(\text{R}^{29}) \text{C}(\text{O}) \\
(\text{R}^{29}), -\text{S}(\text{O})_{2}(\text{R}^{29}), -\text{SO}(\text{O})_{2}(\text{R}^{29}), \text{ lower} \\
alkyl, lower alkoxy, lower haloalkyl, phenyl, \\
heteroaryl, cycloalkyl, cycloalkylalkyl, or hetero \\
cycloalkylalkylene optionally substituted with one \\
or more } R^{27}; \\
each } R^{27} \text{ is independently } H, \text{ halogen, lower} \\
alkyl, lower alkoxy, lower haloalkyl; \\
each } R^{28} \text{ is independently } H, \text{ lower alkyl, lower} \\
alkoxy, lower haloalkyl, or phenyl; \\
R^{29} \text{ is } -\text{C}(\text{O})(\text{R}^{29}); \\
R^{29} \text{ is lower alkyl, lower alkoxy, phenyl, or } N(\text{R}^{29})_{2} \\
each } R^{29} \text{ is independently } H \text{ or lower alkyl;} \\
R^{31} \text{ is } -\text{OR}^{31}; \\
R^{33} \text{ is } H \text{ or } R^{34}; \\
R^{34} \text{ is lower alkyl, phenyl, benzyl, lower haloalkyl,} \\
cycloalkyl, heterocycloalkyl, heteroaryl, optionally \\
substituted with one or more } R^{35}; \\
R^{35} \text{ is halogen, hydroxy, lower alkyl, lower haloalkyl,} \\
lower alkoxy, or lower haloalkyl; \\
Q^{4} \text{ is } Q^{48} \text{ or } Q^{47}; \\
Q^{48} \text{ is halogen; } \\
Q^{47} \text{ is lower alkyl, lower alknyl, lower alkoxy, lower} \\
hydroxyalkyl, amino, or lower haloalkyl, optionally \\
substituted with one or more } Q^{45}; \\
Q^{46} \text{ is } Q^{46} \text{ or } Q^{46}; \\
each } Q^{46} \text{ is independently halogen, hydroxy, or} \\
cyano; \\
each } Q^{46} \text{ is independently lower alkyl, lower} \\
haloalkyl, lower alkoxy, amino, cycloalkyl, phenyl, \\
heterocycloalkyl, heteroaryl, optionally substi} \\
tuted with one or more } Q^{45}; \\
each } Q^{45} \text{ is independently hydroxy, halogen, lower} \\
alkyl, lower alknyl, lower alkoxy, lower haloxyalkyl, or amino; \\
with the proviso that when } R^{24} \text{ is } q, R^{34} \text{ is } -\text{OR}^{45}, R^{44} \text{ is } H, \text{ and } \\
Q^{45} \text{ is } Q^{46}, \text{ then } Q^{46} \text{ is not } H; \\
\text{or a pharmaceutically acceptable salt thereof.} \\
23. A method for treating an inflammatory or autoimmune
condition comprising administering to a patient in need
thereof a therapeutically effective amount of the compound
of claim 1.
24. The method of claim 23, further comprising adminis
tering an additional therapeutic agent selected from a chemo
therapeutic or anti-proliferative agent, an anti-inflammatory
agent, an immunomodulatory or immunosuppressive agent,
a neurotropic factor, an agent for treating cardiovascular
disease, an agent for treating diabetes, or an agent for treating
immunodeficiency disorders.
25. A method for treating an inflammatory condition
comprising administering to a patient in need thereof a
therapeutically effective amount of the compound of claim 1.
26. A method for inhibiting T-cell proliferative disorder
comprising administering to a patient in need thereof a
therapeutically effective amount of the compound of claim 1.
27. The method of claim 26 wherein the proliferative disorder is cancer.

28. A method for treating an inflammatory condition comprising administering to a patient in need thereof a therapeutically effective amount of the compound of claim 21.

29. A method for treating a B-cell proliferative disorder comprising administering to a patient in need thereof a therapeutically effective amount of the compound of claim 1.

30. A method for treating an immune disorder including lupus, multiple sclerosis, rheumatoid arthritis, psoriasis, Type I diabetes, complications from organ transplants, xeno transplantation, diabetes, cancer, asthma, atopic dermatitis, autoimmune thyroid disorders, ulcerative colitis, Crohn's disease, Alzheimer's disease, and leukemia, comprising administering to a patient in need thereof a therapeutically effective amount of the compound of claim 1.

31. A method for preventing or treating all forms of organ rejection, including acute allograft or xenograft rejection and chronic allograft or xenograft rejection, of vascularized or non-vascularized transplants, comprising administering to a patient in need thereof the compound of claim 1.

32. A method for inhibiting JAK3 activity comprising administering the compound of claim 1 wherein the compound exhibits an IC_{50} of 50 micromolar or less in an in vitro biochemical assay of JAK3 activity.

33. The method of claim 32 wherein the compound exhibits an IC_{50} of 100 nanomolar or less in an in vitro biochemical assay of JAK3 activity.

34. The method of claim 33 wherein the compound exhibits an IC_{50} of 10 nanomolar or less in an in vitro biochemical assay of JAK3 activity.

35. A method for inhibiting SYK activity comprising administering the compound of claim 1, wherein the compound exhibits an IC_{50} of 50 micromolar or less in an in vitro biochemical assay of SYK activity.

36. The method of claim 35 wherein the compound exhibits an IC_{50} of 100 nanomolar or less in an in vitro biochemical assay of SYK activity.

37. The method of claim 36 wherein the compound exhibits an IC_{50} of 10 nanomolar or less in an in vitro biochemical assay of SYK activity.

38. A method for treating an inflammatory condition comprising co-administering to a patient in need thereof a therapeutically effective amount of an anti-inflammatory compound in combination with the compound of claim 1.

39. A method for treating an immune disorder comprising co-administering to a patient in need thereof a therapeutically effective amount of an immunosuppressant compound in combination with the compound of claim 1.

40. A pharmaceutical composition comprising the compound of claim 1, admixed with at least one pharmaceutically acceptable carrier, excipient or diluent.

41. The pharmaceutical composition of claim 40, further comprising an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating diabetes, and an agent for treating immunodeficiency disorders.

42. Use of the compound of claim 1 in the manufacture of a medicament for the treatment of an inflammatory disorder.

43. Use of the compound of claim 1 in the manufacture of a medicament for the treatment of an autoimmune disorder.