The invention relates to new and useful improvements in filled bag weighing and closing machines, and has for an object the associating of a filled bag stitching machine and weighing scales in a single portable unitary structure.

A further object of the invention is to provide a machine of the above type wherein the sewing head is so mounted that it may be moved in a straight line across the weighing platform of the scales and at such distance above the same as to stitch the mouth of the filled bag resting on the scales.

A still further object of the invention is to provide a machine of the above type wherein a motor is associated with the sewing head and travels back and forth therewith and is utilized for operating the sewing head and also for moving the carrier on which the sewing head and motor are mounted.

A still further object of the invention is to provide a machine of the above type wherein the sewing head is mounted on the carrier which in turn is supported on a single track disposed intermediate the sewing head and the motor and an auxiliary track is associated therewith to prevent the carrier from tilting on its supporting track.

A still further object of the invention is to provide a machine of the above type with a stationary threaded rod, having a threaded sleeve thereon, which threaded sleeve under the control of the operator may be rotated in either direction, at will, from the motor, and utilized for moving the carrier back and forth.

A still further object of the invention is to provide a machine of the above type wherein the track for the sewing head is capable of being adjusted toward and from the platform of the scales so as to suit different heights of filled bags.

Still another object of the invention is to provide a machine of the above type with means for automatically reversing the feed of the carrier after the sewing head has traveled to a predetermined point.

Another object of the invention is to provide a machine of the above type with an auxiliary table on which separate weighing scales may be placed, if desired, and so positioned relative to the traveling sewing head that small bags may be stitched.

These and other objects will in part be obvious and will in part be hereinafter more fully disclosed.

In the drawings which show by way of illustration one embodiment of the invention—

Figure 1 is a front view of a machine embodying the improvements;

Fig. 2 is a rear view of the same;

Fig. 3 is a side view from the right hand of the machine;

Fig. 4 is a top plan view;

Fig. 5 is an enlarged sectional view of the controlling clutch for driving the carrier back and forth; and

Fig. 6 is a sectional view through the cam bar and the stop block carried thereby.

The invention is directed broadly to a machine for weighing and stitching a filled bag, and is of such a character that the structure is a unitary structure and portable so that the machine may be very quickly removed from one part of the mill to another, and will not require any setting up or adjustment of the parts for operation in its new set position.

In carrying out the invention, I prefer to use a modified form of structure for weighing scales which includes a supporting base mounted on rollers or casters which enables the base to be pushed about the mill. Rising from the supporting base are two standards which support the scale beam and the scale beam is in turn connected to the weighing platform. These standards extend above the weighing scale, and each standard is formed in two parts, which are so connected that they may be readily adjusted relative to each other. This is preferably accomplished by means of telescoping one part into the other and supporting it by a threaded nut and providing means under the control of the operator for simultaneously turning the threaded nuts on the two standards. At the upper ends of these standards are brackets which project forwardly and support a single rail on which is mounted a carrier adapted to travel back and forth on the track, and this track is parallel with the platform of the weighing scales and located directly above the same. Mounted on the carrier and overhanging the platform is a sewing head which is positioned so that as the carrier moves in one direction, the sewing head will stitch a straight line of stitching across the mouth of the bag, after which the sewing head may be returned to normal starting position.
Associated with this track is an auxiliary track or support, and the carrier is provided with means for engaging the auxiliary track for the purpose of preventing the carrier from swinging or tilting on its track. Extending rearwardly from the carrier is a bracket on which a motor is supported, and this motor has a suitable belt connection with the sewing head. As a means for driving the carrier back and forth, I have provided a threaded shaft which is secured to the brackets carried by the standards. This threaded shaft is stationary. A threaded sleeve engages said shaft and is connected to a forked arm mounted on the carrier so that any endwise movement of the sleeve will move the carrier, but the connection does not interfere with the rotating of the sleeve. This sleeve is provided with a pulley at each end thereof.

In line with the motor shaft is a suitable support carrying a clutch mechanism and three pulleys. One of the pulleys is connected to the sewing head for operating the same as above noted. The other two pulleys are connected to the pulleys at the opposite ends of this sleeve. These connections are preferably by means of belts, and the belt extending to the pulley at one end of the sleeve is crossed so that the motor shaft, while always running in the same direction, may turn the sleeve in one direction when one pulley is connected up to the motor shaft and will turn the other sleeve in the opposite direction when the other pulley is connected up to the motor shaft. These clutch members referred to above, are all controlled by a single operating lever. There is a bar extending from one bracket to the other which is eccentrically mounted or cam-shaped in cross section. This bar is connected up to a suitable treadle so that it may be oscillated. A roller on the end of the clutch controlling lever is adapted to be moved by this cam member so as to cause this clutch controlling lever to connect the motor to the sewing head for running the same; also to connect the motor to the sleeve for turning the sleeve so that the carrier will be fed forward in proper direction for stitching the bag, and through this same lever, the motor may be connected to the other pulley for turning the sleeve to bring the sewing head back to normal position. Means is provided also on this cam bar for throwing out the clutches when the carrier has returned to starting position.

Referring more in detail to the drawings, the invention comprises a supporting base structure which is mounted on suitable casters or rollers. There are preferably four of these rollers, and this makes the machine readily portable from one position in a mill to another. The supporting base is provided with rearwardly projecting upturned members, one at each side thereof.

Mounted in this supporting base is a suitable scale mechanism of the usual construction, with a platform above and forming the upper surface of the base structure. Mounted on the rearwardly projecting members are two standards, one on each projecting member, and these standards are connected at their upper ends by a cross plate which performs the function of the supporting arm of the usual form of scales. A scale beam is mounted on the under face of this plate and is connected by a rod with the mechanism supporting the platform of the scales. This rod is preferably enclosed by a tube.

The standards are each formed with an upper section, which upper section in each case is threaded. These threaded portions of the upper standards telescope into the lower portions of the standards and are each supported by a threaded nut which rests on the upper face of the plate. These threaded nuts serve to support the upper sections of the standards, and when they are turned they will raise and lower the upper parts of the standards. As a ready means for rotating the nuts, I have provided a cross shaft which is mounted in bearings and carried by the end of the plate and this shaft is provided with worm gears, one for each nut, which engage the gears on the nuts. The shaft is capable of being rotated by a hand wheel which is readily accessible to the operator, and when the shaft is turned in one direction, the upper parts of the standards will be lifted from the lower parts, and when rotated in the other direction, the upper parts will be lowered into the lower sections. These threaded nuts will serve to hold the standards in adjusted positions without any other locking means.

Mounted at the upper end of each standard is a bracket. Each bracket has a rearwardly projecting bracket arm, and mounted on these arms is a track which is in the form of an angle bar bolted to the arms by suitable bolts, and this track or rail extends all the way across the machine as clearly shown in Fig. 1 of the drawings. Said bracket is also provided with a rearwardly and upwardly projecting arm, and mounted on these arms is a guage bar, which in a sense, is an auxiliary track or rail as will appear hereinafter. This guide bar extends from one bracket to the other, but does not project beyond the sides of the bracket.

A carrier is mounted to travel back and forth on the rail or track and is held from tilting by means of the guide bar. Said carrier consists of a main frame portion which is provided with extensions, and pivotally supported on each extension is a wheel or roller. These rollers are adapted to run on the track or rail.
It will be noted that one roller is at the right of the main frame of the carrier as viewed in Fig. 2, while the other is at the left.

The sewing head 27 is adapted to be mounted on this carrier and is secured thereto at a point midway between the rollers 25, 25. The carrier has an upstanding member to which the base of the sewing head is bolted by means of a stud and nut 28. This stud passes through the upstanding member of the carrier frame and the sewing head may be adjusted nearer to or farther from the center of the carrier by means of blocks 29 which may be of different thicknesses. This block is inserted between the upstanding member of the frame and the base of the sewing head. The stud passes through the block and the upstanding member and will clamp the sewing head firmly against this block.

The carrier also has a rearwardly and laterally projecting bracket arm 31 on which a motor 30 is mounted so that the sewing head and the motor are both mounted on the same carrier. It will be noted from Fig. 3 that the sewing head is in front of the supporting rail 21 which carries the weight of all the parts that are mounted on the carrier, and said sewing head overhangs the platform 4 of the scales. The rail is also parallel with the center line through the platform, so that as the sewing head runs along the track or supporting rail, a straight line of stitching can be formed in the mouth of the bag which is resting on the platform of the scales. The bracket arm 31 has a depending plate on which rollers 33, 33 are mounted, and these rollers are adapted to engage one above and the other below the guide bar 34. The purpose of these rollers 33 is to keep the carrier from tilting on the rail 21. While the weight of the movable parts is fairly equally distributed on opposite sides of this supporting rail 21, the guide bar, however, is essential in order to keep the carrier from swinging laterally on the supporting track or rail and maintain the sewing head in the same vertical position as it travels back and forth across the platform of the scales.

The motor 30 is provided with a motor shaft 40, and this motor shaft 40 is extended some distance beyond the end of the motor casing. A bracket 36 is secured to the motor casing at the rear thereof (see Fig. 4). Said bracket extends around to one side of the motor where there are two arms provided with outboard bearings 37 and 38, respectively. These bearings are provided with bushings 41 and 42, respectively, and the motor shaft runs in these bushings.

Mounted between the arms of the bracket 36 is a friction clutch device which includes three belt pulleys,—pulleys 45 and 51, which are used for driving the carrier back and forth, and the pulley 48 which is connected by means of a belt 51' to the belt wheel 27' of the sewing head.

Before describing the operation of the clutch members, I will describe the means 70 which is operated by the two belt pulleys 45 and 51 for driving the carrier back and forth. There is a threaded rod or shaft 75 which is mounted in bearings 76, 76 carried at the upper ends of the standards, respectively, so that these threaded rods extend from one standard to the other and are rigidly held by suitable set screws. On this threaded rod intermediate the ends thereof is a threaded sleeve or nut 71. At one end of said sleeve or nut is a pulley 72, and at the other end thereof is a pulley 72'. These pulleys are rigid with the threaded sleeve or nut and serve as a means for rotating the nut in one direction or the other. Mounted on the carrier is a rearwardly projecting arm 77 which is forked and engages a reduced portion centrally of the sleeve or nut. This forked end does not in any way interfere with the rotating of the nut, but any endwise movement of the nut will be imparted to the arm 77, and through the arm 77 to the carrier and motor shaft. A straight belt 73 connects the pulley 51 with the pulley 72, while a crossed belt 74 connects the pulley 45 with the pulley 72'. When the pulley 51 is connected to the motor shaft, the threaded sleeve or nut will be driven in a direction for returning the carrier to its starting position which is at the left-hand of the machine as viewed in Fig. 1. When the pulley 45 is connected to the threaded nut then it will be driven in the opposite direction and will cause the carrier and sewing head to travel from left to right along the track or rail, and at the same time, the pulley 45 will operate the stitching mechanism, and this will stitch the mouth of the bag.

Coming back again to the clutch members, it will be noted that the pulleys 43 and 45 are loosely mounted on the bushing 41. There is a clutch facing of leather or other suitable material 44 between these two pulleys 43 and 45. There is a similar facing 46 on the other side of the pulley 45. The pulley 51 has a recessed portion on one face thereof which is cone-shaped and adapted to cooperate with a friction cone member 47. A coiled spring 48 is located between the head of the bushing 41 and the adjacent face of the clutch member 47 and tends to disengage the flat face of the clutch member 47 from the clutching face 46 on the pulley 45. The clutch member 47 is secured to the motor shaft by means of a key 49 which is mounted in a slot extending through the motor shaft 40. In the outer end of the motor shaft there is a pin 50 which bears against the key. It is understood that the key is fixed to the clutch member 47. When this pin 50 is pressed to the
right as viewed in Fig. 5, it will contact with the key, and through the key, move the clutch member 47 so as to compress the spring 48 and cause said clutch member 47 to contact with the pulley 45 and the pulley 45 in turn to contact with the pulley 43, and thus it is that the two pulleys 45 and 45 will be driven from the motor shaft. When the pin 50 is released, then the spring 48 will move the clutch member 47 in the opposite direction, releasing the two pulleys 45 and 43, and said member 47 will clutch up with the pulley 51 and drive the pulley 51. As has already been noted, the two pulleys 45 and 45 operate respectively the carrier and the sewing head so that the sewing head is fed along with the stitching of the mouth of the bag. When the bag has been stitched then these two pulleys are released from the motor shaft, and the pulley 51 is connected thereto for returning the carrier and the sewing head to its initial starting position.

A means for controlling the clutch members at will, I have provided a clutch shifting lever 53 which is pivoted at 54 to the bracket 36. This lever 53 is provided with a screw 52 which is adapted to contact with the pin 50 above described. The screw 52 is adjustable and can be secured in adjusted positions. When the lever 53 is turned in one direction, it will push on the pin to clutch up certain of the pulleys to the motor shaft, and when released, it will allow the pin 50 to move in the other direction, and the spring 48 to cause the pulley 51 to be connected to the motor shaft.

On the outer end of the lever 53 there is a roller 55 which is adapted to cooperate with a cam bar 56. This cam bar 56 is mounted in bearings at the upper ends of the bracket arms 35. This cam bar is eccentrically mounted on these bearings so that when said cam bar is rotated in one direction, it will press outwardly on the roller 55 and swing the arm 35 to the right as viewed in Fig. 4. Said cam bar has a radially extending arm at the right-hand end thereof on which is mounted a counter weight 70 which tends to hold the cam bar 56 in a certain predetermined position. In other words, the cam bar is moved by means of a tackle for operating the clutch parts, and when the cam bar is released, then this counter weight returns it so as to cause the lever 53 to be released.

On the opposite end of the cam bar from the counter weight there is an arm 58 which depends from the clutch bar. Said arm has its lower end formed to engage an arm 59. The arm 59 has an opening which is rectangular in shape and adapted to loosely fit a rod 60 which is rectangular in cross section. The arm 59 has a projecting sleeve which is mounted in a bracket 61 carried by the bracket 19 which moves up and down with one of the upper portions of the standards. The purpose of this connection of the arm 59 to the arm 61 is so that when the bracket on which the carrier is mounted is raised, the connection with the rod will be raised, and when the bracket is lowered, this connection will be lowered. Thus it is that the carrier may be raised and lowered and set in different positions without disturbing the connection with the rod 60. The rod 60 at its lower end carries an arm 64 which is forked to engage the upper end of an arm 65 rigidly connected with a shaft 66. This shaft 66 extends from the rear to the front of the machine and is mounted in suitable bearings 68 carried by the supporting base. On the end of the shaft 66 there is a treads 69, which serves as a means for oscillating this treads shaft, and when the treads shaft is oscillated, the same oscillates the arm 64 and in turn oscillates the rod 60.

When it is desired to start the machine, the operator depresses the treads 69 and this through the connections just described, will rotate the cam bar 56 so as to swing the lever 53 and cause the pulleys 45 and 45 to be clutch up to the motor shaft. One of these pulleys will rotate the threaded sleeve 71 which will cause the carrier to move from left to right as viewed in Fig. 1, and when the clutch is released, the counter weight 70 will swing the cam bar so as to release the clutch lever and permit the spring 48 to release the clutch pulleys 45 and 43 and connect the pulley 51 to the motor shaft so that the machine will be driven in the opposite direction.

The machine moves in said opposite direction until it reaches its initial starting position, at which time the block 78 having the inclined forward end engages the roller 55 on the lever 53 and moves the lever 53 a sufficient distance to disengage the pulley on the motor shaft which is rotating the nut or sleeve for moving the carrier. The lever, however, is not moved a sufficient distance to connect up the other pulley which drives the sleeve or nut for moving the carrier forward. In other words, the clutch parts are in inoperative position, all of them disconnected from any actuating members, and the machine will come to rest.

In order to aid in stitching smaller bags, an auxiliary platform 9 is provided. This platform is pivotally attached to the standards or columns 8 by adjustable clamping collars 10. When this auxiliary platform is not in use, for supporting a bag, it hangs downwardly from the clamped collars 10 and serves as a back board to prevent the bags from falling back between the standards or columns or from interfering with the scale beam 6. When it is desired to stitch a small bag which is too short to reach from the platform of the main scales to a point within range of the traveling sewing head when in its extreme lower position,
the auxiliary platform is raised to horizontal position and is held in this position by
braces 12 which are connected at one end to an extension 10' on the clamping collar 10 and
at the other end to a lug 12' on the lower side of the platform 9. It is obvious that the
smaller scale can be placed on this auxiliary platform and the bag placed on the platform of
the smaller scale and then weighed and
stitched.
It is not thought necessary to describe the operation in any great detail, as it is obvious
from the description which has already been
given. The filled bag is placed on the weighing
scales and weighed. The operator then
depresses the treadle at the left of the machine,
which causes the threaded sleeve or nut to be clutched up to the motor so as to rotate
the sleeve in a direction for moving the car-
riage toward the bag on the scales. The sewing
head is likewise clutched up to the motor
and will at once begin its operation. In
other words, both the sewing head and the
carrier are set into operation at the same
time, and when the sewing head reaches the
bag it will stitch the bag.
After the machine has traveled across the
mouth of the bag and stitched the same, the
operator releases the treadle, and this re-
laxes both of the pulleys for driving the car-
rier forward and operating the stitching
mechanism. It also permits the spring
associated with the clutch members to clutch up
the proper driving pulley for rotating the
threaded sleeve or nut in the opposite direc-
tion, and thus it is that the carrier is posi-
tively fed backwardly, and during this back-
ward feed of the carrier, the stitching mecha-
nism is, of course, idle. When the carrier
reaches the initial starting position, the block
75 moves the lever 53 a sufficient distance to
disconnect the threaded sleeve or nut from the
motor, leaving the parts in inactive or in-
effective position. This block 75 is adjust-
ably connected to the bar on which it is sup-
ported and may, therefore, be set in different
positions so as to disconnect the threaded
sleeve from the motor after the machine is
moved back a sufficient distance to allow the
placing of another bag to be stitched.
It will be noted that the sewing head over-
hangs the weighing platform, and as it travels
together across the filled bag, and therefore, make a very
efficient and neat closing of the bag, by means
of a straight line of stitching extending from
one side of the bag to the other. The tracks
supporting the sewing head and motor are
capable of adjustment by means of the hand
wheel 18 for different sized bags, within cer-
tain ranges, and the auxiliary platform en-
ables smaller bags to be stitched as has al-
ready been described.
It is obvious that minor changes in the de-
tails of construction and the arrangement of
the parts may be made without departing
from the spirit of the invention as set forth in
the appended claims.
Having thus described the invention, what
I claim as new and desire to secure by Letters-
Patent, is—
1. The combination of a supporting base
structure, spaced standards carried thereby,
a weighing scale platform mounted on said
base structure, a scale beam mounted on said
standards and connected to said platform, said
standards being extended above said scale
beam, and means mounted on the stand-
ards for supporting a sewing head so that
said sewing head can be moved across the
platform of the weighing scales for stitching
a filled bag supported on said platform.
2. The combination of a supporting base
structure, spaced standards carried thereby, a
weighing scale platform mounted on said base
structure, a scale beam mounted on said stand-
ards and connected to said platform, said
standards being extended above said scale
beam, a track mounted on said standards
above the scale beam, a carrier movable back
and forth on said track, a sewing head mount-
ed on said carrier, said track being so disposed
relative to said supporting base that the sew-
ing head mounted on the carrier will travel
across the platform of the weighing scales
and stitch a filled bag supported on said plat-
form.
3. The combination of a supporting base
structure, spaced standards carried thereby,
a weighing scale platform mounted on said
base structure, a scale beam mounted on said
standards and connected to said platform, said
standards being extended above said scale
beam, a track mounted on said standards
above the scale beam, a carrier movable back
and forth on said track, a sewing head mount-
ed on said carrier, said track being so disposed
relative to said supporting base that the sew-
ing head mounted on the carrier will travel
across the platform of the weighing scales
and stitch a filled bag supported on said plat-
form, and means for positively moving said
carrier back and forth on said track.
4. The combination of a supporting base
structure, spaced standards carried thereby, a
weighing scale platform mounted on said base
structure, a scale beam mounted on said stand-
ards and connected to said platform, said
standards being extended above said scale
beam, a track carried by the standards and
located in a plane in front of the scale beam,
a carrier movable back and forth on said
track, and a sewing head mounted on the car-
rier and depending in front of the track
and disposed centrally of the weighing plat-
form so that the sewing head traveling with
the carrier may stitch a filled bag supported
on the weighing platform.
5. The combination of a supporting base
structure, spaced standards carried thereby, 130
a weighing scale platform mounted on said base structure, a scale beam mounted on said standards and connected to said platform, said standards being extended above said scale beam, a track carried by the standards and located in a plane in front of the scale beam, a carrier movable back and forth on said track, a sewing head mounted on the carrier and depending in front of the track and disposed centrally over the weighing platform so that the sewing head traveling with the carrier may stitch a filled bag supported on the weighing platform, said spaced standards including devices whereby the track may be raised and lowered relative to the platform of the scales.

6. The combination of a supporting base structure, spaced standards carried thereby, a weighing scale platform mounted on said base structure, a scale beam mounted on said standards and connected to said platform, said standards being extended above said scale beam, a track mounted on said standards above the scale beam, a carrier movable back and forth on said track, a sewing head mounted on said carrier, said track being so disposed relative to said supporting base that the sewing head mounted on the carrier will travel across the platform of the weighing scales and stitch a filled bag supported on said platform, said spaced standards including devices whereby the track may be raised and lowered relative to the platform of the scale.

7. The combination with a supporting base, standards carried by said supporting base and projecting upwardly therefrom, brackets on the upper ends of said standards having forwardly and rearwardly projecting members, a track carried by said forwardly projecting members, a second track carried by said rearwardly projecting members, a carrier having laterally projecting members provided with rollers adapted to run on said track mounted on the forwardly projecting members of the bracket, a sewing head mounted on said carrier, and an arm projecting rearwardly from the carrier and having vertically spaced rollers adapted to engage the upper and lower faces of the track carried by the rearwardly projecting members.

8. The combination with a supporting base, standards carried by said supporting base and projecting upwardly therefrom, brackets on the upper ends of said standards having forwardly and rearwardly projecting members, a track carried by said forwardly projecting members, a second track carried by said rearwardly projecting members, a carrier having laterally projecting members provided with rollers adapted to run on said track mounted on the forwardly projecting members of the bracket, a sewing head mounted on said carrier in front of said forwardly projecting member and the track carried thereby, an arm projecting rearwardly from the carrier and having vertically spaced rollers adapted to engage the upper and lower faces of the track carried by the rearwardly projecting members, said carrier having a rearwardly and laterally projecting bracket arm, and a motor mounted on said bracket arm and adapted to drive the sewing head.

9. The combination with a supporting base, standards carried by said supporting base and projecting upwardly therefrom, brackets on the upper ends of said standards having forwardly and rearwardly projecting members, a track carried by said forwardly projecting members, a second track carried by said rearwardly projecting members, said carrier having laterally projecting members provided with rollers adapted to run on said track mounted on the forwardly projecting members of the bracket, a sewing head mounted on said carrier, an arm projecting rearwardly from the carrier and having vertically spaced rollers adapted to engage the upper and lower faces of the track carried by the rearwardly projecting members, said carrier having a rearwardly and laterally projecting bracket arm, a motor mounted on said bracket arm and adapted to drive the sewing head, a threaded rod extending from one standard to the other, a threaded sleeve mounted on said rod, a forked arm mounted on the carrier and engaging the sleeve, and means under the control of the operator for rotating said sleeve in one direction or the other from said motor for propelling the carrier back and forth.

10. The combination of spaced supporting standards, a track carried by said standards, a carrier adapted to move back and forth on said track, a sewing head mounted on said carrier and moveable therewith, a motor mounted on said carrier and adapted to connect one or the other of said pulleys in alignment with the shaft of the motor and normally disconnected therefrom, one of said pulleys being connected to a pulley at one end of the sleeve by a straight belt, and the other pulley being connected to the other pulley of the sleeve by a crossed belt, and clutch members adapted to connect one or the other of said pulleys in alignment with the motor shaft to said shaft, said clutch members being controlled by the operator.

11. The combination of spaced supporting standards, a track carried by said standards, a carrier adapted to move back and forth on said track, a sewing head mounted on said carrier and moveable therewith, a motor mounted on said carrier and moveable therewith, a threaded rod connecting the spaced standards, a sleeve on said threaded rod, said
carrier being connected to said sleeve whereby the carrier moves back and forth with said sleeve, pulleys at the opposite ends of said sleeve, pulleys mounted in alinement with the shaft of the motor and normally disconnected therefrom, one of said pulleys being connected to a pulley at one end of the sleeve by a straight belt and the other pulley being connected to the other pulley of the sleeve by a crossed belt, and clutch members adapted to connect one or the other of said pulleys in alinement with the motor shaft to said shaft, said clutch members being controlled by the operator, said control means including treadle operated devices.

12. The combination of spaced supporting standards, a track carried by said standards, a carrier adapted to move back and forth on said track, a sewing head mounted on said carrier and movable therewith, a motor mounted on said carrier and movable therewith, a threaded rod connecting the spaced standards, a sleeve on said threaded rod, said carrier being connected to said sleeve whereby the carrier moves back and forth with said sleeve, pulleys at the opposite ends of said sleeve, pulleys mounted in alinement with the shaft of the motor and normally disconnected therefrom, one of said pulleys being connected to a pulley at one end of the sleeve by a straight belt, and the other pulley being connected to the other pulley of the sleeve by a crossed belt, and clutch members adapted to connect one or the other of said pulleys in alinement with the motor shaft to said shaft, said clutch members being controlled by the operator, said control means including members adjustable relative to each other for raising and lowering the track, and a fixed support on which the bag rests while the same is being stitched, said treadle operated devices including means whereby the motor may be raised and lowered without disturbing the treadle connections.

14. In a filled bag sewing machine, the combination of supporting standards, a track carried thereby, a carrier adapted to move back and forth on said track, a sewing head mounted on said carrier, a motor mounted on the carrier, a belt wheel connected to said sewing head for actuating the same, a belt wheel connected to the carrier for moving the same forward, treadle controlled means for simultaneously connecting said belt wheels with the motor shaft whereby the sewing head is connected to the motor at the same time that the carrier is moved forward, and means for positively returning the carrier to initial starting position when the treadle is released.

15. In a filled bag sewing machine, the combination of supporting standards, a track carried thereby, a carrier adapted to move back and forth on said track, a sewing head mounted on said carrier, a motor mounted on the carrier, a belt wheel connected to said sewing head for actuating the same, a belt wheel connected to the carrier for moving the same forward, treadle controlled means for simultaneously connecting said belt wheels with the motor shaft whereby the sewing head is connected to the motor at the same time that the carrier is moved forward, a belt wheel connected to the carrier for moving the same in the opposite direction, and means for connecting said last named belt wheel to the motor when the treadle is released.

16. A filled bag sewing machine including in combination, spaced standards, a track carried thereby, a carrier adapted to move back and forth on the track, a motor mounted on the carrier, a platform located between the standards, a shaft in alinement with the motor shaft, a belt wheel closely mounted on said shaft and connected to the sewing head, a second belt wheel mounted on said shaft and connected to the carrier for moving said carrier in one direction, a third belt wheel mounted on said shaft and connected to the carrier for moving the carrier in the opposite direction, treadle controlled means for simultaneously connecting the belt wheel for driving the sewing head and for moving the carrier forward to the motor shaft, and means for connecting the belt wheel for moving the carrier in the opposite direction to the motor shaft while the treadle is released.

17. A filled bag sewing machine including in combination, supporting standards, a main track rail carried thereby, a carrier, a sewing head mounted on said carrier in front of said track rail, a motor mounted on said carrier in
rear of said track rail, actuating devices operated by the motor for actuating the sewing head and for moving the carrier along the rail, said sewing head, motor and actuating devices being so located relative to the track rail that the parts in rear of the track rail substantially counterbalance the sewing head in front of the track rail, wheels mounted on the carrier and running on said track rail, an auxiliary track rail carried by said standards in rear of said main track rail, and devices mounted on the carrier and disposed above and below said auxiliary track rail for preventing the carrier from tilting on its tracks.

18. A filled bag sewing machine including in combination, supporting standards, tracks mounted on said standards, a carrier adapted to move back and forth on said tracks, a sewing head mounted on said carrier, means for moving said carrier along the tracks for stitching the mouth of the filled bag, and means for positively returning the sewing head to initial starting position after the bag has been closed.

19. A filled bag sewing machine including in combination, supporting standards, tracks mounted on said standards, a carrier adapted to move back and forth on said tracks, a sewing head mounted on said carrier, means for moving said carrier along the tracks for stitching the mouth of a filled bag, means for positively returning the sewing head to initial starting position after the bag has been closed, and devices for disengaging the carriage moving means from the source of power when the initial starting position is reached.

In testimony whereof, I affix my signature.

NORMAN V. CHRISTENSEN.