MOBILE TERMINAL WITH TOUCH SCREEN AND METHOD OF CAPTURING IMAGE USING THE SAME

A mobile terminal is provided. The mobile terminal comprises a camera for capturing an image, a touch screen (151) configured to display the image and to receive a touch input being a contact touch with the touch screen, and a controller. The controller is configured to display a preview image of the image to be captured on the touch screen (151), display an auto focus guide (AFG) on the touch screen (151), indicating a position where focusing will be performed, determine whether the touch input is a drag-and-drop operation, move the auto focus guide (AFG) to a position (B) where the drop has occurred, and perform auto focusing on the position where the auto focus guide (AFG) is displayed. Further provided are a corresponding method, computer program, and computer-readable storage medium.

FIG. 8A

AFG

Obj1

Obj2

151
Description

FIELD OF THE INVENTION

[0001] The present invention relates to image capturing by a mobile terminal equipped with a camera and a touch screen. The camera of the mobile terminal is controlled via the touch screen. The present invention also relates to a method of focusing on a specific area of an image to be captured via the camera by designating the specific area on the touch screen of the mobile terminal.

DISCUSSION OF THE RELATED ART

[0002] As the functionality of terminals, such as personal computers, notebooks, and mobile phones, is diversified, the terminals have been implemented as multimedia players capable of performing complex functions. For example, the complex functions performed by the terminals include capturing images and video, playing music or video files, providing games, and receiving broadcasts.

[0003] Terminals can be divided into mobile terminals and stationary terminals according to their motility. Mobile terminals can also be divided into handheld terminals and vehicle mount terminals depending on how they are carried while moving.

[0004] In order to support and increase the functionality of terminals, structural and/or software portions of the terminals have been continuously improved. In recent years, a touch screen has been adopted by a variety of terminals including mobile terminals. The touch screen tends to have a large screen and is used as an input and output device to meet various needs of a user to overcome physical limits, such as the size of the terminals. Further, efforts have been made to diversify the complex functions of the terminals as multimedia players according to the needs of users and to provide a user interface (UI) capable of performing these functions conveniently.

SUMMARY OF THE INVENTION

[0005] The invention is defined by the appended independent claims. Particular embodiments of the invention are defined by the dependent claims.

[0006] According to an embodiment of the present invention, a method of capturing an image in a mobile terminal including a camera and a touch screen includes displaying a preview of the image to be captured on the touch screen, receiving a first touch input on an area of the preview, the first touch input being a contact touch with the touch screen, recognizing the area of the preview receiving the first touch input as an area to be focused, focusing on the recognized area of the preview, determining whether the recognized area is focused, and capturing the image when the recognized area is focused. In one aspect of the present invention, the image is captured when a second touch input is received, the second touch input releasing the contact touch from the touch screen. Preferably, the image is captured immediately after receiving the second touch input.

[0007] In one aspect of the present invention, the area of the preview receiving the first touch input is recognized as the area to be focused when the first touch input is maintained for a first predetermined time. The method of capturing an image may further include displaying a focusing guide on the touched area upon recognizing the touched area.

[0008] In one aspect of the present invention, the image is captured when the first touch input is maintained for a second predetermined time after determining that the recognized area is focused. The method may further include notifying a user when the recognized area is focused. Preferably, notifying the user includes at least one of displaying an indicator on the touch screen or outputting sound. Preferably, displaying the indicator includes blinking or changing a color of a focusing indicator, or blinking or changing a color of a focusing guide displayed on the preview.

[0009] According to an embodiment of the present invention, a method of capturing an image in a mobile terminal including a camera and a touch screen includes displaying a focusing guide on a central area of a preview of the image to be captured on the touch screen, receiving a touch and drop input on the touch screen, wherein the focusing guide is touched, dragged to and dropped on an area of the preview to be focused, recognizing the area of the preview to be focused, focusing on the recognized area of the preview, determining whether the recognized area is focused, and capturing the image when the recognized area is focused. In one aspect of the present invention, the image is captured when the drop action is finished and a contact touch with the touch screen is released.

[0010] In one aspect of the present invention, the area of the preview where the focusing guide has been dropped is recognized as the area to be focused when a contact touch is maintained on the area of the preview where the focusing guide has been dropped for a predetermined time.

[0011] According to an embodiment of the present invention, a method of capturing an image in a mobile terminal including a camera and a touch screen includes displaying a preview of the image to be captured on the touch screen, receiving a touch input on an area of the preview, the touch input comprising a contact touch and release of the contact touch, recognizing the area receiving the touch input as an area to be focused when the contact touch is maintained on the area of the preview for a predetermined time, focusing on the recognized area of the preview, determining whether the recognized area is focused, notifying a user when the recognized area is focused, and capturing the image at the end of the touch input when the contact touch is released from the touch screen.

[0012] According to an embodiment of the present in-
vention, a mobile terminal includes a camera capturing an image, a touch screen displaying the image and receiving a first touch input, the first touch input being a contact touch with the touch screen, and a controller configured to display a preview of the image to be captured on the touch screen, recognize an area of the preview receiving the first touch input as an area to be focused, focus on the recognized area, determine whether the recognized area is focused, and capture the image via the camera when the recognized area is focused. In one aspect of the present invention, the controller is further configured to capture the image immediately after receiving the second touch input.

In one aspect of the present invention, the controller is further configured to recognize the area of the preview receiving the first touch input as the area to be focused when the first touch input is maintained on the touch screen for a first predetermined time. Preferably, the touch screen further displays a focusing guide on the touched area upon recognizing the touched area.

According to an embodiment of the present invention, a mobile terminal includes a camera capturing an image, a touch screen displaying the image and receiving a touch and drop input, and a controller configured to display a focusing guide on a central area of a preview of the image to be captured on the touch screen, recognize the area of the preview receiving the touch and drop input as an area to be focused when the focusing guide is touched, dragged and dropped on the area to be focused, focus on the recognized area where the focusing guide has been dropped, determine whether the recognized area is focused, and capture the image via the camera when the recognized area is focused. In one aspect of the present invention, the controller is further configured to capture the image when the drop action is finished and a contact touch with the touch screen is released.

In one aspect of the present invention, the controller is further configured to recognize the area of the preview where the focusing guide has been dropped as the area to be focused when a contact touch is maintained on the area of the preview where the focusing guide has been dropped for a predetermined time.

According to an embodiment of the present invention, a mobile terminal includes a camera capturing an image, a touch screen displaying the image and receiving a touch input, the touch input comprising a contact touch and release of the contact touch, and a controller configured to display a preview of the image to be captured on the touch screen, recognize an area of the preview receiving the touch input as an area to be focused when the contact touch is maintained on the preview for a predetermined time, focus the image to the recognized area, determine whether the recognized area is focused, notify a user when the recognized area is focused, and capturing the image via the camera at the end of the touch input when the contact touch is released from the touch screen.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The above and other aspects, features, and advantages of the present invention will become more apparent upon consideration of the following description of preferred embodiments, taken in conjunction with the accompanying drawings.

Fig. 1 is a block diagram of a mobile terminal according to an embodiment of the present invention.

Fig. 2A is a perspective view of a front side of a mobile terminal according to an embodiment of the present invention.

Fig. 2B is a perspective view of a rear side of the mobile terminal shown in Fig. 2A.

Figs. 3A and 3B are front views of a mobile terminal according to an embodiment of the present invention showing an operating state.

Fig. 4 is a conceptual diagram showing the proximity depth of a proximity sensor in a mobile terminal according to an embodiment of the present invention.

Fig. 5 is a flowchart illustrating image capturing in a mobile terminal equipped with a touch screen according to an embodiment of the present invention.

Figs. 6A to 6E and 7A and 7B are diagrams illustrating image capturing via a touch screen of a mobile terminal according to another embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0019] In the following detailed description, reference is made to the accompanying drawing figures which form a part hereof, and which show by way of illustration specific embodiments of the invention. It is to be understood by those of ordinary skill in this technological field that other embodiments may be utilized, and structural, electrical, as well as procedural changes may be made without departing from the scope of the present invention. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or similar parts.

[0020] A mobile terminal related to the present invention will now be described in detail with reference to the accompanying drawings. It is to be noted that the suffixes
of constituent elements used in the following description, such as "module" and "unit", are simply used by considering the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this specification may include, for example, mobile phones, smart phones, notebooks computers, terminals for digital changeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this terminologies "module" and "unit" can be used interchangeably. Accordingly, the easiness of writing this specification, but are not particularly given importance and roles. Accordingly, the terminologies "module" and "unit" can be used interchangeably. Further, a mobile terminal described in this
The image frames processed in the camera 121 may be stored in the memory 160 or transmitted to the outside via the wireless communication unit 110. Two or more cameras 121 may be included according to the configuration aspect of a terminal.

The microphone 122 receives external sound signals in various modes, such as a phone call mode, a recording mode, and a voice recognition mode, and processes the sound signals into electrical voice data. The processed voice data can be converted into a form, which can be transmitted to a mobile communication base station through the mobile communication module 112, for example, in the phone call mode, and then output as a sound or voice via the output unit 150 such as an audio output unit 152. Various noise removing algorithms for removing noise occurring in the course of receiving external sound signals may be implemented in the microphone 122.

The user input unit 130 generates input data responsive to user manipulation of an associated terminal or terminals. Examples of the user input unit 130 include a keypad, a dome switch, a jog wheel, a jog switch, and a touchpad, such as static pressure/capacitance.

The sensing unit 140 senses a current status of the mobile terminal 100 and generates a sensing signal for controlling an operation of the mobile terminal 100. For example, the sensing unit 140 detects an open/close status of the mobile terminal 100, a position of the mobile terminal 100, a presence or absence of user contact with the mobile terminal 100, orientation of the mobile terminal 100, and acceleration/deceleration of the mobile terminal 100. For example, when the mobile terminal 100 is configured as a slide-type mobile terminal, the sensing unit 140 senses whether a sliding portion of the mobile terminal 100 is open or closed. Other examples include the sensing unit 140 sensing the presence or absence of power provided by the power supply 190, the presence or absence of a coupling or other connection between the interface unit 170 and an external device. The sensing unit 140 may further include a proximity sensor 141 which is described below in more detail.

The output unit 150 is configured to generate outputs associated with the sense of sight, the sense of hearing, tactile sense, and so on and may include a display 151, the audio output unit 152, an alarm unit 153, a haptic module 154 and the like.

The display 151 displays information processed in the mobile terminal 100. For example, when the mobile terminal 100 is in a phone call mode, the display 151 displays a user interface (UI) or a graphic user interface (GUI), which is associated with a phone call. When the mobile terminal 100 is in a video call mode or a photographing mode, the display 151 displays photographed and/or received images, UI or GUI.

The display 151 may be implemented using known display technologies including, for example, a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT-LCD), an organic light-emitting diode display (OLED), an adjustable display and a three-dimensional display. Some of the displays 151 may be configured in a transparent type or a light-transmitting type, enabling the outside to be seen therethrough. This is called a transparent display. Representative examples of the transparent display include a transparent LCD. Some of the displays 151 may also be configured in a rear-side structure or light-transmitting type of the display 151. Such configurations enable a user to see objects located in the rear of a terminal body through an area occupied by the display 151 of the terminal body.

Two or more displays 151 may be present according to the configuration type of the mobile terminal 100. For example, a plurality of the displays 151 may be arranged with them being spaced apart from each other or integrally on one surface of the mobile terminal 100 and arranged on different surfaces of the mobile terminal 100.

When the display 151 and a touch sensor, which is a sensor for sensing a touch operation, constitute a mutually layered structure or a touch screen, the display 151 may also be used as an input device as well as an output device. The touch sensor may have a form such as a touch film, a touch sheet, and a touch pad.

The touch sensor may be configured to convert a change in the pressure applied to a specific portion of the display 151 or electrostatic capacitance occurring at a specific portion of the display 151 into an electrical input signal. The touch sensor may be configured to sense pressure at the time of touch as well as a touched position and area.

When a touch input is received by the touch sensor, a corresponding signal(s) is sent to a touch controller. The touch controller processes the signal(s) and transmits corresponding data to the controller 180. Thus, the controller 180 can determine which area of the display 151 has been touched.

The proximity sensor 141 may be positioned in an internal area of the mobile terminal 100, which is surrounded by the touch screen, or near the touch screen. The proximity sensor 141 refers to a sensor for sensing objects approaching a specific detection surface or whether objects exist nearby without a direct contact by employing electromagnetic force or infrared rays. The proximity sensor 141 has a longer lifespan than that of a contact type sensor and also has increased efficiency.

Examples of the proximity sensor 141 include a transmit type photoelectric sensor, a direct reflection type photoelectric sensor, a mirror reflection type photoelectric sensor, a high frequency oscillation type proximity sensor, an electrostatic capacitance type proximity sensor, a magnetic type proximity sensor, and an infrared proximity sensor.

When the touch screen is an electrostatic type,
the touch screen is configured to sense the proximity of a pointer based on a change in electric field according to the proximity of the pointer. In this case, the touch screen (touch sensor) may be classified as a proximity sensor.

[0046] Hereinafter, for convenience of description, a behavior in which a pointer comes close to the touch screen without touching the touch screen and, therefore, the pointer is recognized as if it exists on the touch screen is referred to as a "proximity touch", and a behavior in which a pointer is actually touched on the touch screen is referred to as a "contact touch". A proximity touch position of the pointer on the touch screen refers to a position where the pointer vertically corresponds to the touch screen when the pointer becomes the proximity touch.

[0047] The proximity sensor 141 is configured to sense a proximity touch action and a proximity touch pattern, which includes, for example, a proximity touch distance, a proximity touch direction, a proximity touch speed, a proximity touch time, a proximity touch position, and a proximity touch moving status. Information corresponding to the sensed proximity touch operation and the proximity touch pattern may be output on a touch screen.

[0048] The audio output unit 152 may output audio data, which is received from the wireless communication unit 110 or stored in the memory 160, in various modes including a call-receiving mode, a call-placing mode, a recording mode, a voice recognition mode and a broadcast reception mode. The audio output unit 152 outputs audio relating to a particular function, for example, call received or message received, which is performed in the mobile terminal 100. The audio output unit 152 may be implemented using receivers, speakers, buzzers, and the like.

[0049] The alarm unit 153 outputs signals to inform the occurrence of events in the mobile terminal 100. For example, the events occurring in the mobile terminal 100 include signals, including call-received and message-received, a key entry signal, and a touch input. The alarm unit 153 may also output signals to inform the occurrence of events in different ways other than the audio or video signal, for example, through vibration. The video signal or the audio signal may also be output through the display 151 or the audio output unit 152.

[0050] The haptic module 154 generates a variety of haptic effects which can be felt by a user. One of representational examples of the haptic effects, which are generated by the haptic module 154, includes a vibration effect. The intensity and pattern of vibration generated by the haptic module 154 can be controlled. For example, different vibrations may be combined or output or sequentially output.

[0051] The haptic module 154 may generate various haptic effects, for example, an effect caused by the stimulus of arrangement of pins, which move vertically to a contact skin surface, an effect caused by a stimulus through spraying force or suction force by the air through an injection nozzle or an inlet, an effect caused by a stimulus passing over the skin surface, an effect caused by a stimulus through the contact of an electrode, an effect caused by a stimulus employing electrostatic force, and an effect caused by the reappearance of a feeling of cold and warmth employing an element that may absorb or generate heat, as well as the vibration effect.

[0052] The haptic module 154 may be implemented to not only transfer the haptic effects through a direct contact, but also make the haptic effects felt through a user's body parts such as a finger and an arm. Two or more haptic modules 154 may be included according to a configuration of the mobile terminal 100.

[0053] The memory 160 may store programs for an operation of the controller 180 and also temporarily store input/output data, such as phonebook data, messages, pictures, and video. The memory 160 may store data relating to various patterns of vibrations and sounds, which are output at the time of touch entry on a touch screen.

[0054] The memory 160 may store at least one type of storage media, including a flash memory type, a hard disk type, a multimedia card microphione type, card type memory such as SD or XD memory, random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), magnetic memory, magnetic disk, and optical disk. The mobile terminal 100 may also operate in association with a web storage that performs a storage function of the memory 160 on the Internet.

[0055] The interface unit 170 is often implemented to couple the mobile terminal 100 with external devices. The interface unit 170 is configured to receive data or power from the external devices and transfer the data or power to each component within the mobile terminal 100 or transmit data within the mobile terminal 100 to the external devices. For example, a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, an identity module card port, an audio input/output (I/O) port, a video I/O port, and an earphone port may be included in the interface unit 170.

[0056] The identity module is a chip that stores various pieces of information for authenticating usage right of the mobile terminal 100 and may include a user identify module (UIM), a subscriber identity module (SIM), a universal subscriber identity module (USIM) and the like. An apparatus equipped with the identity module or identity device may be fabricated in a smart card form. Accordingly, the identity device may be connected to the mobile terminal 100 via a port.

[0057] The interface unit 170 may become a passage through which power source from an external cradle is supplied to the mobile terminal 100 when the mobile terminal 100 is coupled to the cradle or a passage through which a variety of command signals input from the cradle are transferred to the mobile terminal 100 by a user. The variety of command signals or power source input from the cradle may operate as signals to recognize that the
mobile terminal 100 has been mounted in the cradle accurately.

[0058] The controller 180 typically controls the overall operations of the mobile terminal 100. For example, the controller 180 performs the control and processing associated with voice calls, data communications, and video calls. The controller 180 may include a multimedia module 181 for multimedia playback. The multimedia module 181 may be implemented within the controller 180 or separately from the controller 180. Further, the controller 180 may perform a pattern recognition processing in which writing entry or drawing entry performed on a touch screen can be recognized as text and images.

[0059] The power supply 190 provides internal power source and/or external power source required by various components under the control of the controller 180.

[0060] The various embodiments described herein may be implemented in a recording medium readable by a computer or its similar devices by employing, for example, software, hardware or some combinations thereof.

[0061] For a hardware implementation, the embodiments described herein may be implemented within at least one of application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein or a selective combination thereof. In some cases, the embodiments may be implemented by the controller 180.

[0062] For a software implementation, the embodiments such as procedures and functions may be implemented with separate software modules, each of which performs one or more of the functions and operations described herein. Software codes may be implemented using a software application written in any suitable programming language. The software codes may be stored in the memory 160 and executed by the controller 180.

[0063] Fig. 2A is a perspective view of a front side of the mobile terminal according to an embodiment of the present invention. In this embodiment, the mobile terminal 100 has a bar-type terminal body. The present invention is not limited to the above example, but may be applied to a variety of configurations in which two or more bodies are coupled in such a way as to move relative to each other, such as slide-type, folder-type, swing-type and swivel-type, and combinations thereof.

[0064] A body includes a case, such as a casing, a housing, or a cover, constituting an external appearance of the mobile terminal 100. In the present embodiment, the case is divided into a front case 101 and a rear case 102. A variety of electronic components are built in a space formed between the front case 101 and the rear case 102. At least one intermediate case may be further disposed between the front case 101 and the rear case 102. The cases may be fabricated by injecting synthetic resin or fabricated to have metal materials such as stainless steel (STS) or titanium (Ti).

[0065] As shown in Fig. 2A, the display 151, the audio output unit 152, the camera 121, the user input unit 130 (131, 132), the microphone 122, and the interface unit 170 are disposed in the terminal body, mainly, on the front case 101.

[0066] The display 151 occupies the greater part of a main surface of the front case 101. The audio output unit 152 and the camera 121 are disposed in an area adjacent to one of both ends of the display 151, and the user input unit 131 and the microphone 122 are disposed in an area adjacent to the other of both ends of the display 151. The user input unit 132 and the interface unit 170 are disposed on the sides of the front case 101 and the rear case 102.

[0067] The user input unit 130 is manipulated in order to receive commands for controlling the operations of the mobile terminal 100 and may include the plurality of user input units 131 and 132. The user input units 131 and 132 may also be collectively referred to as a ‘manipulating portion’ and may adopt any kind of a method as long as it has a tactile manner, which allows a user to manipulate the user input units 131 and 132 while feeling a tactile sense.

[0068] Contents input by first and second manipulating portions may be set in various ways. For example, the first manipulating portion may be configured to receive commands, such as start, stop, and scroll, and the second manipulating portion may be configured to receive commands, such as a volume control of audio output from the audio output unit 152 or switching of the display 151 to a touch recognition mode.

[0069] Fig. 2B is a perspective view of a rear side of the mobile terminal 100. Referring to Fig. 2B, an additional camera 121' may be mounted on a rear side of the terminal body or in the rear case 102. The camera 121' may be a camera, which faces a direction that is substantially opposite to a direction faced by the camera 121 shown in Fig. 2A and have pixels different from that of the camera 121.

[0070] For example, the camera 121 may be operated to capture an image of a user’s face with a relatively lower resolution that is sufficient to transmit the captured image to a counterpart party during a video communication. In contrast, the camera 121' may be operated to generate a relatively higher resolution image in order to obtain higher quality pictures for later use or for communicating to others. The cameras 121 and 121' may be installed in the terminal body such that they can be rotated or popped up.

[0071] A flash 123 and a mirror 124 may be further disposed adjacent to the camera 121'. The flash 123 irradiates light to a subject when the subject is photographed by the camera 121'. The mirror 124 is useful for assisting a user to position the camera 121 in a self-portrait mode.

[0072] An audio output unit 152' may be further dis-
posed on the rear side of the terminal body. The audio output unit 152 may implement a stereo function together with the audio output unit 152 of the front side, as shown in Fig. 2A, and may be used to implement a speakerphone mode at the time of calls.

[0073] An antenna 124 for receiving broadcast signals other than an antenna for calls may be further disposed on the side of the terminal body. The antenna 124, constituting a part of the broadcast receiving module 111, as shown in Fig. 1, may be configured to be retracted from the terminal body.

[0074] The power supply 190 for supplying power to the mobile terminal 100 may be mounted in the terminal body. The power supply 190 may be configured internally or externally to the terminal body such that it is directly detachable therefrom.

[0075] A touch pad 135 for sensing touch may be further mounted in the rear case 102. The touch pad 135 may also be configured in a light-transmitting type display. When the display 151 is configured to output sight information from its both sides, the sight information can also be recognized even through the touch pad 135. Information output to both sides of the display 151 may be controlled by the touch pad 135. Unlike the above described embodiment, in one aspect of the present invention, a display 151 may be further mounted in the touch pad 135 and, therefore, a touch screen may be disposed in the rear case 102.

[0076] The touch pad 135 may operate in association with the display 151 of the front case 101. The touch pad 135 may be disposed in parallel to the display 151 in the rear of the display 151. The touch pad 135 may have a size which is identical to or smaller than that of the display 151.

[0077] Hereinafter, an associated operation method of the display 151 and the touch pad 135 is described with reference to Figs. 3A and 3B. Figs. 3A and 3B are front views of a mobile terminal according to an embodiment of the present invention. Various kinds of visual information may be displayed on the display 151. Such information may be displayed in the form of text, numerals, symbols, graphics, icons and the like.

[0078] In order to input such information, at least one of the text, numerals, symbols, graphics and icons may be displayed as a specific arrangement such that it may be implemented in the form of a keypad. This keypad may be referred to as a so-called 'soft key'.

[0079] Fig. 3A illustrates that touch applied to the soft keys is input through the front side of a terminal body. The display 151 may be operated over the entire region or operated in the state in which the display is divided into a plurality of regions. In the latter case, the plurality of regions may be configured such that they operate in conjunction with each other.

[0080] For example, an output window 151a and an input window 151b are displayed on upper and lower sides of the display 151, respectively. Soft keys 151c, on which numerals for entering a number, such as a telephone number, are displayed, are output to the input window 151b. When the soft keys 151c are touched, numerals corresponding to the touched soft keys are displayed on the output window 151a. If the first manipulating portion or the user input unit 131 is manipulated, call connection to a telephone number displayed on the output window 151a is attempted.

[0081] Fig. 3B illustrates that touch applied to the soft keys is input through the rear side of a terminal body. While the terminal body is vertically disposed in portrait orientation in Fig. 3A, in Fig. 3B, the terminal body is horizontally disposed in landscape orientation. The display 151 may be configured to have its output screen changed according to the orientation of the terminal body.

[0082] Further referring to Fig. 3B, a text entry mode is actuated in the mobile terminal 100. An output window 135a and an input window 135b are displayed on the display 151. Soft keys 135c in each of which at least one of text, symbols, and numerals is displayed may be arranged in plural number in the input window 135b. The soft keys 135c may be arranged in a QWERTY key form.

[0083] When the soft keys 135c are touched through a touch pad 135, text, numerals, or symbols corresponding to the touched soft keys, are displayed on the output window 135a. As described above, touch input through the touch pad 135 can prevent the soft keys 135c from being covered with fingers at the time of touch as compared with touch input through the display 151. When the display 151 and the touch pad 135 are transparent, fingers located in the rear of the terminal body can be seen through the naked eye, enabling more accurate touch input.

[0084] The display 151 or the touch pad 135 may be configured to receive touch input through scrolling, as well as the input method disclosed in the above discussed embodiments. A user can move a cursor or pointer located in an object, for example, an icon, which is displayed on the display 151, by scrolling the display 151 or the touch pad 135. Furthermore, when a finger is moved on the display 151 or the touch pad 135, a path along which the finger moves may be visually displayed on the display 151. This may be useful when editing images displayed on the display 151.

[0085] One of the functions of the mobile terminal 100 may be executed when the display 151 or touch screen and the touch pad 135 are touched at the same time within a specific time period. When the display 151 or touch screen and the touch pad 135 are touched at the same time, a user may clamp the terminal body using his thumb and index finger. One of the functions may be, for example, activation or inactivation of the display 151 or the touch pad 135.

[0086] The proximity sensor 141 described with reference to Fig. 1 is described in more detail with reference to Fig. 4. Fig. 4 illustrates the proximity depth of the proximity sensor. As shown in Fig. 4, when a pointer, such as a user's finger, approaches a touch screen, the proximity sensor 141 disposed within or near the touch screen...
detects such approach and outputs a proximity signal. [0087] The proximity sensor 141 may be configured to output a different proximity signal depending on a distance between the pointer in proximity and the touch screen, and the distance is referred to as a "proximity depth." A distance in which a proximity signal is output when a pointer approaches the touch screen is called a detection distance. In short, the proximity depth can be determined by comparing proximity signals output from a plurality of proximity sensors 141 detecting different proximity depths.

[0088] Fig. 4 shows a cross section of a touch screen in which the proximity sensor 141 capable of detecting, for example, three proximity depths is disposed. Alternatively, a proximity sensor 141 capable of detecting less than three, or four or more proximity depths is also possible. Specifically, when the pointer is directly touched on the touch screen (D0), it is recognized as a contact touch. When the pointer is separated from the touch screen at a distance D1 or less, it is recognized as a proximity touch of a first proximity depth. When the pointer is separated from the touch screen by more than a distance D1 and less than a distance D2, it is recognized as a proximity touch of a second proximity depth. When the pointer is separated from the touch screen by more than a distance D2 and less than a distance D3, it is recognized as a proximity touch of a third proximity depth. In addition, when the pointer is separated from the touch screen by a distance D3 or more, it is recognized that a proximity touch is released.

[0089] Accordingly, the controller 180 recognizes the proximity touch as various input signals according to a proximity distance or a proximity position of the pointer with respect to the touch screen and can perform various operation controls based on the recognized various input signals. In the following description of the present invention, the display 151 is implemented as a touch screen and the term touch screen 151 will be used instead of the display 151. Further, in the following description, 'touch' includes both a proximity touch and a contact or direct touch. Moreover, 'touch input' includes all types of input signals corresponding to various types of touches, such as touch down, touch up, the lapse of a present sustain time subsequent to touch, drag and drop.

[0090] Fig. 5 is a flowchart illustrating a process of capturing an image in a mobile terminal equipped with a touch screen according to an embodiment of the present invention. Figs. 6A to 6E and 7A and 7B illustrate a process performed on the touch screen of the mobile terminal, each figure corresponding to a different step in the flowchart shown in Fig. 5. An image capturing method in the mobile terminal 100 including the touch screen according to an embodiment of the present invention is described with reference to Figs. 5 to 7B.

[0091] When a camera function is selected from a menu displayed on the touch screen 151, including the sensing unit 140, or when a camera function of the camera 121 or 121' in the mobile terminal 100 is initiated in response to a user input received via the user input unit 130 [S210], the controller 180 displays a preview of an image input or received through the camera 121 or 121' on the touch screen 151 [S220]. Fig. 6A shows an example in which S220 is implemented, displaying the preview image on the touch screen 151. The preview image is displayed on the touch screen 151 when an image is input through the camera 121 or 121'. For example, the image is processed into a low-resolution image and then displayed on the touch screen 151.

[0093] Further referring to Fig. 6A, an auto focus guide (AFG), indicating a position on which focusing will be performed or a focus window for an image to be captured, is generally displayed at a central portion of the touch screen 151. In one aspect of the present invention, the AFG is displayed at the central portion of the touch screen 151 by default when the camera function is initiated. Alternatively, the AFG may not be displayed when the camera function is initiated until a touch input is received on the preview image.

[0094] In the image capturing method according to an embodiment of the present invention, a user moves the AFG to a specific position on the touch screen 151 such that auto focusing is performed on the specific position where the AFG is displayed. For example, when a preview image displayed on the touch screen 151 includes two objects Obj1 and Obj2 as shown in Fig. 6A, the user touches any one of the two objects to select an object to be focused. For example, in Fig. 6B, the first object Obj1 is selected by touching Obj 1 with the user’s finger or a stylus pen.

[0095] When an edge with a sharpness equal to or higher than a specific level is retrieved at the same position from image analysis of a plurality of images input via the camera 121 or 121’, this is referred to as an object. According to the present embodiment, auto focusing is performed when the focus window is moved to a specific position on the touch screen 151 by a user’s touch input. Accordingly, in the present invention, focusing on an object which is not located at the center of the touch screen 151 is possible.

[0096] In order to perform successful focusing with respect to a position on a preview image selected by touch according to the auto focusing method described below, an object or a target on which the focusing will be performed must be present at the selected position. Accordingly, if focusing is performed on the selected position, focusing is performed also on the object present at the selected position.

[0097] Accordingly, the controller 180 performs a focusing operation on an object present at a corresponding position by focusing on a position corresponding to a coordinate value, which is input according to touch on the touch screen 151, thereby without determining whether the object is present in the focus window or without conducting additional image analysis such as determination of sharpness for each pixel of the preview image. If fo-
focusing fails due to absence of an object at a position corresponding to a coordinate value input according to the touch, the controller 180 may perform focusing on an object that is adjacent to the position by widening the AFG or focus window as wide as a preset range based on the corresponding coordinate value and then re-performing focusing on the adjacent object.

[0098] While the number of objects displayed on the preview image is two in Figs. 6A-8B for convenience of description, this configuration is only for illustrative purpose. It is to be understood that the number of objects is not limited and auto focusing may be performed when two or more objects are present on the preview image. The focusing according to the present invention can be performed with respect to any selected specific position and regardless of the position of an object on the screen. Therefore, an object that is selected by a user may be any object displayed on the preview image. However, the controller 180 may be configured such that edge portions of the touch screen 151 are not selected as a position for auto focusing, as auto focusing may not be performed successfully on the edge portions.

[0099] Fig. 7A shows an example in which the second object Obj2 is touched and selected on the preview image initially shown in Fig. 6A. The controller 180 determines whether touch input has been received on the touch screen 151 [S230]. While there are various types of touch input and the method of the touch input is not limited, in the present embodiment, touch is sustained for a preset period of time in order to be recognized as touch input for auto focusing.

[0100] When the touch screen 151 is touched and the touch or contact is sustained for a preset period of time, for example, one second or more, the controller 180 moves the focus window to the touched position and then displays the AFG at the position of the focus window, as shown in Fig. 6C. Next, the controller 180 performs auto focusing at the position of the focus window where the touch input has been received [S240]. Control of the camera 121 or 121' for auto focusing may employ a known auto focusing mechanism depending on the type of the camera 121 or 121'. For example, the controller 180 controls focusing on the first object Obj1, present at the selected position, to be performed by directly controlling a lens provided in the camera 121 or 121' and a motor for driving the lens.

[0101] If the auto focusing on the first object Obj1 present at the selected position is successful [S241: Y], the controller 180 informs a user that auto focusing has been successful via the output unit 150 [S243]. For example, the controller 180 outputs a shutter sound through the alarm unit 153 and/or changes the color of the AFG, as shown in Fig. 6D. Further, the controller 180 may perform one or more of a variety of graphic representation in combination, including the output of a sound, a change in the color of an image and/or text on the touch screen 151, flicker and the like.

[0102] Once the user is informed about the result of focusing on the first object Obj1 present at the selected position, the user subsequently inputs an image capturing command to take a picture or capture the focused image. According to an embodiment of the present invention, the image capturing command is released of the contact or touch, for example, by taking off the user's finger or the stylus pen from the position where the contact or touch is currently sustained.

[0103] Accordingly, the controller 180 determines whether an image capturing command has been input by a user [S250]. If it is determined that the image capturing command has been input, the controller 180 immediately controls the camera 121 or 121' to capture an image focused on the first object Obj1 [S260], as shown in Fig. 6E. While Fig. 6E shows an image captured by performing auto focusing on the first object Obj1, Fig. 7B shows an image captured by performing auto focusing on the second object Obj2.

[0104] As shown in Figs. 6E and 7B, according to the present invention, a position on which auto focusing will be performed, that is, a focus window can be changed by a user. Accordingly, in a captured image, any one object is focused and may be displayed sharply while the remaining objects are not focused and may look blurred. Therefore, even a non-professional photographer can achieve a high-quality photograph, such that depth of a close subject is properly represented, by using the image capturing method according to the present invention.

[0105] While the controller 180 may perform image capturing by determining the end of the contact touch as the input for an image capturing command as described above, thus capturing the image right after the contact touch has been released, the controller 180 may also be configured to recognize the input for the image capturing command when a preset period of time has elapsed from the end of the contact touch, thus performing the image capturing after the preset period of time since the release of the contact touch.

[0106] Alternatively, after the focusing has been successful after the touch had been sustained for a preset period of time, the controller 180 may inform a user of the successful focusing such that the user can finish the touch input. Thereafter, if there is no additional touch input from the user for another preset period of time since the focusing was successful or the contact touch was released, the controller 180 recognizes an image capturing command after another preset period of time since the release of the contact touch and controls the camera 121 or 121' to capture an image at that time point.

[0107] Alternatively, the controller 180 may be configured to display a specific icon for inputting an image capturing command on the touch screen 151 when a camera function begins or the focusing has been successful such that the image is captured when the icon is selected by the user.

[0108] Figs. 8A and 8B illustrate a process of performing image capturing in a mobile terminal according to an embodiment of the present invention. Some of the above
When the function of the camera 121 or 121' is described features may also be applied to this embodiment. [0109] When the function of the camera 121 or 121' is initiated S210 as illustrated in Fig. 5, a preview image is displayed on the touch screen 151 at S220. Subsequently, the controller 180 determines whether touch input has been received on the touch screen 151 at S230. In the present embodiment, the position to be focused on the preview image is controlled by touch input comprising a "drag-and-drop" operation. [0110] Therefore, upon receiving the touch input, the controller 180 determines whether the touch input is a "drag-and-drop" operation. In the present invention, the "drag-and-drop" operation refers to touching or contacting an AFG on a preview image screen as shown in Fig. 8A, and then sliding a finger or a touching object from the initially contacted position or the AFG to another position, maintaining the contact with the touch screen 151 during the sliding, thus finishing the touch. This "drag-and-drop" operation includes a "touch-and-drag" operation. [0111] Referring to Fig. 8A, a user performs a drag-and-drop operation by touching the position A where the AFG is initially displayed and then sliding the finger from the touched position A to the position B where the first object Obj1 is positioned on the preview image. If touch input according to the drag-and-drop operation is generated [S230: Y in Fig. 5], the controller 180 moves a focus window to the position B where the drop has occurred and then displays the AFG at the position of the focus window, as shown in Fig. 8B. Subsequently, the controller 180 performs auto focusing operation on the position of the focus window, that is, the position B where the drop has occurred [S240]. In other words, according to this embodiment, a user moves the AFG from a first position to a second position to be focused by the "drag-and-drop" or "touch-and-drag" operation. [0112] In one aspect of the present invention, the controller 180 is configured to move the focus window and perform the auto focusing operation at the moved focus window only when the touch or contact is sustained at the position B where the drop has occurred for a period of time that is equal to or more than a preset period of time. If the auto focusing operation on the first object Obj1 or at the selected position B is successful [S241: Y], the controller 180 informs the user of the successful auto focusing [S243] via the output unit 150 such that the user can confirm the focusing with respect to the selected first object Obj1. Thereafter, an image capturing command is input, for example, by finishing or releasing the sustained touch or contact touch [S250: Y], and the controller 180 controls the camera 121 or 121' to capture the focused image of the first object Obj1, as shown in Fig. 6E [S260]. [0113] Alternative to the above described embodiment, in one aspect of the present invention, the controller 180 may be configured to move the focus window to the position B where the drop has occurred and control the camera 121 or 121' to perform the auto focusing operation immediately after the drag-and-drop operation is executed. Thereafter, if additional touch input is not entered by a user for a preset period of time, the controller 180 captures an image when the preset period of time elapses. [0114] The above described image capturing method in a mobile terminal equipped with a touch screen according to the present invention may be recorded in computer-readable recording media as a program for being executed in computers. The image capturing method in the mobile terminal equipped with the touch screen according to the present invention may be executed through software. When the image capturing is executed through the software, the constituting means of the present invention are code segments executing a necessary task. Programs or code segments may be stored in processor-readable media or transmitted through computer data signals combined with carriers over transmission media or a communication network. [0115] Computer-readable recording media include all kinds of recording devices in which data capable of being read by a computer system is stored. For example, the computer-readable recording media may include ROM, RAM, CD-ROM, DVD-ROM, DVD-RAM, magnetic tapes, floppy disks, hard disks, and optical data storages. The computer-readable recording media may also be stored and executed as codes, which are distributed into computer apparatuses connected over a network and readable by computers in a distributed manner. [0116] According to the inventive mobile terminal including the touch screen and the method of capturing images using the same, focusing can be performed on any object which is present at a specific position on a preview image to be captured by a simple touch input action. The position to be focused may be changed easily through a simple touch input method without the need for searching a menu or manipulating a key button, thereby facilitating user convenience. [0117] Further, according to the present invention, a photographing command for a camera can be input through a series of one-touch operation on a touch screen. Accordingly, usability of the device is improved without the need for separately inputting a photographing command via an external input device to manipulate the camera. [0118] It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

List of embodiments:

[0119]
1. A method of capturing an image in a mobile terminal comprising a camera and a touch screen, the method comprising:

- displaying a preview of the image to be captured on the touch screen;
- receiving a first touch input on an area of the preview, the first touch input being a contact touch with the touch screen;
- recognizing the area of the preview receiving the first touch input as an area to be focused;
- focusing on the recognized area of the preview;
- determining whether the recognized area is focused; and
- capturing the image when the recognized area is focused.

2. The method of embodiment 1, wherein the image is captured when a second touch input is received, the second touch input releasing the contact touch from the touch screen.

3. The method of any one of embodiments 1 and 2, wherein the image is captured immediately after receiving the second touch input.

4. The method of any one of embodiments 1 to 3, wherein the area of the preview receiving the first touch input is recognized as the area to be focused when the first touch input is maintained for a first predetermined time.

5. The method of any one of embodiments 1 to 4, further comprising:
 displaying a focusing guide on the touched area upon recognizing the touched area.

6. The method of any one of embodiments 1 to 5, wherein the image is captured when the first touch input is maintained for a second predetermined time after determining that the recognized area is focused.

7. A mobile terminal comprising:

- a camera capturing an image;
- a touch screen displaying the image and receiving a first touch input, the first touch input being a contact touch with the touch screen; and
- a controller configured to:

 - display a preview of the image to be captured on the touch screen;
 - recognize an area of the preview receiving the first touch input as an area to be focused;
 - focus on the recognized area;
 - determine whether the recognized area is focused; and
 - capture the image via the camera when the recognized area is focused.

8. The mobile terminal of embodiment 7, wherein the controller is further configured to capture the image when a second touch input is received, the second touch input releasing the contact touch from the touch screen.

9. The mobile terminal of embodiment 8, wherein the controller is further configured to capture the image immediately after receiving the second touch input.

10. The mobile terminal of any one of embodiments 7 to 9, wherein the controller is further configured to recognize the area of the preview receiving the first touch input as the area to be focused when the first touch input is maintained on the touch screen for a first predetermined time.

11. The mobile terminal of any one of embodiments 7 to 10, wherein the touch screen further displays a focusing guide on the touched area upon recognizing the touched area.

12. The mobile terminal of any one of embodiments 7 to 11, wherein the controller is further configured to capture the image via the camera when the first touch input is continuously maintained on the preview for a second predetermined time after the recognized area is focused.

13. The mobile terminal of any one of embodiments 7 to 12, wherein the controller is further configured to notify a user when the recognized area is focused.

14. The mobile terminal of embodiment 13, wherein the controller is configured to notify the user by at least one of displaying an indicator on the touch screen or outputting sound.

15. The mobile terminal of embodiment 14, wherein the controller is configured to display the indicator by at least one of blinking or changing a color of a focusing indicator, or blinking or changing a color of a focusing guide.

Claims

1. A mobile terminal (100) comprising:

- a camera (121, 121') for capturing an image,
- a touch screen (151) configured to display the image and to receive a touch input being a contact touch with the touch screen, and
- a controller (180) configured to:
display a preview image of the image to be captured on the touch screen (151),
display an auto focus guide (AFG) on the touch screen (151), indicating a position
where focusing will be performed,
determine whether the touch input is a drag-and-drop operation,
move the auto focus guide (AFG) to a position where the drop has occurred, and
perform auto focusing on the position where the auto focus guide (AFG) is displayed.

2. The mobile terminal (100) according to claim 1, the controller (180) being configured to move the auto focus guide (AFG) and to perform auto focusing only when the touch input is sustained at the position where the drop has occurred for a period of time that is equal to or more than a preset period of time.

3. The mobile terminal (100) according to claim 2, the controller (180) being further configured to inform the user of the successful auto focusing.

4. The mobile terminal (100) according to claim 3, the controller (180) being further configured to move the auto focus guide (AFG) and to perform auto focusing immediately after the drag-and-drop operation is executed.

5. The mobile terminal (100) according to claim 3 or 4, the controller (180) being further configured to control the camera (121, 121') to capture the image in response to the touch input being released.

6. The mobile terminal (100) according to claim 1, the controller (180) being configured to move the auto focus guide (AFG) and to perform auto focusing immediately after the drag-and-drop operation is executed.

7. The mobile terminal (100) according to claim 6, the controller (180) being further configured, if additional touch input is not received for a preset period of time, to control the camera (121, 121') to capture the image when the preset period of time elapses.

8. The mobile terminal (100) according to any one of claims 1 to 7, the controller (180) being configured to perform auto focusing on the position where the auto focus guide (AFG) is displayed by performing auto focusing on an object (Obj1) present at the position.

9. The mobile terminal (100) according to any one of claims 1 to 8, wherein the drag-and-drop operation comprises to touching or contacting the auto focus guide (AFG) displayed on the touch screen (151),

and then sliding a finger or a touching object from the initially contacted position (A) to another position (B), maintaining the contact with the touch screen (151) during the sliding.

10. The mobile terminal (100) according to any one of claims 1 to 9, being any one of: a mobile phone, a smartphone, a notebook computer, a personal digital assistant, a portable multimedia player, and a navigator.

11. A method of capturing an image by a mobile terminal, the method comprising:

displaying (S220) a preview image of the image to be captured on a touch screen comprised in the mobile terminal,
displaying an auto focus guide on the touch screen, indicating a position where focusing will be performed
receiving (S230) a touch input being a contact touch with the touch screen,
determining (S230) whether the touch input is a drag-and-drop operation,
moving the auto focus guide to a position where the drop has occurred, and
performing (S240) auto focusing on the position where the auto focus guide is displayed.

12. The method according to claim 11, wherein the auto focus guide (AFG) is moved and auto focusing is performed immediately after the drag-and-drop operation is executed.

13. The method according to claim 12, further comprising, if additional touch input is not received for a preset period of time, controlling the camera (121, 121') to capture the image when the preset period of time elapses.

14. A computer program comprising instructions which, when the computer program is executed by a processor comprised in a mobile terminal, cause the mobile terminal to carry out the method according to any one of claims 11 to 13.

15. A computer-readable storage medium having stored thereon the computer program according to claim 14.
FIG. 5

Start

Start camera function - S210

Output preview image - S220

Touch input? received

Y

Perform auto focusing - S240

N

Auto focusing successful?

Y

Inform successful auto focusing - S243

N

Image capturing command received?

Y

Capture focused image - S260

End
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* paragraph [0126] - paragraph [0128] *</td>
<td>7,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figures 7-8 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0023] - paragraph [0041] *</td>
<td>7,13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figures 1-5 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>SANG JUN LEE ET AL: "FPGA based auto focus system using touch screen",</td>
<td>1-6, 8-12,14,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, 2008. MFI</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008. IEEE INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>* paragraph [0111] *</td>
<td>7,13</td>
<td>H04N</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Hague</td>
<td>24 June 2019</td>
<td>Rocca, Delphine</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- X: particularly relevant if taken alone
- Y: particularly relevant if combined with another document of the same category
- A: technological background
- O: non-written disclosure
- P: intermediate document

- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- #: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on the European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

24-06-2019

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 4929630 B2</td>
<td>09-05-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007019685 A</td>
<td>25-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008117300 A1</td>
<td>22-05-2008</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.