The invention relates to an elevator brake (100) comprising: a frame part (102) comprising an electromagnet (104); a moving armature (106) movably supported on the frame part (102); at least one energy storage, such as a work spring (110a, 110b), arranged between the frame part (102) and the moving armature (106); a friction lining (109) associated with the moving armature (106) and fitted to engage a braking surface (107) with a normal force originating from the at least one energy storage (110a, 100b), to brake movement of an elevator car or to hold the elevator car standstill; and a sensor system comprising one or more sensors (302a-302d) mounted into the elevator brake (100) and adapted to sense one or more operational parameters of the elevator brake (100) and/or to directly measure normal force of the friction lining (109).
The invention concerns in general the technical field of elevators. Especially the invention concerns a solution for monitoring an operation of elevator brakes.

BACKGROUND

Typically, an elevator has a number of electromagnetic brakes, normally two brakes, to brake the movement of an elevator car. The elevator brakes may be implemented as hoisting machinery brakes, which are mounted to an elevator hoisting machine and the brakes act on a traction sheave or a rotating axis of the hoisting machine to brake the movement of the traction sheave and thus the movement of the elevator car. Alternatively, the brakes may be implemented as elevator car brakes, which are mounted to the elevator car and the brakes act on guide rails to directly brake the movement of the elevator car. Typically, an elevator brake comprises a brake frame and an armature, which is movably supported on the brake frame. Furthermore, the brake frame comprises an electromagnet, which acts against braking force generated by a number of work springs, i.e. thrust springs, arranged between the brake frame and the armature. The brake may be opened by supplying current to the electromagnet and the brake is applied by interrupting the current supply.

The elevator brakes are safety devices and thus the operation of the elevator brakes needs to be monitored. For example, to monitor functionality of the elevator brake a braking force may be measured. The braking force is a result of the friction between a brake wheel surface and a friction lining material that is pressed by a force towards the brake wheel surface. The work springs are configured to provide the force for the friction pair, i.e. the friction lining and the braking surface.

According to some prior art solutions mechanical switches, e.g. micro switches, proximity switches or optical switches, have been used to monitor the movement of the armature such that the mechanical switch changes its state when the brake is opened and closed. The switches may be arranged, e.g. fixed, to the side, or top, of the elevator brake. However, one drawback of these prior art solutions is that a direct information about the breaking situation cannot be obtained, but instead the movement of the friction lining or armature or other related components is measured. Alternatively, according to one prior art solution, the spring force may be measured from the area in a close vicinity of the work spring acting on a brake lever a distance from the braking area. Thus, again a direct information about the breaking situation cannot be obtained.

Hence, there is need to introduce novel approaches to monitor elevator brakes in which the above described drawbacks may be mitigated at least in part.

SUMMARY

The following presents a simplified summary in order to provide basic understanding of some aspects of various invention embodiments. The summary is not an extensive overview of the invention. It is neither intended to identify key or critical elements of the invention nor to delineate the scope of the invention. The following summary merely presents some concepts of the invention in a simplified form as a prelude to a more detailed description of exemplifying embodiments of the invention.

An objective of the invention is to present an elevator brake. Another objective of the invention is that the elevator brake enables to obtain more information about the operation of the elevator brake and about the braking situation.

The objectives of the invention are reached by an elevator brake as defined by the respective independent claims.

According to an aspect, an elevator brake is provided, wherein the elevator brake comprises: a frame part comprising an electromagnet; a moving armature movably supported on the frame part; at least one energy storage, such as a work spring, arranged between the frame part and the moving armature; a friction lining associated with the moving armature and fitted to engage a braking surface with a normal force originating from the at least one energy storage, to brake movement of an elevator car or to hold the elevator car standstill; and a sensor system comprising one or more sensors mounted into the elevator brake and adapted to sense one or more operational parameters of the elevator brake and/or to directly measure normal force of the friction lining.

The elevator brake may further comprise a hollow carrier coupled to or integrated with the moving armature and adapted to bend when a force is introduced to the friction lining.

Furthermore, at least one sensor of the sensor system may be mounted inside the hollow carrier and adapted to directly measure the normal force of the friction lining.

The at least one sensor of the sensor system may be one of the following: a proximity sensor, a load cell.

Alternatively or in addition, at least one sensor of the sensor system may be adapted to sense deformation of the carrier.

Alternatively or in addition, at least one sensor of the sensor system may be a non-contacting sensor comprising an antenna formed on a PCB board, wherein the PCB board may be mounted inside the elevator brake and fixed by means of insulating resin thereto.

The non-contacting sensor may be an inductive proximity sensor mounted to one of frame part or armature and adapted to sense distance to a metal surface of the other of the frame part or the armature.

Alternatively or in addition, the PCB board may be mounted to the electromagnet.
Alternatively or in addition, at least one sensor of the sensor system may be a temperature sensor mounted on the PCB board.

Furthermore, a coil of the electromagnet may be wired through the current sensor.

The expression “a number of” refers herein to any positive integer starting from one, e.g. to one, two, or three.

The verbs “to comprise” and “to include” are used in this document as open limitations that neither exclude nor require the existence of unrecited features. The features recited in dependent claims are mutually freely combinable unless otherwise explicitly stated. Furthermore, it is to be understood that the use of “a” or “an”, i.e. a singular form, throughout this document does not exclude a plurality.

BRIEF DESCRIPTION OF FIGURES

Figure 1 illustrates schematically an example of an elevator brake wherein the embodiments of the invention may be implemented.

Figure 2 illustrates schematically an elevator brake according to an embodiment of the invention.

Figure 3 illustrates schematically an example of a PCB board according to the invention.

Figure 4 illustrates schematically an elevator brake according to another embodiment of the invention.

DESCRIPTION OF THE EXEMPLIFYING EMBODIMENTS

The specific examples provided in the description given below should not be construed as limiting the scope and/or the applicability of the appended claims. Lists and groups of examples provided in the description given below are not exhaustive unless otherwise explicitly stated.
friction lining material. This enables that direct information about the breaking force may be obtained.

[0032] In case there are a plurality of sensors the individual sensors may be the same type or a different type and configured to measure, i.e. sense, one or more operational parameters of the elevator brake 100. By mounting one or more sensors to the elevator brake 100 the following operational parameters of the elevator brake 100 may e.g. be monitored:

- current
- temperature
- position
- normal force
- distance of at least two parts.

[0033] The monitoring of the above-mentioned parameters may be arranged by processing measurement data obtained from one or more of the mentioned sensors of the sensor system. The measurement data may represent directly at least one operational parameter of the elevator brake 100, or the at least one parameter may be generated from the measurement data.

[0034] Next, it is discussed on providing measurement data for monitoring of at least some of the described operational parameters of the elevator brake 100 and at least some examples of implementations of the sensor system are disclosed. Figure 2 schematically illustrates an embodiment according to the present invention in which the sensor system of the elevator brake 100 may be adapted to sense one or more operational parameters of the elevator brake 100. At least one sensor 302a-302c of the sensor system may be a non-contacting sensor comprising an antenna 304 formed on a PCB board 202. Figure 3 schematically illustrates an example of the PCB board 202 according to the invention comprising three sensors, but the sensor system of the elevator brake 100 may comprise any number of sensors considered suitable for the intended use of the sensor system. The PCB board 202 may be mounted inside the elevator brake 100 and fixed by means of insulating resin thereto. Alternatively, the PCB board 202 may be fixed, for example by means of screws, barbed tree plugs or different types of snap-on fixings.

[0035] The PCB board 202 may be mounted to the frame part 102 or to the armature 106. When the PCB board is mounted to the frame part 102 it may be fixed to the electromagnet 104, preferably to the end facing towards the armature 106. Typically, the electromagnet 104 may be fixed to the frame part 102 by means of insulating resin. The PCB board 202 may be inserted directly on the electromagnet 104 and resined to the frame part 102 at the same time as the electromagnet 104. Alternatively, the PCB board 202 may be fixed to a groove or a slot provided to the electromagnet 104, preferably to the end facing towards the armature 106, and resined there.

[0036] Alternatively, any other type of sensors than the sensor formed on PCB board may be fixed to a groove or a slot provided to the electromagnet 104, preferably to the end facing towards the armature 106, and resined there. Some non-limiting examples of these other type sensors may be linear potentiometer, optical sensor and different type of switches.

[0037] The at least one sensor 302a-302c mounted to one of the frame part 102 or the armature 106 may be a proximity sensor adapted to sense distance to a metal surface of the other of the frame part 102 or the armature 106. In other words, the proximity sensor, e.g. an inductive proximity sensor, provides a way to measure absolute position change of moving parts/structures. When the at least one sensor is mounted to the frame part 102 it may be fixed to the electromagnet 104, The magnetic flux generated by the electromagnet 104 does not interfere the inductive proximity sensor, because the magnetic flux is operating on a different frequency band than the excitation of the inductive proximity sensor. This enables that the inductive proximity sensor may be fixed to the electromagnet 104.

[0038] Alternatively or in addition, at least one sensor 302a-302c of the sensor system may be a temperature sensor mounted on the PCB board 202. The temperature sensor may be for example thermocouple, NTC resistor, PTC resistor. The temperature sensor may be adapted to sense the temperature of the elevator brake 100. Alternatively, the temperature sensor may be implemented by using the inductive proximity sensor to observe a drift in the measurement signal of the inductive proximity sensor in order to sense the temperature of the elevator brake 100.

[0039] Alternatively or in addition, at least one sensor 302a-302c of the sensor system may be a current sensor mounted on the PCB board 202. A coil of the electromagnet 104 may be wired through the current sensor. The current sensor may be adapted to sense the current of the electromagnet 104.

[0040] Figure 4 schematically illustrates an embodiment according to the present invention in which the sensor system of the elevator brake 100 may be adapted to directly define normal force of the friction lining 209. The normal force is focused, i.e. directed, on the friction lining 109 through the moving armature 106.

[0041] At least one sensor 302d of the sensor system may be mounted inside the hollow carrier 112 in order to directly measure the normal force focused on the friction lining 109 through the moving armature. In Figure 4 the hollow carrier 112 is coupled to the moving armature 106, but it may alternatively be integrated with the moving armature 106 as described above. The at least one sensor 302d of the sensor system may be one of the following: a proximity sensor, a load cell. The load cell may be for example a strain gauge, a hydraulic load cell, a pneumatic load cell, or any other load cell type. The proximity sensor may be an inductive proximity sensor or a capacitive proximity sensor capable to measure distance.

[0042] Because the at least one sensor 302d is mount-
ed inside the hollow carrier 112 the normal force acting on the friction lining 109 and, consequently, on the braking area, may be measured directly from the braking area, i.e. the area where the friction lining 109 acts on the braking surface 107. In other words, mounting the at least one sensor 302d inside the hollow carrier 112 enables a direct measurement of normal force of friction lining 109, i.e. normal force vectors focusing on the friction lining 109 and affecting directly to the braking surface 107. The direct measurement of normal force from the braking area improves the accuracy and reliability of the measurement of the normal force. Because the breaking force may be defined from the measured normal force by multiplying the measured normal force by the friction coefficient between the braking surface 107 and the friction lining material, thus also the accuracy and reliability of determination of the braking force may be improved. The direct measurement of normal force enables that information about the breaking force directly from the braking area may be obtained.

[0043] Reduction of the normal force indicates a failure or decay of at least one work spring 110a, 110b. Moreover, because the normal force is directly proportional to a brake torque generated by the elevator brake 100, the reduction of the normal force means also a reduction of the brake torque. Thus, the above described direct measurement of the normal force provides a way to monitor the operation of the elevator brake, which enables that a decay or a failure of at least one work spring 110a, 110b may be observed by detecting a reduction in the measured normal force. This allows a detection of a decay or a failure of the work spring 110a, 110b already before the normal force fails totally and the brake torque is lost, i.e. before the work spring 110a, 110b totally decays. This, in turn, allows an early detection of a decay or a failure of the work spring 110a, 110b and thus improves the safety of the elevator at least in part.

[0044] Alternatively or in addition, at least one sensor 302d of the sensor system may be a load cell mounted inside the hollow carrier 112 and adapted to sense deformation of the hollow carrier 112. The load cell may be for example a strain gauge, a hydraulic load cell, a pneumatic load cell, or any other load cell type.

[0045] The above described elevator brake 100 enables to obtain more information about the operation of an elevator brake 100. The sensor system of the elevator brake 100 according to the invention enables to use a sensor fusion, i.e. to combine measurements of different sensors, such that accuracy and reliability of the monitoring of the operation of the elevator brake 100 may be improved at least partly. Because the sensor system of the elevator brake 100 according to the invention may comprise a plurality of sensors, for example a current sensor adapted to measure the current of the electromagnet 104, an inductive proximity sensor adapted to measure the distance between the brake frame 102 and the armature 106, a strain gauge adapted to measure the amount of normal force of the friction lining 109, and/or a temperature sensor adapted to measure the temperature of the elevator brake 100, the operation of the elevator brake 100 may be monitored by measuring the above operational parameters of the elevator brake 100 individually or by combining several measurements of the above operational parameters of the elevator brake 100, e.g. by measuring brake current in combination with the distance between the brake frame 102 and armature 106, and as amount of normal force of the friction lining 109. Furthermore, at least some of the embodiments of the invention enables a simple and rugged construction of the elevator brake 100 and an easy assembly. Moreover, at least some of the embodiments of the invention enables that information about the normal force as well as a friction coefficient between the braking surface and the friction lining material, may be directly measured from the braking area, which enables that information about the braking situ-
2. The elevator brake (100) according to claim 1 further comprising a hollow carrier (112) coupled to or integrated with the moving armature (106) and adapted to bend when a force is introduced to the friction lining (109).

3. The elevator brake according to claim 2, wherein at least one sensor (302d) of the sensor system is mounted inside the hollow carrier (112) and adapted to directly measure the normal force of the friction lining (109).

4. The elevator brake (100) according to claim 3, wherein the at least one sensor (302d) of the sensor system is one of the following: a proximity sensor, a load cell.

5. The elevator brake (100) according to claim 2, wherein at least one sensor (302a-302d) of the sensor system is adapted to sense deformation of the carrier (112).

6. The elevator brake according to any of the preceding claims, wherein at least one sensor (302a-302c) of the sensor system is a non-contacting sensor comprising an antenna (304) formed on a PCB board (202), wherein the PCB board (202) is mounted inside the elevator brake (100) and fixed by means of insulating resin thereto.

7. The elevator brake (100) according to claim 6, wherein the non-contacting sensor is an inductive proximity sensor mounted to one of frame part (102) or armature (106) and adapted to sense distance to a metal surface of the other of the frame part (102) or the armature (106).

8. The elevator brake (100) according to any of claims 6 or 7, wherein the PCB board (202) is mounted to the electromagnet (104).

9. The elevator brake (100) according to any of claims 6 to 8, wherein at least one sensor (302a-302c) of the sensor system is a temperature sensor mounted on the PCB board (202).

10. The elevator brake (100) according to any of claims 6 to 9, wherein at least one sensor (302a-302c) of the sensor system is a current sensor mounted on the PCB board (202).

11. The elevator brake (100) according to claim 10, wherein a coil of the electromagnet (104) is wired through the current sensor.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 095 289 A (RAY SIB S [US] ET AL) 1 August 2000 (2000-08-01)</td>
<td>1,2</td>
<td>INV. B66B5/00</td>
</tr>
<tr>
<td>A</td>
<td>* figure 2 *</td>
<td>3-5</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>* figures 1,2 *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL FIELDS SEARCHED (IPC)

B66B

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Hague</td>
<td>16 October 2018</td>
<td>Lenoir, Xavier</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **P**: intermediate document
- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **F**: member of the same patent family, corresponding document
CLAIMS INCURRING FEES

The present European patent application comprised at the time of filing claims for which payment was due.

- [] Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for those claims for which no payment was due and for those claims for which claims fees have been paid, namely claim(s):

- [] No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for those claims for which no payment was due.

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

- see sheet B

- [] All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.

- [] As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.

- [] Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:

- [] None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

 1-5

- [] The present supplementary European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims (Rule 164 (1) EPC).
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. claims: 1-5

 An elevator brake having a particular carrier.

2. claims: 1, 6-11

 An elevator brake having a particular sensor.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 16-10-2018.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6095289 A</td>
<td>01-08-2000</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3239086 A1</td>
<td>01-11-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017313550 A1</td>
<td>02-11-2017</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.