AN ANTI-DUST AND EASILY DISPERSIBLE PIGMENT

A manufacturing process for an anti-dust and easily dispersible carbon black pigment is disclosed herein. The pigment is convenient to handle and does not generate potentially hazardous airborne particles during transportation or during any suitable processing conditions employed in end applications in the relevant industry, including cosmetics, paint or ink.
Description

Technical field of the invention:

[0001] The present invention relates to a manufacturing process of an anti-dust and easily dispersible pigment.

[0002] It further relates to the anti-dust and easily dispersible pigment manufactured by the process of the invention, and its use in applications including cosmetics, inks and paints, particularly its use in cosmetics applications.

Background of the invention:

[0003] Carbon black has for long been used generally in paints, printing inks, cosmetics, rubbers, resin compositions and the like. Carbon black is used as pigment, filler and the like in the cosmetic industry for numerous applications. Carbon black of fine and ultra-fine particle size like microns or nano-meters is used in cosmetics as emulsion, dispersion and the like.

[0004] Carbon black is a fluffy powder. It has a very low bulk density. It is generally cohesive and hence, extremely difficult to handle for purposes such as conveying in conventional material transfer equipment and weighing. During material handling some material become airborne. Particularly, carbon black pigment dust particles can become airborne during processing, end use or any other step of handling. Further, it is harmful to personnel, who come into contact with these airborne particulates, upon either inhalation or ingestion of the dust. Additionally, carbon black lacks significant surface functional groups, which hinders its wetting properties thus making it difficult to disperse.

[0005] The process of agglomerating fluffy carbon black to form carbon black pellets is generally referred to as pel-lletizing. Dusting problem of the carbon black is reduced by pelletizing (beading) by various types of mechanical processes, either in dry state, or with the aid of a liquid. Common liquid pelletizing agent is water (US 2,065,371). The other pelletizing agent is oil (US 2,635,057; US 3,011,902 and US 4,102,967) which improves the handling of carbon black pigment and reduces dusting.

[0006] However, pelletizing of the carbon black has detrimental effects on the dispersion characteristics of the carbon black. Prior art also teaches to improve the pellet handling characteristics by using different processing aids namely, carbohydrates (e.g. sugar, molasses, soluble starches, saccharides and lignin derivatives; US 2,850,403); rosin emulsion (US 2,908,586), sulphonate and sulphate non-ionic surfactant (US 2,635,025); fatty amine ethoxylate non-ionic surfactant (US 3,565,658); fatty acid or rosin acid ethoxylate (US 3,645,765); and non-ionic surfactants containing poly(ethylene oxide) and poly(dimethyl silicone) groups, molasses and nitric acid (US 3,844,809).

[0007] Therefore, there is a need to balance between dusting characteristics and ease of dispersion.

[0008] There are various prior arts, where efforts have been taken to resolve these issues to a certain level using low levels of wax or surfactants or any suitable processing aids to form small beads (prill). (Refer prior art namely, MY 128313, DK 176562, DK 176546, DE 19649756, DE 19638042, CA 2209935, WO 2007002030, etc.). The pelletized carbon black powder reduces the tendency of dust propensity and its release into air. However, the pellets are hard and difficult to disperse in liquid, which is essential for cosmetics industry. Thus, it may reduce dust but it adversely affects dispersion. One of the reasons is the hydrophobicity of the pigment, which affects the dispersion capability of the pigment in aqueous medium.

[0009] US 7033429 patent claims method of producing low-dust pigment compositions, where pigment was suspended in water, followed by addition of amphoteric surfactant and converting into granules upon drying. These granules are useful in plastics. These granules lead to low dust generation while handling.

[0010] JP 2001152072 discloses the pigment compound which has having excellent re-dispersibility but causes slight dust generation tendency. According to this patent, pigment was treated with the polymer and/or cross-linked polyox-yethylene acrylic acid, and the surfactant by lyophilizing in aqueous dispersion.

[0011] The most relevant product to the present invention is available under trade name Instant Carbon 50 which is non-nano self-dispersible pigment (CI 77266). It is manufactured by using chemical components C.I. 77266 (Carbon Black D & C no. 2), cetearath-25, sodium carbonate, sorbitol, citric Acid. During the dispersion of the carbon black, citric acid is added to lower the pH down to about 4. To this, sodium carbonate was added to recover the initial pH of the dispersion.

[0012] This product dispersed into water in few minutes without applying high shear. Further, the dispersion obtained has a red tone which adversely affects jetness of the carbon black. This Instant Carbon 50 is used in cosmetics such as mascaras, pencils and eyeliners. Carbon black may perform better quality black shades compared to the ones obtained with black iron oxide but still there is a need to enhance dispersion rate, quality of dispersion and jetness of carbon black pigment which is essential for certain end applications.

[0013] Thus, there is need to improve dispersion rate, jetness of carbon black pigment, quality of dispersion i.e. homogeneity and ideally blue tone of the dispersion of the Instant Carbon 50 in water.

[0014] Many additional additives and processes have been described in the art, but there has been continuing need
for a carbon black product which either eliminates or reduces dusting and at the same time it is easily dispersible in water.

[0015] D&C carbon black was approved for cosmetic use by FDC in 2004. It is fluffy powder and has fine particles. But this pigment may create dust level and may easily become airborne. This creates a health hazard to the person who is handling it while transporting or at manufacturing field or at the application site. It also has tendency of heavy aggregation and difficulty in dispersion uniformly. Thus, it may be difficult to avoid or eliminate dusting and at the same time having non-uniform dispersion in aqueous medium with few suspended particles leading to red tone. Thus, it compromises the performance of the carbon black as black pigment in the end applications like cosmetics, inks, paints and the like.

[0016] Despite of having potential health hazard, it appeals to cosmetic industry because of its desirable properties in regards to applications.

[0017] Thus, there is a need to develop the process for manufacturing anti-dust and easily dispersible pigment, particularly carbon black pigment, which eliminates the problems associated with the carbon black pigment like dusting and enhancing uniform dispersion in the aqueous medium. Similar problems and needs may arise with other pigments.

Objects of the invention:

[0018] An object of the invention is to provide a process for manufacturing anti-dust and easily dispersible pigment, particularly carbon black pigment, which eliminates the problems associated with the prior art, particularly Instant Carbon 50.

[0019] Another object of the invention is to provide a process for manufacturing anti-dust and easily dispersible pigment, particularly carbon black pigment, which eliminates dusting and enhances uniform dispersion in the aqueous medium.

[0020] Still another object of the invention is to provide a process for manufacturing anti-dust and easily dispersible pigment, particularly carbon black pigment, which enhances jetness of the carbon black and achieves blue tone of the carbon black dispersion in the aqueous medium.

[0021] Yet another object of the invention is to provide an anti-dust and easily dispersible pigment, particularly carbon black pigment, which eliminates dusting and disperses in the aqueous medium in at least 15 seconds.

[0022] Yet another object of the invention is to provide an anti-dust and easily dispersible pigment, particularly carbon black pigment, which enhances jetness of the carbon black and achieves blue tone of the carbon black dispersion in the aqueous medium.

[0023] Yet another object of the invention is to provide use of the anti-dust and easily dispersible pigment, particularly carbon black pigment, in cosmetics, paint and ink.

Summary of the invention:

[0024] In the presently claimed invention, it is surprisingly found that when the carbon black pigment is treated with non-ionic surfactant along with the humectant, e.g. in the ratio of 50 to 60:30 to 50:5 to 15, followed by pH adjustment and subsequent pelletization leads to formation of carbon black pellets which simultaneously eliminates dusting and are easily dispersible in aqueous medium leading to uniform dispersion of the carbon black pigment, enhancing jetness and having blue tone which is ideal for end applications like cosmetics, paint, ink and the likes.

[0025] Accordingly, in one embodiment, the presently claimed invention is directed to a manufacturing process for an anti-dust and easily dispersible carbon black pigment; said process comprising the steps of:

a. admixing at least two non-ionic surfactants selected from the group consisting of alkoxylated polyether, alkoxylated ester, polyglycol ethers, alcohol alkoxylates or alkylphenolpolyglycol ethers with at least one humectant selected from the group consisting of polyhydric alcohol or esters and ethers thereof in water followed by stirring to obtain a clear solution;

b. admixing carbon black pigment into the clear solution of step (a) with constant stirring to obtain a homogeneous composition;

c. adjusting pH of the homogeneous composition of the step (b) to 8 by adding mild alkali followed by stirring the composition till pH remained constant to 8;

d. finally adjusting pH of the homogeneous composition of the step (c) in the range of 6 to 6.5 by adding mild acid followed by stirring the composition till pH remained constant in the range of 6 to 6.5;

e. subjecting the composition of step (d) to milling and spray drying to obtain a powder; and

f. granulating the powder to obtain anti-dust and easily dispersible carbon black pigment granules having moisture content in the range of 0.5 to 2 % and a mean particle size of at least 200 microns.

[0026] In one embodiment, step (e) involves subjecting the composition of step (d) to first milling followed by spray drying to obtain a powder. The milling may be at a pressure of 6 to 10 bar. Particularly, the milling is carried out at 8 bar.

[0027] In another embodiment of the presently claimed invention, the step (e) comprises the composition of step (d)
subjected to first spray drying followed by milling at pressure of 6 to 10 bar to obtain a powder. Particularly, the milling is carried out at 8 bar.

[0028] The mean particle size of the powder obtained in the step (e) is preferably in the range of 5 to 10 microns.

[0029] Particularly, the spray drying is carried out at temperature of inlet in the range from 170 to 200°C and outlet in the range of from 75 to 95°C. More particularly, the temperature of inlet in the range of from 170 to 190°C and outlet in the range of from 85 to 95°C. Most particularly, temperature of inlet 180°C and that of outlet 90°C.

[0030] Particularly, the spray drying is carried out at of a pressure of inlet in the range 6 to 10 bar, more particularly at 8 bar.

[0031] In another embodiment of the presently claimed invention, the non-ionic surfactant is selected from polyoxyethylene ethers of fatty alcohols and acids having C12 to C20 carbons.

[0032] In another embodiment of the presently claimed invention, the non-ionic surfactant is selected from polyoxyethylene ethers of cetyl alcohol, cetyl alcohol, myristyl alcohol, behenyl alcohol, lauryl alcohol, or iso stearyl alcohol. Particularly, at least one of the non-ionic surfactant of the at least two non-ionic surfactants is polyoxyethylene ethers of lauryl alcohol. Other non-ionic surfactant is selected from polyoxyethylene ethers of cetyl alcohol, cetyl alcohol, myristyl alcohol, behenyl alcohol, or iso stearyl alcohol and the like.

[0033] In another embodiment of the presently claimed invention, the humectant is selected from glycerol, ethylene glycol, polyethylene glycol (PEG), diethylene glycol, ethylene glycol, tri ethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycerin, polyoxyethylene glycerin, alpha methyl glycerin, urea, triethanolamine lactate, sorbitol, xylitol, sorbose, poly oxy-ethylene sorbitol, mannitol, glucose or propylene glycol glucoside.

[0034] In another embodiment of the presently claimed invention, the mild alkali used in step (c) is sodium carbonate, sodium bicarbonate, sodium hydroxide, potassium carbonate, ammonium carbonate and the like. It may be provided as a solution in water. Typically, it is used as 10% solution in DM water (demineralised water).

[0035] In another embodiment of the presently claimed invention, the mild acid used in step (d) is citric acid, lactic acid, acetic acid and the like. It may be provided as a solution in water. Typically, it is used as 10% solution in DM water.

[0036] In another embodiment of the presently claimed invention, the non-ionic surfactant is used in the range of 30 to 46% wt./wt. of the total composition. More particularly, the non-ionic surfactant is used of 35.5% wt./wt. of the total composition.

[0037] In another embodiment of the presently claimed invention, the humectant is used in the range of 5 to 10% wt./wt. of the total composition. More particularly, the humectant is used of 7.5% wt./wt. of the total composition.

[0038] In another embodiment of the presently claimed invention, the carbon black pigment is used in the range of 52 to 58% wt./wt. of the total composition. More particularly, the carbon black pigment is used of 55% wt./wt. of the total composition.

[0039] In another embodiment of the presently claimed invention, the carbon black pigment is selected from D & C Black pigment no. 2, FW 200, Special black 4, Printex black, Philips black, Black N 330, Black 220 and the likes.

[0040] In another embodiment of the presently claimed invention, the carbon black pigment is D & C Black pigment no. 2, particularly for the cosmetics application.

[0041] In another embodiment of the presently claimed invention, the carbon black pigment is FW 200, Special black 4, Printex black, Philips black, Black N 330 or Black 220, particularly for the ink and paint application.

[0042] Accordingly, in another embodiment, the presently claimed invention is directed to an anti-dust and easily dispersible carbon black pigment having moisture content in the range of 0.5 to 2% and a mean particle size of at least 200 microns prepared according to the process of the invention. It may be that the pigment disperses in an aqueous medium in at least 15 seconds. In one embodiment instantaneous dispersion in the aqueous medium may occur within 75 seconds or less, e.g. within 15 to 75 seconds.

[0043] When reference is made in the present application to the moisture content, this is as wt./wt. A suitable method of measurement for the moisture content of the pigment is by determining the weight of a sample of pigment both before and after drying, and then carrying out the following calculation:-

\[
\text{% Moisture wt./wt.} = \frac{(\text{Weight of sample taken} - \text{weight of sample after drying}) \times 100}{\text{Weight of sample taken}}
\]

[0044] In particular, the method may be as follows: weigh a sample of pigment (e.g. about two grams) in a previously dried and weighed weighing bottle and then keep it in an oven for two hours at 110°C. Then place the weighing bottle in a desiccator until it reaches room temperature. Weigh the bottle and compare this with its weight before being placed in the oven to find out the loss of weight due to moisture after drying. Then calculate the percentage loss, wt./wt., of moisture, to determine the moisture content wt./wt. that was in the pigment sample.

[0045] When reference is made in the present application to the mean particle size, a suitable method of measurement...
Detailed description of the invention:

[0053] The terms "a," "an," "the" and similar referents used in the context of describing the invention following claims are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.

[0054] Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the below-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

[0055] Specific embodiments disclosed herein can be further limited in the claims using consisting of or / and consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term "consisting of" excludes any element, step, ingredient, and does not pose a limitation on the scope of the invention otherwise claimed. As used herein, the term "easily dispersible" refers to being able to obtain a uniform dispersion of pigment in an aqueous medium in at least 20 seconds.

[0056] As used herein, the term "weight percent (wt. %)" when used without qualification, typically refers to the weight percent of a particular solid component, e.g., pigment, humectant, surfactant, etc., as compared with all solid components.
present, excluding medium or vehicle.

[0058] As used herein, the terms "composition" refer to a list of ingredients, and/or components, and can also include
list of instructions for preparing and mixing together the ingredients, and/or components to make the anti-dust and easily
dispersible carbon black pigment.

Detailed Description of the Embodiments:

[0059] In the following description, the embodiments are described in sufficient details to enable those skilled in the
art to practice the invention. Other embodiments may be utilized and structural, logical and other changes may be made
without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not
to be taken in a limiting sense. The detailed description that follows begins with a definition section followed by a
description of various embodiments of the invention. A series of examples are presented later followed by a brief con-
clusion.

[0060] The wet pelletizing technique has been used in the carbon black industry for more than ten decades. Research
has been done during this time, which improved the handling ability of carbon black pigment. However, there has been
very little research for developing carbon blacks that would quickly disperse in the aqueous medium, with substantially
less or almost no energy/ power requirement, and would disperse to a finer level when mixed into aqueous medium than
the conventional wet process.

[0061] According to the presently claimed invention, there is provided a manufacturing process for an anti-dust and
instantaneously dispersible carbon black pigment. The process comprising the followings steps:

a. The at least two non-ionic surfactants are admixed with the at least one humectant in water. This mixture is stirred
to obtain a clear solution;
b. The carbon black pigment is added into the clear solution of the step (a) with constant stirring to obtain homogenous
composition;
c. The pH of the composition is adjusted initially to 8 by adding mild alkali followed by stirring. The addition of the
mild alkali and further stirring is continued till pH of the composition remains constant to 8;
d. The pH of the composition is adjusted further in the range of 6 to 6.5 by adding mild acid followed by stirring. The
addition of the mild acid and further stirring is continued till pH of the composition remains constant to in the range
of 6 to 6.5;
e. The composition of step (d) is first milled to obtain paste comprising fine particles. The composition is particularly
milled to obtain paste comprising fine particles having a mean particle size in the range of about 5 to 15 microns.
This paste is further subjected to spray drying to obtain powder;
and
f. The powder so obtained in step (e) is granulated to obtain anti-dust and instantaneously dispersible carbon black
pigment granules having moisture content in the range of 0.5 to 2 % and a mean particle size at least of 200 microns.

[0062] The pH can be measured using a pH meter at room temperature (e.g. at 20°C).

[0063] When reference is made to the pH remaining constant, preferably the pH remains the same (e.g. the same
value on a pH meter reading) over a period of 5 minutes or more, more preferably over a period of 10 minutes.

[0064] The ratio of the carbon black pigment to the non-ionic surfactant to the humectant is from 50 to 60:30 to 50:5
to 15. It may therefore be from 60:30 to 50:5, such as from 50:30 to 50:15.

[0065] Particularly, the spray drying is carried out at temperature of inlet in the range 170 to 200° C and outlet in the
range of 75 to 95° C, more particularly temperature of inlet is in the range of 170 to 190° C and outlet is in the range
of 85 to 95° C. Most particularly temperature of inlet is 180° C and that of outlet is 90° C.

[0066] Particularly, the spray drying is carried out at a pressure of inlet in the range 6 to 10 bar, more particularly
pressure of inlet 8 bar.

[0067] Optionally, in the process step (e), the composition of step (d) is subjected to first spray drying followed by
milling at a pressure of 6 to 10 bar to obtain a powder comprising fine particles. Particularly the milling is carried out at
8 bar. These particles have a mean particle size in the range of about 5 to 15 microns.

[0068] All the steps of the presently claimed process and the preference in which they are carried out are essential to
achieve the desired properties namely anti-dust and instantaneous dispersion in the aqueous medium, particularly in at
least 15 seconds. Also uniform dispersion, which leads to blue tone and enhanced jetness. As shown in the examples,
in the present invention instantaneous dispersion in the aqueous medium may occur within 75 seconds or less, e.g.
within 15 to 75 seconds.

[0069] The compounds namely, humectant, non-ionic surfactant, mild acid and mild alkali should be acceptable in
cosmetics, paint, ink, etc. industry. They also must be compatible with the end application’s matrix / medium /vehicle.

[0070] The humectant used in the presently claimed invention is polyalcohol. Particularly, it is selected from glycerol,
ethyleneglycol, polyethyleneglycol (PEG), diethyleneglycol, ethyleneglycol, triethyleneglycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycerin, polyoxy ethylene glycerin, alpha-methyl glycerin, urea, triethanolamine lactate, sorbitol, xylitol, sorbitide, polyoxyethylene sorbitol, mannitol, glucose or polypropylene glycol glucoside. More particularly, it is selected from sorbitol, xylitol, sorbitide, polyoxyethylene sorbitol, mannitol, glucose or polypropylene glycol glucoside. Most particularly, the humectant used is sorbitol. The humectant is used in the range of 5 to 15 % wt./wt. of the total composition, particularly in the range of 5 to 10 % wt./wt. of the total composition. More particularly, the humectant is used of 7.5 % wt./wt. of the total composition.

[0071] The at least two non-ionic surfactants used in the presently claimed invention may be selected from any non-ionic surfactant which is acceptable to the norms used in the cosmetics, paint, ink, etc. industry and compatible with the matrix / medium /vehicle used in the end applications. Particularly, it is selected from polyoxyethylene ethers of fatty alcohols and acids having C12 to C20 carbons. More particularly, it is selected from polyoxyethylene ethers of cetearyl alcohol, cetyl alcohol, myristyl alcohol, behenyl alcohol, lauryl alcohol or isostearal alcohol. Particularly, at least one of the non-ionic surfactant of the at least two non-ionic surfactants is polyoxyethylene ethers of lauril alcohol. Other non-ionic surfactant may be selected from polyoxyethylene ethers of cetearyl alcohol, cetyl alcohol, myristyl alcohol, behenyl alcohol, or isostearal alcohol. The non-ionic surfactant is used in the range of 30 to 50 % wt./wt. of the total composition, particularly in the range of 30 to 46 % wt./wt. of the total composition. More particularly, the non-ionic surfactant is used of 35.5 % wt./wt. of the total composition.

[0072] The mild alkali used in the step (c) is sodium carbonate, sodium bicarbonate, sodium hydroxide, potassium carbonate, ammonium carbonate and the likes. It may be provided as a solution in water. It is suitably used as 10 % solution in DM water.

[0073] The mild acid used in the step (d) is citric acid, lactic acid, acetic acid and the likes. It may be provided as a solution in water. It is suitably used as 10 % solution in DM water.

[0074] In the presently claimed invention, the carbon black pigment is used but the claimed process may be useful to process any other pigments associated with dust problem while handling as well as in the end application and require quick or instantaneous dispersion. Thus, the scope of the presently claimed invention may not be construed to be limiting to the carbon black pigment but to cover all the pigments.

[0075] The carbon black pigment is used in the range of 50 to 60 % wt./wt. of the total composition, particularly in the range of 52 to 58 % wt./wt. of the total composition. More particularly, the carbon black pigment is used of 55 % wt./wt. of the total composition.

[0076] The carbon black pigment is intended to cover all grades of carbon black pigments and are commercially available under trade name D & C Black pigment no. 2, FW 200, Special black 4, Printex black, Philips black, Black N 330, Black 220 and the likes.

[0077] Particularly, the carbon black pigment is D & C Black pigment no. 2 for the cosmetics application.

[0078] Particularly, the carbon black pigment is FW 200, Special black 4, Printex black, Philips black, Black N 330 or Black 220 for the paint or ink applications.

[0079] The amounts given in the present application for the non-ionic surfactant, humectant and carbon black are, unless otherwise stated, % amounts with respect to the total composition as obtained in step (b).

[0080] The amount of water used in steps (a) and (b) to prepare the homogenous composition as obtained in step (b) should be a quantity sufficient to make 100 %.

[0081] The final pellets of carbon black pigment manufactured by the presently claimed process are having properties namely, non-dusting, instantaneously dispersible in aqueous medium, homogeneous dispersion with blue tone, enhanced jetness, stability at drying temperature, safe and non-toxic. These properties are extremely helpful for the end applications in the field of cosmetics, inks, paints, etc.

[0082] Particularly, the anti-dust and easily dispersible carbon black pigment having moisture content in the range of 0.5 to 2 % and a mean particle size of at least 200 microns prepared according to the process of the presently claimed invention, may disperse in the aqueous medium in at least 15 seconds.

[0083] Preferably, the anti-dust and the easily dispersible carbon black pigment of the presently claimed invention is having moisture content of 1 %, a mean particle size of at least 400 microns. It may be that it is dispersed in an aqueous medium in at least 20 seconds.

[0084] The anti-dust and instantaneously dispersible carbon black pigment prepared according to the process of the presently claimed invention, is used in the industry namely, cosmetics, paint and ink.

[0085] A method for making a cosmetic product comprising the step of blending of the anti-dust and instantaneously dispersible carbon black pigment of the presently claimed invention and manufacturing according to the process of the presently claimed invention with at least one other cosmetic ingredient. It is typically used in the eyeliner, mascara, nail polish, eye shadow, brush-on-brow, lipstick, blushers, rouge, makeup, and foundation.

[0086] A method for making a water based ink comprising the step of blending of the anti-dust and instantaneously dispersible carbon black pigment of the presently claimed invention and manufacturing according to the process of the presently claimed invention with at least one additive and vehicle or medium of ink.
A method for making a water based paint comprising the step of blending of the anti-dust and instantaneously dispersible carbon black pigment of the presently claimed invention and manufacturing according to the process of the presently claimed invention with at least one additive and vehicle or medium of paint.

Throughout the present application, all amounts given are by weight unless stated otherwise or unless the context indicates otherwise.

All optional, preferable and particular features and embodiments may be used alone or in combination, unless the context indicates otherwise.

To illustrate the enhanced dispersion properties of carbon black of the presently claimed invention, comparisons of this carbon black and conventional carbon blacks were made. The experiments show that carbon black of the presently claimed invention instantaneously dispersed in water or any other aqueous medium in at least 15 second as compared to that of the commercially available carbon black under the trade name Instant Carbon 50 without stirring. Thus, have substantially reduced energy requirements for mixing and more complete and uniform dispersion as evidenced by blue tone and enhanced jetness. These examples also show that carbon black of the presently claimed invention may have better dispersion in the aqueous medium used in the field namely cosmetics, inks, paints, etc.

The present invention is illustrated by the following example, which is not intended to limit the effective scope of the invention.

CHEMICALS USED

1. Carbon black (D & C Black 2)
2. Sorbitol (75 % aqueous solution in water)
3. Monebat-c 1821 (polyoxyethylene ether of higher saturated fatty alcohols (cetyl/stearyl alcohol); Supplied by Mohini Organic Pvt. Ltd)
4. Lauryl alcohol 4 mole ethoxylated
5. DM Water
6. Citric acid
7. Sodium Carbonate
8. 9 hydroxy propyl methoxy cellulose E-5 (HPMC)

Example 1
To 200 ml of DM water in a container, 10 ml of sorbitol (75 % aqueous solution in water), 0.5 gms of lauryl alcohol 4 mole ethoxylated and 35 gms of Monebat-c 1821 was added with constant stirring to obtain a clear solution. To this, 55 gms of carbon black powder was added slowly with constant stirring till homogeneous composition in the form of paste was obtained. The pH of the paste was adjusted to 8.0 by adding mild alkali namely sodium carbonate solution in DM water (10 %) with constant stirring. Stirring along with addition of mild alkali was continued so that pH of the paste remained constant to 8. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 8.0. Further, mild acid namely citric acid solution in DM water (10%) was added to the paste to lower the pH to 6.5 with constant stirring. Similarly, stirring along with addition of mild acid was continued so that pH of the paste remained constant to 6.5. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 6.5.

The above paste was subjected to wet grinding by milling till the mean particle size obtained was of 5 microns. This paste was then subjected to spray drying (temperature and pressure of inlet was 180°C and 8 bar respectively and temperature of outlet was 90°C) to obtain pigment in the form of powder having the mean particle size of 5 microns and moisture content of 1 %. This powder was then fed to granulator to obtain granules having particle size of 400 microns and moisture content of 1 %.

Dust:
We have carried out experiment by dropping the carbon black granules into polyethylene bag from the distance of 1.5 feet, we have observed that there was no generation of dust or particles sticking to walls of the bag. We have also shaken the bag and could not find particle deposits on the walls of the bag or generation of dust into the bag.

Dispersion rate:
500 mg of granules were poured into 50 ml of DM water and it was found to be dispersed completely in 18
seconds. We had obtained homogeneous dispersion.

Strength:

[0097] The strength of the pigment was evaluated and the result of the same is illustrated in the table 1.

Example 2

[0098] To 200 ml of DM water in a container, 7.5 gms of sorbitol (75 % aqueous solution in water), 0.5 gms of lauryl alcohol 4 mole ethoxylated and 35 gms of Monebat-c 1821 was added with constant stirring to obtain a clear solution. To this, 55 gms of carbon black powder was added slowly with constant stirring till homogeneous composition in the form of paste was obtained. The pH of the paste was adjusted to 8.0 by adding mild alkali namely sodium carbonate solution in DM water (10 %) with constant stirring. Stirring along with addition of mild alkali was continued so that pH of the paste remained constant to 8. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 8.0. Further, mild acid namely citric acid solution in DM water (10%) was added to the paste to lower the pH to 6.5 with constant stirring. Similarly, stirring along with addition of mild acid was continued so that pH of the paste remained constant to 6.5. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 6.5.

[0099] The above paste was then subjected to spray drying (temperature and pressure of inlet was 180°C and 8 bar respectively and temperature of outlet was 90°C) to obtain pigment in the form of powder having the moisture content of 1 %. This powder was then subjected to grinding by jet milling at air pressure of 8 bar till the mean particle size obtained was of 5 microns. This powder was then fed to granulator to obtain granules having particle size of 400 microns and the moisture content of 1 %.

Dust:

[0100] We have carried out experiment by dropping the carbon black granules into polyethylene bag from the distance of 1.5 feet, we have observed that there was no generation of dust or particles sticking to walls of the bag. We have also shaken the bag and could not find particle deposits on the walls of the bag or generation of dust into the bag.

Dispersion rate:

[0101] 500 mg of granules were poured into 50 ml of DM water and it was found to be dispersed completely in 18 seconds. We had obtained homogeneous dispersion.

Strength:

[0102] The strength of the pigment was evaluated and the result of the same is illustrated in the table 1.

Example 3

[0103] To 200 ml of DM water in a container, 7.5 gms of sorbitol (75 % aqueous solution in water) and 35.5 gms of Monebat-c 1821 was added with constant stirring to obtain a clear solution. To this, 55 gms of carbon black powder was added slowly with constant stirring till homogeneous composition in the form of paste was obtained. The pH of the paste was adjusted to 8.0 by adding mild alkali namely sodium carbonate solution in DM water (10 %) with constant stirring. Stirring along with addition of mild alkali was continued so that pH of the paste remained constant to 8. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 8.0. Further, mild acid namely citric acid solution in DM water (10%) was added to the paste to lower the pH to 6.5 with constant stirring. Similarly, stirring along with addition of mild acid was continued so that pH of the paste remained constant to 6.5. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 6.5.

[0104] The above paste was subjected to wet grinding by milling till the mean particle size obtained was of 5 microns. This paste was then subjected to spray drying (temperature and pressure of inlet was 180°C and 8 bar respectively and temperature of outlet was 90°C) to obtain pigment in the form of powder having the mean particle size of 5 microns and moisture content of 1 %. This powder was then fed to granulator to obtain granules having particle size of 400 microns and moisture content of 1 %.
Dust:

[0105] We have carried out experiment by dropping the carbon black granules into polyethylene bag from the distance of 1.5 feet, we have observed that there was no generation of dust or particles sticking to walls of the bag. We have also shaken the bag and could not find particle deposits on the walls of the bag or generation of dust into the bag.

Dispersion rate:

[0106] 500 mg of granules were poured into 50 ml of DM water and it was found to be dispersed completely in 75 seconds.

Strength:

[0107] The strength of the pigment was evaluated and the result of the same is illustrated in the table 1.

Example 4

[0108] To 200 ml of DM water in a container, 7.5 gms of sorbitol (75 % aqueous solution in water) and 35.5 gms of Monebat-c 1821 was added with constant stirring to obtain a clear solution. To this, 55 gms of carbon black powder was added slowly with constant stirring till homogeneous composition in the form of paste was obtained. The pH of the paste was adjusted to 8.0 by adding mild alkali namely sodium carbonate solution in DM water (10 %) with constant stirring. Stirring along with addition of mild alkali was continued so that pH of the paste remained constant to 8. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 8.0. Further, mild acid namely citric acid solution in DM water (10%) was added to the paste to lower the pH to 6.5 with constant stirring. Similarly, stirring along with addition of mild acid was continued so that pH of the paste remained constant to 6.5. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 6.5.

[0109] The above paste was then subjected to spray drying (temperature and pressure of inlet was 180°C and 8 bar respectively and temperature of outlet was 90°C) to obtain pigment in the form of powder having the moisture content of 1 %. This powder was then subjected to grinding by jet milling at air pressure of 8 bar till the mean particle size obtained was of 5 micron. This powder was then fed to granulator to obtain granules having particle size of 400 microns and the moisture content of 1 %.

Dust:

[0110] We have carried out experiment by dropping the carbon black granules into polyethylene bag from the distance of 1.5 feet, we have observed that there was no generation of dust or particles sticking to walls of the bag. We have also shaken the bag and could not find particle deposits on the walls of the bag or generation of dust into the bag.

Dispersion rate:

[0111] 500 mg of granules were poured into 50 ml of DM water and it was found to be dispersed completely in 75 seconds.

Strength:

[0112] The strength of the pigment was evaluated and the result of the same is illustrated in the table 1.

Comparative Example 1

[0113] To 200 ml of DM water in a container, 7.5 gms of sorbitol (75 % aqueous solution in water) was added with constant stirring to obtain a clear solution. To this, 55 gms of carbon black powder was added slowly with constant stirring till homogeneous composition in the form of paste was obtained. The pH of the paste was adjusted to 8.0 by adding mild alkali namely sodium carbonate solution in DM water (10 %) with constant stirring. Stirring along with addition of mild alkali was continued so that pH of the paste remained constant to 8. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 8.0. Further, mild acid namely citric acid solution in DM water (10%) was added to the paste to lower the pH to 6.5 with constant stirring. Similarly, stirring along with addition of mild acid was continued so that pH of the paste remained constant to 6.5. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 6.5. The pigment was converted into a lump. This lump was not processed further.
Comparative Example 2

[0114] To 200 ml of DM water in a container, 35 gms of Monebat-c 1821 was added with constant stirring to obtain a clear solution. To this, 55 gms of carbon black powder was added slowly with constant stirring till homogeneous composition in the form of paste was obtained. The pH of the paste was adjusted to 8.0 by adding mild alkali namely sodium carbonate solution in DM water (10 %) with constant stirring. Stirring along with addition of mild alkali was continued so that pH of the paste remained constant to 8. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 8.0. Further, mild acid namely citric acid solution in DM water (10%) was added to the paste to lower the pH to 6.5 with constant stirring. Similarly, stirring along with addition of mild acid was continued so that pH of the paste remained constant to 6.5. The paste was stirred for another 10 minutes and again checked for pH reading. The pH was constant at 6.5. The pigment was converted into a lump. This lump was not processed further.

Comparative Example 3

[0115] To 200 ml of DM water in a container, 7.5 gms of sorbitol (75 % aqueous solution in water) and 35 gms of Monebat-c 1821 was added with constant stirring to obtain a clear solution. To this, 55 gms of carbon black powder was added slowly with constant stirring.

The above paste was then subjected to spray drying (temperature and pressure of inlet was 180°C and 8 bar respectively and temperature of outlet was 90°C) to obtain pigment in the form of powder having the moisture content of 1 %. This powder was then subjected to grinding by jet milling at air pressure of 8 bar till the mean particle size obtained was of 5 microns. This powder was then fed to granulator to obtain granules having particle size of 400 microns and the moisture content of 1 %.

Dust:

[0116] We have carried out experiment by dropping the carbon black granules into polyethylene bag from the distance of 1.5 feet, we have observed that there was generation of small amount of dust or particles sticking to walls of the bag. We have also shaken the bag and found particle deposits on the walls of the bag or generation of dust into the bag.

Dispersion rate:

[0117] 500 mg of granules were poured into 50 ml of DM water and it was found to be dispersed completely in 120 seconds.

Comparative Example 4

Instant Carbon 50 (Prodotti Gianni)

[0118] The commercial carbon black pigment under the trade name Instant carbon 50 (Prodotti Gianni) were tested for dust generation, rate of dispersion of pigment in water, jetness, and Blackness.

Dust:

[0119] We have carried out experiment by dropping the carbon black granules into polyethylene bag from the distance of 1.5 feet, we have observed that there was no generation of dust or particles sticking to walls of the bag. We have also shaken the bag and could not find particle deposits on the walls of the bag or generation of dust into the bag.

Dispersion rate:

[0120] 500 mg of granules were poured into 50 ml of DM water and it was found to be dispersed completely in 80 seconds.

Strength:

[0121] The strength of the pigment was evaluated and the result of the same is illustrated in the table 1.
Method for evaluation of strength:

Sample preparation:

[0122] For the sample preparation, the pigment prepared according to the examples 1 to 4 was used. Accordingly four samples i.e. “A”, “B”, “C” and “D” from examples 1 to 4 respectively were made by using the following steps:

1. 0.150 gm of pigment was accurately weighed and was mixed with 1.0 gm of hydroxy propyl methoxy cellulose grade E-5 (HPMC E-5). To this, 2 ml of water was added and the mixture was stirred.
2. The mixture was ground in muller at 100 rpm twice at a pressure of 40 Kg. and
3. The paste was collected and drawdowns were made on the hard paper. This drawdown is used as sample for further strength testing.

Standard preparation:

[0123] For the standard preparation, the pigment according to the comparative example 4 i.e. instant carbon 50 was used. Accordingly four samples were made by using the following steps:

1. 0.150 gm of pigment was accurately weighed and was mixed with 1.0 gm of hydroxy propyl methoxy cellulose grade E-5 (HPMC E-5). To this, 2 ml of water was added and the mixture was stirred.
2. The mixture was ground in muller at 100 rpm twice at a pressure of 40 Kg. and
3. The paste was collected and drawdowns were made on the hard paper. This drawdown is used as standard for further strength testing.

[0124] The sample and standard was tested for strength by using previously calibrated spectrophotometer (model -Hunter Lab Data Colour DC 550, Serial No. 8812411). The results of the same are illustrated in the table 1.

<table>
<thead>
<tr>
<th>Table 1: Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>As is Colour Difference on strength adjusted to 100 %</td>
</tr>
<tr>
<td>Observer = 10 degree</td>
</tr>
<tr>
<td>Colour Space = CIE Lab 1976</td>
</tr>
<tr>
<td>Illuminant = D65 10 Degree</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL*</td>
<td>-0.014</td>
<td>-0.036</td>
<td>0.035</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>a*</td>
<td>-0.357</td>
<td>-0.188</td>
<td>-0.244</td>
<td>-0.289</td>
<td>-0.190</td>
</tr>
<tr>
<td>Da*</td>
<td>0.169 Less Green</td>
<td>0.113 Less Green</td>
<td>0.068 Less Green</td>
<td>0.022 Less Green</td>
<td></td>
</tr>
<tr>
<td>b*</td>
<td>-0.695</td>
<td>-0.720</td>
<td>-0.832</td>
<td>-0.588</td>
<td>-0.699</td>
</tr>
<tr>
<td>Db*</td>
<td>-0.025 Bluer</td>
<td>-0.137 Bluer</td>
<td>0.107 Less Blue</td>
<td>0.228 Less Blue</td>
<td></td>
</tr>
<tr>
<td>C*</td>
<td>0.781</td>
<td>0.744</td>
<td>0.867</td>
<td>0.655</td>
<td>0.724</td>
</tr>
<tr>
<td>DC*</td>
<td>-0.037 Duller</td>
<td>0.086 Brighter</td>
<td>-0.126 Duller</td>
<td>-0.227 Duller</td>
<td></td>
</tr>
<tr>
<td>H*</td>
<td>242.787</td>
<td>255.336</td>
<td>253.626</td>
<td>243.800</td>
<td>254.763</td>
</tr>
<tr>
<td>DH*</td>
<td>0.167</td>
<td>0.156</td>
<td>0.013</td>
<td>-0.034</td>
<td></td>
</tr>
<tr>
<td>DE*</td>
<td>0.171</td>
<td>0.181</td>
<td>0.132</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td>K/S</td>
<td>176.235</td>
<td>182.828</td>
<td>178.077</td>
<td>170.841</td>
<td>184.849</td>
</tr>
<tr>
<td>RFL</td>
<td>4.233</td>
<td>4.120</td>
<td>4.178</td>
<td>4.481</td>
<td>4.076</td>
</tr>
<tr>
<td>Strength Integral %</td>
<td>103.741 %</td>
<td>101.045</td>
<td>96.939</td>
<td>97.361</td>
<td></td>
</tr>
</tbody>
</table>
According to the results, it is observed that pigments i.e. samples (A) and (B) prepared according to the examples 1 and 2 of the invention are more black as well as having more bluer tone as compared to that of standard. However, the sample (C) and (D) prepared according to the examples 3 and 4 are less black as well as having lesser blue tone as compared to that of standard.

The presently claimed invention facilitates anti-dusting pigments to be provided that are convenient to handle and do not generate potentially hazardous airborne particles while handling, or during transportation or during any suitable processing conditions employed in end applications in the relevant industry including cosmetics, paint, and ink. Thus, it is safe and non-toxic to the employee or the person who is exposed to this pigment. It is converted into granules of required size as per the end applications. Instantaneous dispersion in at least 15 seconds in the medium makes it useful in the end application and reduces power requirement during dispersion. The dispersion of the pigment of the presently claimed invention has blue tone and enhanced jetness as compared to that of commercial carbon black pigment. The anti-dust and instantaneous dispersible pigment of the presently claimed invention is cosmetically compatible and useful in the end applications including eyeliner, mascara, nail polish, eye shadow, brush-on-brow, lipstick, blushers, rouge, makeup, and foundation.

The present invention has been described with reference to preferred embodiments, purely for the sake of understanding and not by way of any limitation and the present invention includes all legitimate developments within the scope of what has been described hereinbefore and claimed in the appended claims.

Claims

1. A manufacturing process for preparing a carbon black pigment, said process comprising the steps of:
 a. admixing in water i) at least two non-ionic surfactants selected from the group consisting of alkoxylated polyethers, alkoxylated esters, polyglycol ethers, alcohol alkoxylates or alkylphenol polyglycol ethers with ii) at least one humectant selected from the group consisting of polyhydric alcohol or esters and ethers thereof, followed by stirring to obtain a clear solution;
 b. admixing carbon black pigment into the clear solution of step (a) with constant stirring to obtain a homogeneous composition;
 c. adjusting the pH of the homogeneous composition of step (b) to 8 by adding mild alkali followed by stirring the composition until the pH remains constant at 8;
 d. adjusting the pH of the homogeneous composition of step (c) to be in the range of 6 to 6.5 by adding mild acid followed by stirring the composition until the pH remains constant in the range of 6 to 6.5;
 e. subjecting the composition of step (d) to milling and spray drying to obtain a powder; and
 f. granulating the powder to obtain carbon black pigment granules having moisture content in the range of 0.5 to 2 % and a mean particle size of at least 200 microns.

2. The process as claimed in claim 1, wherein the step (e) comprises either:
 i) subjecting the composition of step (d) to first milling followed by spray drying to obtain a powder; or
 ii) the composition of step (d) being subjected to first spray drying, followed by milling at a pressure of 6 to 10 bar to obtain a powder.

3. The process as claimed in any one of claims 1 to 2, wherein the mean particle size of the powder obtained in the step (e) is in the range of 5 to 10 microns.

4. The process as claimed any one of claims 1 to 3, wherein the non-ionic surfactant is:
 a) selected from polyoxyethylene ethers of fatty alcohols and acids having C₁₂ to C₂₀ carbons; and/or
 b) used in the range of 30 to 50 wt./wt. of the total composition.

5. The process as claimed in any one of claims 1 to 4, wherein the non-ionic surfactant is selected from polyoxyethylene ethers of cetearyl alcohol, cetyl alcohol, myristyl alcohol, behenyl alcohol, lauryl alcohol, or isostearyl alcohol.

6. The process as claimed in any one of claims 1 to 5, wherein at least one non-ionic surfactant of the at least two non-ionic surfactants is selected from polyoxyethylene ethers of lauryl alcohol.

7. The process as claimed in claim 6, wherein other non-ionic surfactant is selected from polyoxyethylene ethers of...
cetearyl alcohol, cetyl alcohol, myristyl alcohol, behenyl alcohol, or isostearyl alcohol.

8. The process as claimed in any one of claims 1 to 7, wherein the humectant is:

 a) selected from: glycerol, ethylene glycol, polyethylene glycol (PEG), diethylene glycol, ethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycerin, polyoxyethylene glycerin, alpha methyl glycerin, urea, triethanolamine lactate, sorbitol, xylitol, sorbide, poly oxyethylene sorbitol, mannitol, glucose or propylene glycol glucoside; and/or

 b) used in the range of 5 to 15 wt./wt. of the total composition.

9. The process as claimed in any one of claims 1 to 8, wherein the carbon black pigment is:

 a) used in the range of 50 to 60 wt./wt. of the composition; and/or

 b) selected from: D & C Black pigment no. 2, FW 200, Special black 4, Printex black, Philips black, Black N 330, or Black 220.

10. The process as claimed in claim 9, option b), wherein the carbon black pigment is D & C Black pigment no. 2, for the cosmetics application.

11. The process as claimed in claim 9, option b), wherein the carbon black pigment is selected from FW 200, Special black 4, Printex black, Philips black, Black N 330, or Black 220, for the ink or paint applications.

12. A carbon black pigment obtainable by the process as defined in any one of claims 1 to 11, the pigment having a moisture content in the range of from 0.5 to 2 wt./wt. % and a mean particle size of at least 200 microns.

13. Use of the carbon black pigment as claimed in claim 12 in cosmetics, paint or ink applications.

14. A method for making a cosmetic product; the method comprising the step of: blending the carbon black pigment as claimed in claim 12 with at least one other cosmetic ingredient.

15. A method for making a water-based ink or paint, comprising the step of: blending the carbon black pigment as claimed in claim 12 with at least one vehicle or medium that is suitable for an ink or paint respectively, optionally along with one or more additive suitable for an ink or paint respectively.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 3 844 811 A (BRYNKO C) 29 October 1974 (1974-10-29) * example all *</td>
<td>1-15</td>
<td>-----</td>
</tr>
</tbody>
</table>

TECHNICAL FIELDS SEARCHED (IPC)

- C09C
- C09D

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Hague</td>
<td>19 September 2018</td>
<td>Mattheis, Chris</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- X: particularly relevant if taken alone
- Y: particularly relevant if combined with another document of the same category
- A: technological background
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- &: member of the same patent family, corresponding document
- T: theory or principle underlying the invention
- P: intermediate document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-09-2018

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6171382 B1 09-01-2001</td>
<td>DE 19824947 A1 09-12-1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 0962504 A1 08-12-1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 2000007936 A 11-01-2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 6171382 B1 09-01-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 2709752 A2 26-03-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 2014519497 A 14-06-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KR 20140117256 A 07-10-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 2014338138 A1 13-11-2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO 2012156965 A2 22-11-2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE 69721517 D1 05-06-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE 69721517 T2 18-03-2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 0896986 A1 17-02-1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KR 20050075770 A 21-07-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KR 20050075771 A 21-07-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 6123759 A 26-09-2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

US 3844811 A 29-10-1974 NONE

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 2065371 A [0005]
- US 2635057 A [0005]
- US 3011902 A [0005]
- US 4102967 A [0005]
- US 2850403 A [0006]
- US 2908586 A [0006]
- US 2639225 A [0006]
- US 3565658 A [0006]
- US 3645765 A [0006]
- US 3844809 A [0006]
- MY 128313 [0008]
- DK 176562 [0008]
- DK 176546 [0008]
- DE 19649756 [0008]
- DE 19638042 [0008]
- CA 2209935 [0008]
- WO 2007002030 A [0008]
- US 7033429 B [0009]