A game system includes a memory device, a game console and a time allowance module. The memory device includes a nonvolatile memory module for storing a time allowance for a game. The game console includes an interface for reversibly operationally attaching the memory device to the game console. The time allowance module, that preferably is in either the memory device or the game console, allows the game console to cooperate with the memory device to play the game only according to the time allowance. Another memory device includes two nonvolatile memory modules: one for storing a saved state of a game and the other for storing a time allowance for the game. This memory device also includes a processor for writing and reading the saved state in the first memory module and a time allowance module for allowing that writing and reading only according to the time allowance.
FIG. 1A (PRIOR ART)
FIG. 1B (PRIOR ART)
FIG. 2
FIG. 3
SYSTEM FOR GAME CONSOLE PARENTAL CONTROL

[0001] This patent application claims the benefit of U.S. Provisional Patent Application No. 60/691,975, filed Jun. 20, 2005

FIELD AND BACKGROUND OF THE INVENTION

[0002] The present invention relates to devices for enforcing parental control and in particular to such devices that allow parents to control access to game consoles by their children.

[0003] Since their introduction in the early 1970’s, home video game systems, or game consoles, have become increasingly popular among children and adults alike. In its essence, a game console is a highly specialized computer system, developed specifically for entertainment and to the user. This entertainment is usually in the form of an interactive computer game or video game. A video game is a computer program containing instructions for the graphics, audio and the interaction scheme between a game player and a computer system.

[0004] FIG. 1A (prior art) is a high-level block diagram of an exemplary implementation 100 of a game console. A CPU 105 is configured to process computer instructions encoded in a computer program, an example of which may be a computer game. An Operating System 115 is designed to control game console 100 and to interface between the various components of game console 100. A Random Access Memory (RAM) 110 is used for providing temporary storage space for computer programs, as is the common practice in computer systems, in order to allow higher speed performance of game console 100. When a game console user interacts with game console 100, for example while playing a computer game, the action is exhibited on a viewing device (not shown), such as a television, that is fed by a video output interface 140. The visual action is regularly accompanied by sound effects and a soundtrack that are experienced through an audio device (not shown), which may be a dedicated device or part of the viewing device (not shown), via an audio output interface 145. The user interacts with the game console by using a controller (not shown) that is interfaced to the game console via a user control interface 150. Game console 100 is energized through a system power supply 125, examples of which include an electric current interface and an independent power source such as a battery. A video game is typically stored on a storage medium for games (not shown), usually a read-only type memory, removable from the console and thus interchangeable. Examples of storage media for games common in today’s consoles include CD’s, DVD’s, and ROM-based cartridges. The game is read from the storage medium by a game media reader 135 that reads the information from the media and relays the information for processing by CPU 105. A real time clock 136 is incorporated in console 100 for a number of possible applications, examples of which include implementing real-time in a computer game and for display purposes.

[0005] Prior art systems are connectable to a removable-memory-for-saved-state 160 through a removable-media-for-saved-state interface 120. The notion of a saved state pertains to any sort of information relating to a specific situation or setting encountered in a video game, be it personal preferences (e.g. audio/video preferences) or information that allows the user to recreate a certain scene or occurrence in the game-play sequence of a video game. Saving the state of a game, which is allowed by most games today, allows the user to restore the state of the game at the time the state was saved. A game console user may decide to save the state of a game, or to save a game, for a number of reasons. The game may necessitate a longer playtime than the time available for a certain playing session, thus, by saving the game, a user may continue playing from the same point in the game at a later time. Saving before a challenging part of a game, or before making a decision in the game whose consequences the player is uncertain about, allows the user to retroactively retrieve the state of the game prior to the challenging part or before the decision was made. Removable memory 160 typically comes in the form of a memory card and current systems comply with a plurality of types and standards common on the market. Removable memory 160 includes a storage-unit-for-saved-state 170 that is a readable, writeable and erasable solid-state memory medium. Removable memory 160 also includes a processor 165 that is configured to regulate the reading and writing and erasing of data packages to/from storage unit 170 and to communicate with an external host appliance, which in this case is game console 100, through interface 120. As has been mentioned, removable-memory-for-saved-state 160 is detachable from game console 100. Therefore, a user who saves the state of a game on removable memory 160 that is plugged into a first game console 100 can restore the saved state on a second console by removing memory 160 from first console 100 and connecting memory 160 to removable memory interface 120 of the second console 100. Using this functionality of removable memory 160, it has become a commonplace practice for two or more console players to port or share games states, and to demonstrate game achievements, thus enriching their gaming experience.

[0006] As has been previously mentioned, video games have become a widespread form of entertainment for children. This has created two cardinal problems regarding the usage of game consoles. The first problem is children playing games containing content that is deemed unsuitable by their parents or guardians. The second problem is children spending excessive amounts of time playing computer games, to the discontent of their parents or guardians. It has thus become necessary for guardians to electronically control the content of games being played by the children in their charge and to set limits on the duration of play. For simplification reasons, and to generalize the context of the present invention, guardians in the context of the game console environment are regarded herein as “administrators”. Children in the same environment are regarded herein as “users”. Parental control is thus herein defined as limits on content and time that an administrator sets on the usage of game console 100 by a user. There are two forms of time limitation, or time allowance, known in the art: a limitation on the duration of play (time quota) and a limitation on the periods of the day/week/month/year that playing on console 100 is allowed. The limitations may be combined, for example an administrator may want to set a limitation so that the user may only play console 100 for two hours per day in the periods between 14:00-16:00 and 19:00-21:00.

[0007] Console 100 includes a parental control module 130, which in this example includes an optional content
filtering module 131 that is used by an administrator to set limits on content according to one of the known methods in the art. Console 100 further includes a time allowance module 132 that sets the time allowance on console 100. Time allowance module 132 may be incorporated in one of the components of console 100 as is shown in U.S. Pat. No. 5,203,848 to Wang, and may include a timer for controlling the allowable playing time range of game console 100. The Wang patent, that deals with systems whose game media reader 135 is cartridge based, teaches a time allowance unit that is connected to game media reader 135. This time allowance unit interconnects between the game media and game media reader 135, and blocks the connection in the case that a user attempts to play for a duration that exceeds the preset allowance or in a period of the day that has been configured to be disallowed by the administrator. A clear disadvantage of this invention is the fact that it only deals with cartridge based systems, that are uncommon in today's industry.

[0008] Another method of dictating a time allowance on a console 100 is shown in FIG. 1B (prior art). Console 100 of FIG. 1B operates in an identical manner to console 100 of FIG. 1A except that console 100 of FIG. 1B does not include an internal time-allocation module 132, and clock 136 is optional. A time allowance device 156 is an external device that interfaces with console 100 or one of the peripheral devices of console 100. A first method of implementing time allowance device 156 may be understood by reference to U.S. Pat. No. 5,964,661 to Dodge. The Dodge patent teaches a video game time allowance device that electrically connects system power supply 125 to console 100. Electric current is cut off from console 100 once the time allowance has been exceeded. Other methods of regulating time allowance include devices that set time limits on one of the peripherals of console 100, for example hand held game controllers and viewing devices. U.S. Pat. No. 6,722,984 to Sweeney, Jr., et al., teaches a hand-held game controller, for game console 100, that has time allowance functionality. The game controller (not shown) temporarily ceases to function once the time allowance has been exceeded, thus inactivating console 100. U.S. Pat. No. 5,331,353 to Levenson, et al., teaches a device that sets limits on the use of an electronic device by controlling its power supply. The device of Levenson et al. may be applied to a television set, thus functioning as an external time allowance device 156.

[0009] All four of the patents referred to above, i.e., U.S. Pat. No. 5,203,848, U.S. Pat. No. 5,964,661, U.S. Pat. No. 6,722,984 and U.S. Pat. No. 5,331,353, are incorporated by reference for all purposes as if fully set forth herein.

[0010] A clearly noticeable disadvantage of known time allowance devices and methods, particularly the ones that are referred to above, is that the time limitation is set on a particular game console device at a particular site. This problem becomes more significant when considering the aforementioned practice of saved-state porting between two or more consoles 100. A user may play on a first game console 100, for example at the user's home, which enables a form of time allowance limitation. Having come to the end of the time allowance on the first game console 100, the user may save the state of the game on a memory-for-saved saved-state 160 and continue playing on a second game console 100, for example at a friends house, where the time limitation has not been implemented. Thus, the time limitation set by the administrator could be easily bypassed. Another disadvantage is that despite the demand for the incorporation of time allowance means in consoles 100, and the feasibility of such time allowance means using current technology, most game consoles do not include a built in time allowance device 132. Parents and guardians need to, therefore, install an external time allowance device 156 on console 100 or on one of the peripherals of console 100. The installment and maintenance of an additional device may be cumbersome for many parents and guardians, and the cost of an additional device may exceed their budgets.

[0011] With the progressive improvement of game consoles and the growing sophistication of games, gamers have come to rely on solid state memory cards, functioning as memory-for-saved-state 160, for the enhancement of the users' gaming experience. The wide distribution of game consoles combined with the possibility of overcoming the disadvantages of time allowance devices known in the art today has generated the widespread need for a solid state memory card for a game console that would function as a memory-for-saved-state 160 but would also enable an administrator to set a time allowance for a user. The time allowance functionality would be independent of a particular console 100 in a specific site, further improving the protection of children from excessive use of a game console 100.

SUMMARY OF THE INVENTION

[0012] According to the present invention there is provided a game system including: (a) a memory device including a first nonvolatile memory module for storing a time allowance for a game; (b) a game console including an interface for reversibly operationally attaching the memory device to the game console; and (c) a time allowance module for allowing the game console to cooperate with the memory device to play the game only in accordance with the time allowance.

[0013] According to the present invention there is provided a memory device for playing a game, including: (a) a first nonvolatile memory module for storing a saved state of the game; (b) a second nonvolatile memory module for storing a time allowance for the game; (c) a processor for writing and reading the saved state in the first nonvolatile memory module, and (d) a time allowance module for allowing the writing and reading of the saved state only in accordance with the time allowance.

[0014] According to the present invention there is provided a game system, including: (a) a memory device including: (i) a first nonvolatile memory module for storing a saved state of a game, (ii) a second nonvolatile memory module for storing a time allowance for the game, (iii) a processor for writing and reading the saved state in the first nonvolatile memory module, and (iv) a time allowance module for allowing the writing and reading of the saved state only in accordance with the time allowance; and (b) a game console, for playing the game, including an interface for reversibly operationally attaching the memory device to the game console, the game console being operative to store the saved state only in the memory device.

[0015] According to the present invention there is provided a game system, including: (a) a memory device including: (i) a first nonvolatile memory module for storing
a saved state of a game, (ii) a second nonvolatile memory module for storing a time allowance for the game, (iii) a processor for writing and reading the saved state in the first nonvolatile memory module, and (iv) a time allowance module for allowing the writing and reading of the saved state only in accordance with the time allowance; and (b) a computer, including an interface for reversibly operationally attaching the memory device to the computer, the computer operative to authenticate write access to the second nonvolatile memory module for defining the time allowance and to support the write access contingent on the authentication when the memory device is reversibly operationally attached to the computer.

[0016] A basic embodiment of the first game system of the present invention includes a memory device, a game console and a time allowance module. The memory device includes a first nonvolatile memory module for storing a time allowance for a game. The game console includes an interface for reversibly operationally attaching the memory device to the game console. The time allowance module, that preferably is part of either the memory device or the game console, allows the game console to cooperate with the memory device to play the game only in accordance with the time allowance.

[0017] The time allowance may include an allowed clock time interval (e.g. 16:00 to 18:00 on Tuesdays) or a periodic time quota (e.g. two hours per day).

[0018] Preferably, the first nonvolatile memory module includes a configuration file that contains the time allowance. Write access to the configuration file is password-protected.

[0019] Preferably, the memory device also includes a second nonvolatile memory module for storing a saved state of the game. The game console is operative to store the saved state only in the second nonvolatile memory module. Both nonvolatile memory modules are in a common nonvolatile memory medium, for example in a common flash memory. Alternatively, the nonvolatile memory modules are in separate nonvolatile memory media, for example in separate flash memories.

[0020] Preferably, write access to the first nonvolatile memory module, for defining the time allowance, is restricted, for example by password protection, so that only an authorized user of the game system is allowed to define the time allowance. Most preferably, the time allowance module is operative to authenticate the write access to the first nonvolatile memory module and to support that write access contingent on such authentication: a user whose write access is not authenticated is not allowed to write to the first nonvolatile memory module, whereas a user whose write access is authenticated is allowed to write to the first nonvolatile memory module via the time allowance module.

[0021] Preferably, the time allowance module functions by granting or denying access to an operational component of the game system, in accordance with the time allowance. The operational component to which access is thus limited may be either in the memory device or in the game console.

[0022] A basic second memory device of the present invention, for playing a game, includes first and second nonvolatile memory modules, a processor and a time allowance module. The first nonvolatile memory module is for storing a saved state of the game. The second nonvolatile memory module is for storing a time allowance for the game. The processor reads and writes the saved state of the game in the first nonvolatile memory module. The time allowance module allows the writing and reading of the saved state only in accordance with the time allowance.

[0023] Preferably, write access to the second nonvolatile memory module is restricted, for example by password protection, so that only an authorized user of the memory device is allowed to write to the second nonvolatile memory module.

[0024] In one preferred embodiment of the second memory device, the time allowance includes an allowed clock time interval (e.g. 16:00 to 18:00 on Tuesdays) and the memory device also includes a clock for measuring the allowed time interval. In another preferred embodiment of the second memory device, the time allowance includes a periodic time quota (e.g. two hours per day) and the memory device also includes a clock for measuring the periodic time quota.

[0025] Preferably, the second nonvolatile memory module includes a configuration file that contains the time allowance. Write access to the configuration file is password-protected.

[0026] Preferably, both nonvolatile memory modules are in a common nonvolatile memory medium, for example in a common flash memory. Alternatively, the nonvolatile memory modules are in separate nonvolatile memory media, for example in separate flash memories.

[0027] The scope of the present invention also includes a game system that includes the second memory device and also a game console, for playing the game, that includes an interface for reversibly operationally attaching the second memory device to the game console. The game console is operative to store the saved state only in the second memory device. Preferably, the time allowance module is operative to cooperate with the game console to authenticate the write access to the second nonvolatile memory module. The time allowance module also is operative to cooperate with the game console to support the write access contingent on such authentication: a user whose write access is not authenticated is not allowed to write to the second nonvolatile memory module, whereas a user whose write access is authenticated is allowed to write to the second nonvolatile memory module via the time allowance module.

[0028] The scope of the present invention also includes a game system that includes the second memory device and also a computer that includes an interface for reversibly operationally attaching the second memory device to the computer.
computer. The computer is operative to authenticate the write access to the second nonvolatile memory module for defining the time allowance and to support the write access contingent on the authentication while the memory device is reversibly operationally attached to the computer: a user whose write access is not authenticated is not allowed to write to the second nonvolatile memory module, whereas a user whose write access is authenticated is allowed to write to the second nonvolatile memory module via the computer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:

[0030] FIG. 1A is a high-level block diagram of a game console of the prior art;

[0031] FIG. 1B is a high-level block diagram of a system including a game console and an external time allowance device of the prior art;

[0032] FIG. 2 is a high-level block diagram of a preferred embodiment of the current invention, being a system for regulating time allowance on a game console;

[0033] FIG. 3 is a high-level block diagram of another preferred embodiment of the current invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0034] The principles and operation of a system for time allowance for game consoles according to the present invention may be better understood with reference to the drawings and the accompanying description.

[0035] One preferred embodiment of the present invention is a system for setting and enforcing access limitations to a game console operational component, or to an operational component assemblage, according to a time allowance. At least the time allowance configuration, i.e., the definitions pertaining to the time allowed for playing, are stored on a portable memory device for saved state. An operational component is herein defined as any data, computer instruction, physical component, logical component or user interface utilized or displayed by a game console during the running of a computer program, specifically a computer game. Examples of operational components include: the saved state storage component of a removable-memory-for-saved-state device, a user menu interface, and other modules and components (hardware or software) of the game console operating system. Limiting access to an operational component impedes the game play of a console user in some way. For example, if access is denied to the saved state storage component, the user can not save states and can not access previously saved states, disabling the possibility of restoring a game to a previously saved state. If an access limitation is set on a component of the operating system, the user is disallowed from accessing a computer game, thus temporarily disabling the main functionality of the game console. An operational component assemblage is a group of operational components that cooperate to implement the running of the computer game. The totality of such components is referred to herein as the “game playing working environment”.

[0036] Referring again to the drawings, FIG. 2 illustrates a system, that incorporates a game console and a memory device for saved state, and that includes time allowance functionality. A console 200 generally functions in the same manner as console 100, previously described in the prior art, except for the differences described below. Components 205, 210, 215, 220, 225, 235, 236, 240, 245 and 250 of console 200 function in the same manner as components 105, 110, 115, 120, 125, 135, 136, 140, 145 and 150 of console 100, respectively.

[0037] Most prior art game consoles include components similar to components 205, 210, 215, 220, 225, 235, 236, 240, 245 and 250 that game console 200 inherits from prior art game console 100, configured similarly to their configuration in game consoles 100 and 200 and operating similarly to their operation in game consoles 100 and 200. It should be understood that other implementations of game consoles are possible that exclude one or more of these legacy components or that include legacy components not mentioned herein. The configurations described herein are to be understood as examples of possible implementations of game consoles rather than as categorizing definitions of game consoles.

[0038] A removable-memory-for-saved-state-with-time-allowance 260 includes a storage-for-time-allowance 275. Storage-for-time-allowance 275 is a non-volatile memory medium that holds computer instructions that define the time limitations on the usage of game console 200. These instructions are stored in the form of a time allowance configuration file. The time allowance configuration file includes information pertaining to the different forms of time limitations known in the art: a quota limitation, a restriction on the periods of the day/week/month/year that playing on console 200 is allowed, or a combination of the two. The time allowance configuration file may only be accessed and updated by an administrator. The administrator is authenticated by a password according to one of the methods known in the art, when an attempt is made to access the time allowance configuration file. Storage-for-time-allowance 275 further contains computer instructions that describe the current time quota. This information is stored in the form of a current quota file. The function of the current quota file is elaborated below.

[0039] Memory-for-saved-state-with-time-allowance 260 also includes a processor 265 and a storage-for-saved-state 270 that generally function in the same manner as has been described with regards to processor 165 and storage-for-saved-state 170 of removable-memory-for-saved-state 160. A parental control module 230 includes an optional content filtering unit 231 that functions in a similar manner to content filtering module 131 of console 100. Parental control module 230 also includes a time allowance module 232. Time allowance module 232 is configured to communicate with processor 265 of removable memory 260 through memory-for-saved-state-interface 220 to read and write data from/to storage-for-time-allowance 275. Time allowance module 232 is configured to grant access to the game playing working environment of console 200 only in the case that the time limitations appearing on storage-for-time-allowance configuration 275 allow such access, i.e., the time of day/week/month/year is allowed for playing and the game playing quota has not been exceeded.
The following is an example that demonstrates the time allowance functionality of game console 200. In this example, the time allowance configuration file, stored on storage-for-time-allowance 275, is set to allow playing between 16:00 and 20:00 every day and the weekly quota is set to three hours of playing. At the beginning of the week, the current time quota file is set to hold the same quota as the one appearing in the configuration file, namely three hours. Time allowance module 232 grants a user access to the game playing environment if the user attempts to play at 17:00. If on the other hand the user attempts playing at 22:00, time allowance module 232 does not allow the user access to the game playing working environment denying the user the ability to play a computer game on game console 200. Assuming that module 232 has granted the user access to the game playing working environment, the quota held in the current quota file is updated at each configurable time interval (the time interval may be a minute, ten minutes, an hour, etc.). For example, if a daily quota of three hours is stored on the current quota file at the beginning of a playing session which takes two hours, time allowance module 232 ensures that the current quota at the end of the playing session is one hour. The current time quota file is updated every time interval, for example every ten minutes, subtracting ten minutes from the current time quota at each interval. A user commencing a new playing session on the same day would only have another hour of game play. The current time allowance quota is replenished in the case that the period of time that the quota is defined for has passed. Thus, in the previous example, if the user were to commence the second playing session on the day following the day of the first playing session, the quota, being a daily quota, would be replenished by time allowance module 232, updating the current time quota file to hold three hours of game play. Time allowance module 232 uses real time clock 236 to determine the time of day, to determine whether a current quota time interval has elapsed and to determine whether the quota stored in the current quota file should be replenished.

The time allowance configuration file may be configured and updated by an administrator either via time allowance module 232, or alternatively via a separate computer 280 that is operatively connectable to removable memory 260 and that has a dedicated time allowance configuration computer program. Both the update configuration file functionality of time allowance module 232 and the dedicated computer program on computer 280 operate in the same manner: an administrator accesses a user interface menu from which the time configuration file may be updated, the updating is done only after the administrator has been authenticated by a password according to one of the methods known in the art.

This first preferred embodiment of the current invention overcomes some of the problems of time allowance devices described in the prior art. The time allowance is stored in removable-memory-for-saved-state-with-time-allowance 260 and is independent of a particular game console 200 at a particular location. Each game console, that is operatively connected to time allowance 260, inherits the time allowance dictated by removable memory 260, assuming that the clocks 236 of the consoles are synchronized. A user attempting to extend time of play by saving a state on storage 260 on a first game console 200 and continuing on a second game console 200 would be denied access to the game playing working environment if the current time period is not allowed for playing or if the current quota is exhausted.

FIG. 3 illustrates another preferred embodiment of the current invention. In this embodiment, the time allowance module forms part of the removable memory for saved state with time allowance. Components 305, 310, 315, 320, 325, 335, 340, 345 and 350 of console 300 function in the same manner as components 205, 210, 215, 220, 225, 235, 240, 245 and 250 of console 200, respectively. A removable-memory-for-saved-state-with-time-allowance 360 includes a processor 365, a storage-for-saved-state 370 and a storage-for-time-allowance 375 that function in the same manner as processor 265, storage-for-saved-state 270 and storage-for-time-allowance 275 of removable-memory-for-saved-state-with-time-allowance 260. Removable memory 360 also includes a time allowance module 376. Time allowance module 376 includes code that is executed by processor 365 for enforcing the time limitation policy dictated in a time allowance configuration file stored in storage-for-time-allowance 375. Time allowance module 376 functions similarly to time allowance module 232 previously described in relation to FIG. 2, except for some modifications. Time allowance module 376 allows or disallows access to a specific operational component: storage-for-saved-state 370. Thus a user succeeds or fails to restore or save games according to the limitations appearing in the time allowance configuration file and current time quota file stored in storage-for-time-allowance 375. Time allowance module 376 includes a volatile internal clock, used for measuring time during a playing session. The internal clock operates only when storage-for-saved-state 370 is operatively connected to a host computer, for example a game console 300. The internal clock cannot be used as a real time clock but can be used to measure the time of a playing session and the current quota update interval mentioned above in relation to console 200. Memory 360 therefore supports at least one of the time allowance methods previously described, the time quota. The time quota method uses the same configuration file/current quota file logic described above in relation to console 200. An optional real time clock 336, forming part of game console 300 or part of removable memory 360, further enhances the time allowance capabilities of removable memory 360. Time allowance module 376 uses real time clock 336 to enable the time period allowance functionality described above in relation to game console 200. If memory 360 includes such a real time clock 336 then this real time clock 336 can be used by time allowance module 376 instead of a volatile internal clock for measuring elapsed time during a playing session. It should be noted that if real time clock 336 forms part of removable memory 360 then removable memory 360 must also have an independent power source such as a battery. The time allowance configuration file of storage-for-time-allowance 375 may be updated as part of an user interface menu forming part of operating system 315 interface logic. Another option for updating the time allowance configuration file of storage-for-time-allowance 375 is through a dedicated program on separate computer 280 that is operatively connectable to removable memory 360. The system for time allowance described in relation to FIG. 3 limits only the saved state capabilities of game console 300, whereas the system described in relation to FIG. 2 limits all game playing capabilities. The advantage of the system described in
relation to FIG. 3, especially the variant of that system that uses computer 280 for setting and updating the time allowance, is that prior art game consoles may be incorporated in such a system, with only minor changes or no changes at all needed to be made to the console and to its operating system. Thus, removable-memory-for-saved-state-with-time-allowance-capabilities 360 could grant time allowance capabilities to a prior art game console. A parent or guardian wanting to implement these capabilities may thus do so without the costly expenditures involved in purchasing a new game console.

[0044] While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made.

What is claimed is:

1. A game system comprising:
 (a) a memory device including:
 (i) a first nonvolatile memory module for storing a time allowance for a game;
 (b) a game console including an interface for reversibly operationally attaching said memory device to said game console; and
 (c) a time allowance module for allowing said game console to cooperate with said memory device to play said game only in accordance with said time allowance.
 2. The game system of claim 1, wherein said time allowance module is included in said memory device.
 3. The game system of claim 1, wherein said time allowance module is included in said game console.
 4. The game system of claim 1, wherein said time allowance includes an allowed clock time interval.
 5. The game system of claim 1, wherein said time allowance includes a periodic time quota.
 6. The game system of claim 1, wherein said first nonvolatile memory module includes a configuration file containing said time allowance, write access to said configuration file being password-protected.
 7. The game system of claim 1, wherein said memory device further includes:
 (ii) a second nonvolatile memory module for storing a saved state of said game, said game console being operative to store said saved state only in said second nonvolatile memory module.
 8. The game system of claim 7, wherein both said nonvolatile memory modules are in a common nonvolatile memory medium.
 9. The game system of claim 7, wherein said nonvolatile memory modules are in separate nonvolatile memory media.
 10. The game system of claim 1, wherein write access to said first nonvolatile memory module is restricted.
 11. The game system of claim 10, wherein said write access is for defining said time allowance.
 12. The game system of claim 10, wherein said time allowance module also is operative to authenticate said write access to said first nonvolatile memory module and to support said write access contingent on said authentication.
 13. The game system of claim 10, further comprising:
 (d) a computer, separate from said game console, including an interface for reversibly operationally attaching said memory device to said computer, said computer for authenticating said write access to said first nonvolatile memory module and for supporting said write access contingent on said authentication when said memory device is reversibly operationally attached to said computer.
 14. The game system of claim 1, wherein said time allowance module is operative to limit access to an operational component of the game system in accordance with said time allowance.
 15. The game system of claim 1, wherein said operational component is in said memory device.
 16. The game system of claim 1, wherein said operational component is in said game console.
 17. A memory device for playing a game, comprising:
 (a) a first nonvolatile memory module for storing a saved state of the game;
 (b) a second nonvolatile memory module for storing a time allowance for the game;
 (c) a processor for writing and reading said saved state in said first nonvolatile memory module; and
 (d) a time allowance module for allowing said writing and reading of said saved state only in accordance with said time allowance.
 18. The memory device of claim 17, wherein write access to said second nonvolatile memory module is restricted.
 19. The memory device of claim 17, wherein said time allowance includes an allowed time interval; and wherein the memory device further comprises:
 (e) a clock for measuring said allowed time interval.
 20. The memory device of claim 17, wherein said time allowance includes a periodic time quota; and wherein the memory device further comprises:
 (e) a clock for measuring said periodic time quota.
 21. The memory device of claim 17, wherein said second nonvolatile memory module includes a configuration file containing said time allowance, write access to said configuration file being password-protected.
 22. The memory device of claim 17, wherein both said nonvolatile memory modules are in a common nonvolatile memory medium.
 23. The memory device of claim 17, wherein said nonvolatile memory modules are in separate nonvolatile memory media.
 24. A game system, comprising:
 (a) a memory device including:
 (i) a first nonvolatile memory module for storing a saved state of a game,
 (ii) a second nonvolatile memory module for storing a time allowance for said game,
 (iii) a processor for writing and reading said saved state in said first nonvolatile memory module, and
 (iv) a time allowance module for allowing said writing and reading of said saved state only in accordance with said time allowance; and
 (b) a game console, for playing said game, including an interface for reversibly operationally attaching said
memory device to said game console, said game console being operative to store said saved state only in said memory device.

25. The game system of claim 24, wherein said time allowance module also is operative, cooperatively with said game console, to authenticate said write access to said second nonvolatile memory module and to support said write access contingent on said authentication.

26. A game system, comprising:

(a) a memory device including

(i) a first nonvolatile memory module for storing a saved state of a game,

(ii) a second nonvolatile memory module for storing a time allowance for said game,

(iii) a processor for writing and reading said saved state in said first nonvolatile memory module, and

(iv) a time allowance module for allowing said writing and reading of said saved state only in accordance with said time allowance; and

(b) a computer, including an interface for reversibly operationally attaching said memory device to said computer, said computer operative to authenticate write access to said second nonvolatile memory module for defining said time allowance and to support said write access contingent on said authentication when said memory device is reversibly operationally attached to said computer.

* * * * *