SPLIT CAN FOR BEVERAGES

Inventors: Jermaine Marcell Johnson, Philadelphia, PA (US); Jerome Maurice Johnson, Philadelphia, PA (US)

Correspondence Address:
Jermaine M Johnson & Jerome M Johnson
C/O Goldberg Entertainment LLC
22 East Gorgas Lane
Suite 100
Philadelphia, PA 19119 (US)

Abstract
The Split Can for Beverages is an advancement of the 12 ounce (oz.) beverage can having increased measurements throughout the entire can to satisfy primary improvements (additions) made to: (a) the top of the can and, (b) the interior center of the can. The Split Can for Beverages obtains on its top two smaller pull tabs positioned back to back (mirror images) as a thin piece (layer) of aluminum placed vertically in its interior center forming a split. The Split Can for Beverages is a single aluminum can able to contain beverage products in a double embodiment having two sides (left and right) that are independent of each other functioning as two self-ruling usable single cans. In addition, because the Split Can for Beverages has two independent sides with their own set of opening mechanisms (pull tab, aluminum flap and opening) it maintains two different products comfortably, their brand names and designs. Whichever two different soft drink combinations or two different hard drink combinations, the Split Can for Beverages is able to be utilized while consumers maximize their taste buds by having two of their favorite drinks in one beverage can.
"THE SPLIT"
A THIN LAYER OR PIECE OF SHEET METAL OR ALUMINUM

CAN'S LEFT TOP
CAN'S LEFT PULL TAB
CAN'S LEFT METAL FLAP
CAN'S LEFT Opening
CAN'S LEFT EXTERIOR BODY SPACE
CAN'S LEFT INTERIOR BODY SPACE
CAN'S LEFT EXTERIOR BOTTOM
CAN'S LEFT INTERIOR BOTTOM

CAN'S RIGHT TOP
CAN'S RIGHT PULL TAB
CAN'S RIGHT METAL FLAP
CAN'S RIGHT OPENING
CAN'S RIGHT EXTERIOR BODY SPACE
CAN'S RIGHT INTERIOR BODY SPACE
CAN'S RIGHT EXTERIOR BOTTOM
CAN'S RIGHT INTERIOR BOTTOM
SPLIT CAN FOR BEVERAGES

BACKGROUND OF THE INVENTION

[0001] Field of Invention (or) Technical Field

[0002] The concept behind this invention primarily aims to maximize marketing potentials and capabilities in the beverage industry. Further, to revolutionize the marketing of beverage containers, specifically, aluminum cans and the many diverse beverage products contained inside of them.

[0003] Description of the Related Art (or) Description of Prior Art

[0004] History of the Beverage Can

[0005] The can, a universally accepted container for many foods, came tip-toeing into the market place as a substitute for the bottling of beer.

[0006] Technicians at the American Can Company, even before prohibition, began toying with the idea of putting beer in a can. As early as 1929, Anheuser-Busch and Pabst experimented with the canning process. Schlitz even proposed a can design that looked like a small barrel.

[0007] A much sturdier container than that used for food products was required to withstand the 80 to 90 psi pressure of pasteurization. In contrast to the 25 to 30 psi used in food processing.

[0008] The major problem the early researchers were confronted with, however, was not strength, but the can’s liner. Several years and most of the early research funds were spent to solve this perplexing problem. Beer has a strong affinity for metal, causing precipitated salts and a foul taste. The brewers called the condition “metal turbidity”.

[0009] The American Can Company produced the flat or punch top can in 1934. The lining was made from a Union Carbide product called “Vinylite”, a plastic product which was trademarked “keglined” on Sep. 25, 1934.

[0010] Unlike the bottle, the can could be made in many shapes and designs, and the brewers liked the ability to use the whole can’s surface to promote brand recognition.

[0011] While the punch top can lent itself to rapid filling, the equipment required was expensive. The Continental Can Company recognized this limitation to the punch top can, developed a new shape they called a “cap sealed” or cone top can. This new can, similar in shape to a bottle, could be used with existing bottle filling lines.

[0012] Continental hit upon a waxy compound which they sprayed on to form the can liner. Their early advertising stated that “the liner is applied after the can is made, further ensuring a complete seal between the metal and the beer”.

[0013] The first design by Continental had a low spout (called low profile cone top) with depressed reinforcing ribs and a flat bottom. It was produced until about 1936. There are no true soda cone top cans of this design, although the Dr. Phillips fruit juice can produced by Crown Cork & Seal has a flat bottom and a low profile spout without ridges.

[0014] The next design by Continental was still low profile, but had raised ribs on the spout and a concave bottom to better resist the pressure from the product. The Clorox Club and the Dari-Seltz brands are examples of this design.

[0015] The last change by Continental to the cone top can was to replace the low profile spout with a ribless high profile top. This change was made about 1940, and there are many examples of soda cones with this design.

[0016] Three more players choose to join the scramble for the can business before the 1930’s decade ended. National Can and Pacific Can produced the punch top can, and Crown Cork & Seal Company purchased the Aemco Can Company of Philadelphia, Pa. in 1936 and produced a high profile three piece cone top can, and a two piece necked can called a “crowntainer”. The crowntainer was used extensively for beer, but no soda cans of this design have been found.

[0017] Early Market Test of Beverage Cans

[0018] After American Can Company acquired the “Keg-lined” trademark in 1934, they were anxious to try their new punch top beverage can in the market place.

[0019] They spent three months of intense negotiations with the brewery of Gottfried Krueger of Newark, N.J. to coach Krueger’s Beer into the revolutionary new containers.

[0020] Krueger was very apprehensive about the test, but finally chose the outer limits of its distribution area for their product in a can. Richmond, Va. was the city picked for the test, and on Jan. 24, 1935, the first delivery of Krueger Cream Ale was received and exposed to the beer drinkers of Richmond.

[0021] Within a week, 47% of the distributors in Richmond were handling Krueger’s canned beer. At the end of a month, no less than 84% of the distributors were handling it. In the next couple of months Krueger jettied the industry by taking large chunks of the business of the “big three” national brewers, Anheuser-Busch, Pabst, and Schlitz.

[0022] By June of 1935, Krueger was running at 550% of its pre-can production, and was finally unable to keep up with demand.

[0023] It was evident that the consumer liked the can’s no-deposit feature as well as their being stackable, non-breakable, and fast cooling.

[0024] The consumers likes were certainly noted by the large breweries. During July of 1935, Pabst began distributing a striking blue and silver can carrying the “Export” label on a punch top can with opening instructions on the back of the label. The cans were first sold in Rockford, Ill., and then spread southward.

[0025] Schlitz, trying to make up its mind about canning beer, suddenly quit wondering and went into action. In September of 1935, they became the first and the only major brewery to use Continental’s new spout top can. Schlitz stayed with the cone top can until the early 1950’s.

[0026] That first year of beer in cans ended with over 200 million cans being sold. Twenty three brewers had begun using cans, with the can company’s score being: American Can—12 brewers, Continental Can—8 brewers, and National Can—3 brewers.

[0027] The can makers of course were enthusiastic about the future of the can and were optimistically predicting over a billion and a half cans would be sold in 1936.

[0029] During the early can era, bottle makers were less than enthusiastic about the prospect of cans eroding their long-standing market, and caustic exchanges were common concerning the attributes of bottles versus cans. The "bottle man" would speak of the poor quality and metallic taste of beer in a can, and the "can man" would counter that light was bad for beer, "makes it go skunky". One skeptical brewmaster reportedly convinced himself of the purity of newly developed can linings by ripping them out of three cans, swallowing, and digesting them with no ill effects.

[0030] Pro's and con's abounded in the battle of the bottle versus the can. The standard beer bottle would return to the brewer twenty five times for refilling, the can of course was a one shot, non-returnable container.

[0031] With the cost of beer at a whopping $0.10, the can proved to be an expensive proposition for the brewers and caused the move to cans by the industry as a whole to be fairly slow. The high cost was partially off-set by the ease of handling and delivery of cans. The cans weighed less than bottles, and a truck could carry 400 cases of cans compared to only 200 cases of bottles. Distribution range could also be increased from about a 30 mile radius of the brewery with returnable bottles, to as much as 400 miles with cans.

[0032] Always at the center of the controversy was the lining whose sole function was to keep the beverage away from the can. The glass maker would contend that a reliable lining for beer cans had yet to be devised, and can maker would cite proof of "the glass hard" lining within the cans.

[0033] Advertisements of the period reflected the war going on between bottles and cans, and salvo's were fired from both sides as to the merits of their containers.

[0034] Owens-Illinois, the largest bottle maker of the time, fought an early battle in 1935 with an entirely new throw-away bottle design called "stubby". Stubby was well received and by the end of 1935, more brewers were using them than were trying cans.

[0035] In the late 1930's cans were accounting for only about eight percent of the beverage container market, and by 1941 they had captured only a ten percent share of the business.

[0036] The beginning of World War II accomplished a feat that the bottle makers could not . . . it stopped the production of cans to the domestic market, limiting them to stateside military bases and military units overseas.

[0037] Soft Drinks in Cans

[0038] After opening up the market for beer in cans, attention was directed by the can companies to another area of great potential sales, the canning of soft drinks.

[0039] The technical problems in canning soda was similar to those of canning beer. The product was, however, more acidic, and the pressures of the carbonation in soft drinks was somewhat greater.

[0040] Continental Can Company was the first to break into the new market. In 1938, the Clicquot Club Company of Mills, Mass. agreed to fill 100,000 cases of Continental's low profile cone top can with ginger ale. Leakage, and flavor absorption problems of the wax applied over the liner halted active consideration of soda in cans for several years.

[0041] After World War II ended, the can companies again focused their attentions on the use of cans for soda beverages. With an improved liner, and a stronger can, Continental Can received an approval from Pepsi-Cola in 1948 to test their cola in a cone top can.

[0042] In 1949, Cantrell & Cochrane Corp. teamed up with Continental to begin marketing a multi flavor line in a cone top can.

[0043] Resistance to the use of the can for soft drinks began to crumble by the early 1950's, and in 1953 with the removal of Korean War price controls, the market was ready for the can.

[0044] The cone top can as well as the punch top can both began a steady advance on the bottle market to win the pocketbooks of the soda drinking consumer.

[0045] The can companies, while doing well with the small fry in the soda industry, needed a break-through with one of the major bottlers, and of course Coca-Cola was the ultimate prize.

[0046] Coca-Cola had taken a look at cone top cans before World War II, but had not shown much interest in the product. When Royal Crown began to nibble at Coca-Cola's market share with a major promotions of its product in punch top cans, Coca-Cola's resistance to cans lessened.

[0047] You may be able to put Coke in a can but what comes out isn't Coca-Cola. It's a soft drink, non-toxic, but with a flavor that's as far removed from Coca-Cola as ginger ale is from India Ale" (Business Week, Feb. 12, 1955).

[0048] The non-returnable can as a container for Coca-Cola was not completely overlooked by management in the transition from wartime economy in the early 1950's, but they saw many problems with its use and were noticeably apprehensive about public acceptance.

[0049] Life-styles were undergoing a radical change due in large part to the magic of television and the desire for more leisure time activities. What's now referred to as the "Package Revolution" also was gathering strength during this era, so with two-thirds of all soft drinks destined for the take-home market, Coca-Cola made its move to cans.

[0050] The move was a crawl, not a rush. In 1955, through the Coca-Cola Export Corporation, Coke was put in cans for shipment to Japan and throughout the Pacific for consumption by our military personnel.

[0051] Next, cans were tested in steel plants in Gary, Ind., and to railroads, steamship companies, and air lines. In September 1959, Coca-Cola launched domestic market tests for canned product in five cities along the eastern seaboard and on the west coast.

[0052] The company was still not without mis-givings about canning Coca-Cola. The taste was there . . . but so was the taste of steel. They also thought that only a few of their bottlers would be able to afford their own canning lines. In a business week article appearing on May 21, 1960 a company official was quoted as saying, "Some of our bottlers don't want cans and we have no intention of forcing anybody to take them".
[0053] But, the tide was turning in the direction of canned soft drinks. The public enjoyed the convenience and buyers appreciated the handling advantage of the product in cans. Competition was also aware of the new package. Royal Crown had become the largest canner of soft drinks by 1960, and some of the smaller beverage companies were capitalizing on drinks in cans and clamoring for a bigger share of the soft drink market.

[0054] Coca-Cola’s independent bottlers finally stopped wondering about cans and started using them. The largest franchised Coca-Cola bottler in the East, Norfolk, Va., set up its own canning operation in 1960. In 1962, the Los Angeles bottler became the first Coca-Cola bottler to promote in a “Major Way” the sale of Coke in 12 ounce cans.

[0055] In 1966, the company announced a completely new design called “Harlequin” (Small Diamond) for all one way packaging of Coca-Cola. Store tests had confirmed that the new design on cans was more quickly recognized in retail shelves than competitive can brands.

[0056] Introduction of the new can style brought with it a new degree of enthusiasm for the canned product as shown in an excerpt from “The Cola Call Bottler”, June 1966: “In view of the summer sales season coming up for soft drinks in cans, the Coca-Cola Company has provided bottlers a plan guide for a special summer can sales program. It contains ideas to help expand distribution and conduct promotional effort on behalf of all of our products in cans. “To back up this emphasis on cans, a strong national magazine schedule is being launched. An upbeat magazine ad will deliver 34,000,000 consumer impressions in 11 magazines.”

[0057] By 1957, fifteen million cases of canned soda beverages were sold, with production limited to approximately 40 brands. In 1960, there were 68 can-filling lines across the country, producing 820 million punch or flat top cans, mostly the 12 ounce size.

[0058] Approximately 2.4 billion gallons of carbonated beverages was sold in cans in 1979 which amounted to 38% by volume of all soft drinks produced, and the can, just another innovative package for soft drinks, had made its mark. The cone top can which had started the rise of the metallic container for soda beverages to a lofty position in the industry began loosing ground to the punch top can. As demand grew for soft drinks in cans, filling speed became an important factor.

[0059] In light of the changing markets, Continental Can Company, the last major producer of cone top cans, decided to halt promotion and production of the can shaped like a bottle in the late 1950’s. Thus ended an interesting and exciting era in soft drink history, and began an interesting and exciting era for soda memorabilia collectors. [Reference: History of the Beverage Can, e-mail address: www.gono.com/history/default.htm, By: Paul W. Bates, Copyrights 1996-2000 Pages of Time Company.]

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

[0061] With several descriptive drawings in view, this invention (The Split Can) is compared to an ordinary 12 ounce (oz.) beverage can. Adjustments (modifications) in measurements throughout the entire can and additional parts (consumption mechanisms: pull tab, aluminum flap and opening) were added to the top of can. Also, additions were made to its interior center (a thin piece of aluminum forming a split in the can). As a result, a single can now has two identical mirror images as separate independently functioning sides (left and right). Both sides now equipped with their own product or beverage brand design and logo with colors, manufacturers and canners bottlers contact information including: mailing address, comment telephone number, e-mail address etc., nutrition facts, deposit code, weight of can, recycling information, price paid for recycling in certain states, kosher sign (K), date of best taste, a note to “store in a cool place”. In addition, both sides (left and right) have opening mechanisms (pull tab, aluminum flap and opening) for consumer consumption of two different beverage products.

12 Ounce (oz.) Beverage Can

FIG. 1: Represents the 12 Ounce (oz.) Beverage Can.

FIG. 1A: Represents a depiction of the 12 Ounce (oz.) Beverage Can displaying its components.

Split Can for Beverages

FIG. 2: Represents the Split Can for Beverages.

FIG. 2A: Represents a depiction of the Split Can for Beverages displaying its components.

Can Tops Comparison

FIG. 3: Represents the top of the 12 Ounce (oz.) Beverage Can.

FIG. 3A: Represents the top of the Split Can for Beverages.

Interior Body Space Comparison

FIG. 4: Represents the interior of the 12 Ounce (oz.) Beverage Can.

FIG. 4A: Represents the interior of the Split Can for Beverages.
[0074] Cross Sectional Comparison

[0075] FIG. 5: Represents a cross sectional view of the 12
Ounce (oz.) Beverage Can.

[0076] FIG. 5A: Represents a cross sectional view of the
Split Can for Beverages.

[0077] Opened Cans Comparison

[0078] FIG. 6: Represents the function of the 12 Ounce
(oz.) Beverage Can being opened.

[0079] FIG. 6A: Represents the function of the Split Can
for Beverages being opened.

[0080] Cans Function Comparison

[0081] FIG. 7: Represents the interior and exterior of the
12 Ounce (oz.) Beverage Can being poured for consump-
tion.

[0082] FIG. 7A: Represents the interior and exterior of the
Split Can for Beverages being poured for consumption from
the left side of the can.

[0083] FIG. 7B: Represents the interior and exterior of the
Split Can for Beverages emptied on the left side of the can
and being poured for consumption on the right side of the
can.

DETAILED DESCRIPTION OF THE
INVENTION

Description of the Preferred Embodiment

[0084] In observation of FIGS. 1 and 1A, a closed “12
ounce (oz.) beverage can” and its components are indicated
by numbering from 1 through 9. The can’s top is 1 (circum-
ference: 7.0 inches, vertical diameter: 2.0 inches, horizontal
diameter: 2.0 inches), the can’s pull tab is 2 (length: 1.0
inches, vertical diameter: 1.0 inches, horizontal diameter:
0.50 inches), the can’s metal insertion is 3 (circumference:
2.75 inches, vertical diameter: 0.75 inches, horizontal diam-
eter: 1.0 inches), the can’s opening is 4 (circumference: 2.5
inches, vertical diameter: 0.75 inches, horizontal diameter:
0.77 inches), the can’s exterior body space is 5 (circumfer-
ence: 8.5 inches, vertical diameter: 2.5 inches, height: 4.75
inches), the can’s interior body space is 6 (vertical diameter:
2.0 inches, height: 4.0 inches, volume: 355 ml, weight: 12
oz. with product, radius: 0.25 inches to 5.25 inches, ratio: 3.4
inches), the can’s interior bottom is 7 (circumference: 5.5
inches, diameter: 1.5 inches), the can’s exterior bottom is 8
(circumference: 6.0 inches, diameter: 1.75 inches).

[0085] As seen in FIGS. 2 and 2A, a closed “Split Can for
Beverages” and its components are indicated by numbering
from 1 through 17. Whereas, the left side of the split,
beginning with the can’s left top is 1 (circumference: 0.25
inches to 25 inches, vertical diameter: 0.25 inches to 25
inches, horizontal diameter: 0.25 inches to 25 inches), the
can’s left pull tab is 2 (length: 0.25 inches to 25 inches,
vertical diameter: 0.25 inches to 25 inches, horizontal diam-
eter: 0.25 inches to 25 inches), the can’s left metal insertion
is 3 (circumference: 0.25 inches to 25 inches, vertical diam-
eter: 0.25 inches to 25 inches, horizontal diameter: 0.25
inches to 25 inches), the can’s left opening is 4 (circumfer-
ence: 0.25 inches to 25 inches, vertical diameter: 0.25
inches to 25 inches, horizontal diameter: 0.25 inches to 25
inches), the can’s left exterior body is 5 (circumference: 0.25
inches to 25 inches, vertical diameter: 0.25 inches to 25
inches, height: 0.25 inches to 25 inches), the can’s left interior
body space is 6 (vertical diameter: 0.25 inches to 25 inches,
height: 0.25 inches to 25 inches, volume: 1 ml to 500 ml,
weight: 1 oz. to 25 oz. with product, radius: 0.25 inches to
25 inches, ratio: 0.25 inches to 25 inches), the can’s left inter-
ior bottom is 7 (circumference: 0.25 inches to 25 inches,
diameter: 0.25 inches to 25 inches), the can’s left exterior
bottom is 8 (circumference: 0.25 inches to 25 inches,
diameter: 0.25 inches to 25 inches). Positioned vertically,
centered from the can’s top to the can’s bottom and extend-
ing to the can’s right side to the can’s left side is a thin layer
or piece of sheet metal or aluminum which is known as the
“split” is 9 (width: 0.25 cm to 25 cm height: 0.25 inches
to 25 inches, height: 0.25 inches to 25 inches). Whereas, the
right side of the split, beginning with the can’s right top is
10 (circumference: 0.25 inches to 25 inches, vertical diam-
eter: 0.25 inches to 25 inches, horizontal diameter: 0.25
inches to 25 inches), the can’s right pull tab is 11 (length:
0.25 inches to 25 inches, vertical diameter: 0.25 inches to 25
inches, horizontal diameter: 0.25 inches to 25 inches), the
can’s right metal insertion is 12 (circumference: 0.25
inches to 25 inches, vertical diameter: 0.25 inches to 25
inches, horizontal diameter: 0.25 inches to 25 inches), the
can’s right opening is 13 (circumference: 0.25 inches to 25
inches, vertical diameter: 0.25 inches to 25 inches, hori-
tzonal diameter: 0.25 inches to 25 inches), the can’s right
exterior body is 14 (circumference: 0.25 inches to 25
inches, vertical diameter: 0.25 inches to 25 inches, height:
0.25 inches to 25 inches, volume: 1 ml to 500 ml, weight: 1
oz. to 25 oz. with product, radius: 0.25 inches to 25 inches,
ratio: 0.25 inches to 25 inches), the can’s right interior bottom
is 15 (circumference: 0.25 inches to 25 inches, vertical:
0.25 inches to 25 inches, height: 0.25 inches to 25
inches, volume: 1 ml to 500 ml, weight: 1 oz. to 25 oz.
with product, radius: 0.25 inches to 25 inches, ratio: 0.25
inches to 25 inches), the can’s right interior body space is
16 (circumference: 0.25 inches to 25 inches, diameter:
0.25 inches to 25 inches), the can’s right exterior bottom is
17 (circumference: 0.25 inches to 25 inches, diameter:
0.25 inches to 25 inches).

[0086] As best seen, FIGS. 3 and 3A, and referring back
to FIGS. 1 and 1A and FIGS. 2 and 2A, the 12 ounce (oz.)
Beverage Can top contains a standard mechanism allowing a
single beverage product to be consumed. The standard
top opening mechanism includes [1] the can’s top, [2]
the exterior body, [6] the internal body space, [7] the
interior bottom, and [8] the exterior bottom. While the Split
Can for Beverages basically functions the same as the 12
ounce (oz.) Beverage Can but, it differs in that it’s can top has in place
two opening mechanisms allowing two different beverage
products to be consumed while functioning independent of
each other embedded in a single beverage can. The standard
mechanisms includes: a left side having [1] the can’s left
top, [2] the can’s left pull tab, [3] the can’s left metal
insertion, [4] the can’s left opening, [5] the can’s left
exterior body, [6] the can’s left internal body space, [7]
the can’s left interior bottom, and [8] the can’s left
exterior bottom, and a right side having [1] the can’s right
top, [2] the can’s right pull tab, [3] the can’s right metal
insertion, [4] the can’s right opening, [5] the can’s right
exterior body, [6] the can’s right internal body space, [7]
the can’s right interior bottom, and finally, [8] the can’s right
exterior bottom.

[0087] FIGS. 4 and 4A, focuses on the interior body
space of the two beverage cans. First, when viewing the 12
ounce (oz.) Beverage Can, complete emptiness occupies its
body space allowing only one beverage product to be contained. On the contrary, when viewing the Split Can for Beverages, its body space is similar to that of the 12 ounce (oz.) Beverage Can but, positioned vertically from top to bottom in it’s interior center is a thin piece (layer) of aluminum that separates, divides, or more so “splits,” the can into two sides (left side and the right side). Instead of having an empty interior body space that only allows one beverage product to be contained, two beverage products accommodates the interior body space of each side of the Split Can for Beverages.

[0088] It is best seen in FIGS. 5 and 5A, the internal body space of a standard 12 ounce (oz.) Beverage Can and the sectioned interior body space of the Split Can for Beverages from a cross-sectional view point where both cans are taken apart and divided into two separate parts to observe their insides. In those descriptions, the 12 (oz.) Beverage Can is displayed in two pieces having a void space in both centers which demonstrates it’s limited capability of enclosing only one beverage product per can. Inversely, the Split Can for Beverages opened into two parts contains a thin piece (layer) of aluminum filling both center’s voids and splits the can into two independent parts. Because the “split” exists in this can, it is capable of containing two different beverage products per can.

[0089] FIGS. 6 and 6A, represents first the 12 ounce (oz.) Beverage Can being open. Here, the end of the pull-tab is lifted with force so that the front pushes down on the aluminum flap creating an opening. This is a single opening whose sole purpose is to open one beverage product for consumption while the Split Can for Beverages, unlike the 12 ounce (oz.) Beverage Can serves a the same but duel purpose. The Split Can for Beverages also functions where the end of the pull-tab is lifted with force so that the front pushes down on the aluminum flap creating an opening. However, the Split Can has two independent openings on it’s top, one on the left side and one on the right side. Contained in both sides are two different beverage products capable for consumption through these openings.

[0090] As seen in FIGS. 7A, 7B, and referring to FIGS. 3, 3A, which refers to FIGS. 1, 1A, 2 and 2A, the 12 ounce (oz.) Beverage Can and Split Can for Beverages are both being opened to illustrate the can’s total functions from consumers utilization of the opening mechanisms to product consumption. When observing the 12 ounce (oz.) Beverage Can’s top, the end of the pull tab is lifted with force so that it’s front pushes down on the aluminum flap creating an opening that leads to a single beverage product contained in the can’s interior body space. The 12 ounce (oz.) Beverage Can is lifted up while the top is positioned downward on an angle as the beverage product pours out of the can to be consumed. On the other hand, when observing “The Split Can for Beverages”, we witness that on the left side of the split can’s top, the end of the pull tab is lifted with force so that its front pushes down on the aluminum flap creating an opening that leads to a single beverage product contained in the left side of the split can’s interior body space. The can is lifted up while the top is positioned downward on an angle as the left side of the split can’s first of two different beverage products) pours out of the can to be consumed. As this is happening, on the right side of The Split Can for Beverages, its internal space embodies a concealed and unconsumed beverage product while all opening mecha-

nisms (components) are completely in tact. The right side of the split can has not been open at all while the left side of the split has been open and consumed. Now, the right side of “The Split Can for Beverages” top, the end of the pull tab is lifted with force so that its front pushes down on the aluminum flap creating an opening that leads to a single beverage product contained in the right side of the split can’s interior body space. The can is lifted up while the top is positioned downward on an angle as the second of two different beverage products) pours out of the left side of the split can. Each side (left and right) of the Split Can for Beverages are totally empty and all opening devices have been used.

I. A new aluminum beverage can design based on the concept of the 12 ounce (oz.) aluminum beverage can having increased measurements to satisfy the primary improvements (additions) made to: (a) the top of the can and, (b) the interior center of the can.

A can split through the center by a thin piece (layer) of aluminum dividing the can which creates two independent functioning sides, left side and right side of the can capulated in one embodiment: two cans or two sides all in one embodiment.

Each side, left side and right side, functions and reflect a single can embodying different beverages in their interior body spaces and on each side’s top, mechanisms to obtain their contents for consumption: pull tab, aluminum flap and opening.

The meaning “Split,” is defined as: a) to divide from end to end or along the grain by or as if by a sharp blow, b) to break, burst, or rip apart with force, c) to affect with force in a way that suggests tearing apart, d) to separate (people or groups, for example); disunite, e) to depart from; leave, f) to become broken or ripped apart. [Reference: The American Heritage College, Third Edition, Houghton Mifflin Company, Copyright © 1993 by Houghton Mifflin Company, All rights reserved, Oxford Dictionary of National Biography, Oxford University Press, 2004, page 344.]

The meaning “Split,” is defined as: a) to divide between persons: share, b) a narrow break made by or as if by splitting, c) a piece split off or made thin by splitting, d) a position bowling pins left standing with space for pins between them, e) a product of division by or as if by splitting f) to tear or rend apart, g) to leave without delay, h) to mark (a ballot) or cast or register (a vote) so as to vote for candidates of different parties, i) to divide or break down (a chemical compound) into constituents <a fat into glycerol and fatty acid>, j) to remove by such separation <off carbon dioxide>, k) to separate (the parts of a whole) by interposing something, l) to sever relations or connections, m) to become divided up or separated off, n) to apportion shares, o) to make oversubtle or trivial distinctions-split one’s sides, p) a division into two or others between divergent or antagonistic elements or forces. [Reference: Webster’s Ninth New Collegiate Dictionary, Merriam-Webster, Merriam-Webster Inc., Publishers, Springfield, Mass., U.S.A., Copyright © 1990 by Merriam-Webster Inc., Philippines Copyright 1990 by Merriam-Webster Inc., Library of Congress Cataloging in Publication Data

Within Organic Chemistry, (with the exception of its two sides connected by their interior and exterior surface areas, although, a separation is formed in the center internal body space which is essence creates two different sides or parts), this can’s structure resembles a subdivision of an Isomers; which is called an Enantiomers. Similarities are as follows: (a) Isomers: different compounds with same molecular formula. [The Split Can for Beverages: two different sides/parts (left and right) with the same structural makeup]. (b) Stereoisomers: isomers that have the same connectivity but that differ in the arrangement of their atoms in space. [The Split Can for Beverages: two different sides/parts (left and right) with the same structural makeup but the two sides/parts differ in the arrangement of their components in space]. (c) Enantiomers: stereoisomers that are mirror images of each other. The Split Can for Beverages: two different sides/parts (left and right) with the same structural makeup but that differ in the arrangement of their components in space where the two sides/parts are mirror images of each other. [Reference: Organic Chemistry, Fifth Edition, T. W. Graham Solomons, University of South Florida, Copyright © 1976, 1980, 1984, 1988, & 1992, by John Wiley & Sons, Inc., Published simultaneously in Canada, Library of Congress Cataloging in Publication Data: Solomons, T. W. Graham, Printed and bound by Von Hofmann Press, Inc., Chapter 5, page 166.]

The concept of the Split Can for Beverages is one in the same as the concept of identical and siamese twins. In biology, “occasionally, the cells of the two-cell embryo may separate and each cell may develop into a complete organism. Alternately, the inner cell mass may subdivide to form two independent groups of cells, each of which develops independently. Since these cells have identical sets of genes, the individuals formed are exactly alike—identical twins. Very rarely, the two inner cell masses are not completely separated and give rise to conjoined—siamese twins.” [Reference: Biology Second Edition, Claude A. Villee, Eldra Pearl Solomon, Charles E. Martin, Diana W. Martin, Linda R. Berg, P. William Davis, Copyright © 1989, 1985, by Saunders College Publishing, a division of Holt, Rinehart and Winston, Inc., Printed in the United States of America, Chapter 51, page 1216.]

The term split in the Finance and Investment Industries means: ”to increase in a corporation’s number of outstanding shares of stock without any change in the shareholders’ EQUITY or the aggregate MARKET VALUE at the time of the split. In a split, also called a split up, the share price declines. If a stock at $100 par value splits 2-for-1, the number of authorized shares doubles (for example, from 10 million to 20 million) and the price per share drops by half, to $50. A holder of 50 shares before the split now has 100 shares at the lower price. If the same stock splits 4-for-1, the number of shares quadruples to 40 million and the share price falls to $25. Dividends per share also fall proportionately. Directors of a corporation will authorize a split to make ownership more affordable to a broader base of investors. Where stock splits require an increase in AUTHORIZED SHARES and/or a change in PAR VALUE of the stock, shareholders must approve an amendment of the corporate charter. [Reference: Dictionary of Finance and Investment Terms, Fifth Edition, John Downes, Jordan Elliot Goodman, Copyright © 1998 by Barron’s Educational Series, Inc. Prior editions © Copyright 1985, 1987, 1991, 1995 by Barron’s Educational Series, Inc., Printed in the United States of America, pages 580-581.]

The outer surface of each side (left and right) of the Split Can for Beverages host its product (beverage) brand design and logo with colors, manufacturers and canners/bottlers contact information (mailing address, comment telephone number, e-mail address etc.), nutrition facts, deposit code, weight of can, recycling information, price paid for recycling in certain states, kosher sign (K), date of best taste, a note to “store in a cool place”.

* * * * *