My invention relates to such lighting fixtures as are described in my pending application, Serial No. 591,775, in which I have described a combined direct and indirect lighting fixture which has a plurality of electric lamps, some of which are automatically turned on or off as the case may be by the operation of turning the lamp from a position in which the base is up to where it is down and vice versa.

My present invention is not restricted to that specific type but can be utilized in connection with any of those lighting fixtures which are designed to be reversible and has for its object to provide simple means for turning the electric lamp or lamps on or off automatically by the simple act of reversing the position of the electric lamp or lamps.

My means of accomplishing the foregoing objects may be more readily understood by having reference to the accompanying drawing, which is hereunto annexed and made a part of this specification, in which—

Fig. 1 is a side view partly in section of a bridge lamp showing my automatic switch; and

Figs. 2 and 3 are detail views showing a mechanical switch in different positions; and

Figs. 4 and 5 are detail views showing a mercury switch in different positions.

Similar reference numerals refer to similar parts throughout the entire description.

As shown in the drawing, the fixture comprises a rod 1 on which an arm 2 is slidably mounted in the customary manner. The arm 2 may be swiveled at 3 by any of the well known methods employed for that purpose in the art. This is so well known that explanation is not required. At the outer extremity 4 of the arm is mounted a shade holder 15 to which is secured two electric lamps 5 and 6. A container 7 is suitably mounted adjacent the sockets 8 and 9 which carry the electric lamps 5 and 6. This container is so mounted on its support 14 that the greater percentage of the container projects below the supporting plate 14 and not above it. This makes possible a very much more artistic design for the shade holder 15.

As illustrated, the current for one or both of these lamps is carried by electric conductors 10 and 11 which lead to the container 7 which is formed of suitable heat resisting insulating material. Within the container I place a quantity of mercury which obviously occupies the bottom portion of the container when it is in the position shown in Figs. 1 and 2 in full lines but when in the position shown in the dotted lines in Fig. 1 and full lines in Fig. 5 it is at the other end of the container 7. The result of this construction is when the lighting fixture is in the position shown in Fig. 1 in full lines, in which position it is placed for direct illumination, the current will only reach one lamp—say lamp 5—while when it is reversed, i.e., rotated longitudinally of the axis of the shade 13, the current will be cut off from the smaller lamp 5 and turned on to the larger lamp 6 when the fixture is in position for indirect lighting when a larger number of lumens must be available to produce equally effective lighting. It will be observed that since the mercury is enclosed its oxidation is reduced to a minimum and therefore the danger of a poor contact is eliminated. In Figs. 2 and 3 I have shown an automatic mechanical switch in which a horizontal member provided with contact points is slidably mounted inside of the container so that when it is in the position for direct illumination contact will be closed as indicated on the dotted lines in Fig. 2 while when the lamp is in position for indirect illumination and the container 7 will have assumed the position shown in Fig. 3, the contact will be made on the other end of the container as is also clearly seen in the dotted lines in Fig. 3. It will be further seen that I have produced a lighting fixture which is equally effective for either direct or indirect use.

Having described my invention what I regard as new and desire to secure by Letters Patent is:

1. In a bridge lamp having a standard, an arm adapted to be rotated on its horizontal axis for direct or indirect lighting positions, said arm being slidable on the standard for vertical adjustment, a shade holder car-
ried by said arm, a shade supported by said holder, two electric lamp sockets secured to the holder within the shade, electric lamps of different powers in said sockets, a container secured to said socket support, said container being formed of suitable heat resisting insulating material, the major portion of said container extending below said support, electric conductors which lead from said sockets to said container and a sliding contact in said container adapted to make and break contact between said conductors when the shade is rotated longitudinally of its axis.

2. In a bridge lamp having a standard, an arm adapted to be rotated on its horizontal axis for direct or indirect lighting positions, said arm being slidable on the standard for vertical adjustment, a shade holder carried by said arm, a shade supported by said holder, two electric lamp sockets secured to the holder within the shade, electric lamps of different powers in said sockets, a container secured to said socket support, said container or being formed of suitable heat resisting insulating material, electric conductors which lead from said sockets to said container and a sliding contact in said container adapted to make and break contact between said conductors when the shade is rotated longitudinally of its axis.

3. In combination with a bridge lamp, for direct and indirect lighting, having a shade adapted to be rotated about an axis extending transversely to the axis of the shade, two electric lamp sockets suitably mounted within said shade, and electric lamps of different powers in said sockets, of a container, electric conductors which lead into said container, electric conductors which lead from said container to one of said sockets, a quantity of mercury in said container adapted to make and break contact between the conductors leading to one of said lamps as said shade is rotated from direct to indirect position.

4. In a bridge lamp having a standard, an arm adapted to be rotated on its horizontal axis for direct or indirect lighting positions, said arm being slidable on the standard for vertical adjustment, a shade holder carried by said arm, a shade supported by said holder, an electric lamp socket secured to the holder within the shade, an electric lamp in said socket, a container secured to said socket support, said container being formed of suitable heat resisting insulating material, the major portion of said container extending below said support, an electric conductor which leads from said socket to said container and a sliding contact in said container adapted to make and break contact between said conductor when the shade is rotated longitudinally of its axis.

GEORGE W. CASSIDY.