LAMP FOR VEHICLE AND VEHICLE

Lamp (100) for a vehicle (10) which comprises an array module (200m) on which a plurality of micro Light Emitting Diode (LED) chips (920) is disposed, wherein the array module (200m) comprises a plurality of regions (1010, 1020, 1030, 1040, 1050) each comprising one or more arrays (200), and wherein at least one of the plurality of regions (1010, 1020, 1030, 1040, 1050) comprises stacked arrays (200), a number of which is different from a number of arrays stacked in another region among the plurality of regions.
Description

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the priority benefit of Korean Patent Application No. 10-2018-0001843, filed on January 5, 2018 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the invention

[0002] The present invention relates to a lamp for a vehicle, and the lamp.

2. Description of the Related Art

[0003] A vehicle is an apparatus that moves in a direction desired by a user riding therein. A representative example of a vehicle may be an automobile.

[0004] The vehicle includes various lamps. For example, the vehicle includes a head lamp, a rear combination lamp, and a fog lamp.

[0005] Such lamps for vehicle may be classified as lamps for securing visibility for a driver (e.g., a head lamp and a fog lamp), and lamps for notifying a simple signal (e.g., a rear combination lamp).

[0006] Various devices may be used as light sources of the lamps provided in a vehicle.

[0007] Recently, there have been efforts to utilize a plurality of micro Light Emitting Diode (LED) chips as light sources of the lamps for vehicle.

[0008] Meanwhile, a plurality of micro LED chips according to an existing technology is not suitable for the lamp for the vehicle to secure a sufficient amount.

SUMMARY OF THE INVENTION

[0009] The present invention has been made in view of the above problems, and it is one object of the present invention to provide a lamp for a vehicle, which is capable of securing a sufficient amount of light using a plurality of micro Light Emitting Device (LED) chips.

[0010] It is another object of the present invention to provide a vehicle including the lamp.

[0011] Objects of the present invention should not be limited to the aforementioned objects and other unmentioned objects will be clearly understood by those skilled in the art from the following description.

[0012] In accordance with an embodiment of the present invention, the above and other objects can be accomplished by the provision of a lamp for a vehicle, which comprises an array module on which a plurality of micro Light Emitting Diode (LED) chips is disposed, wherein the array module comprises a plurality of regions each comprising one or more arrays, and wherein at least one of the plurality of regions comprises stacked arrays, a number of which is different from a number of stacked arrays in another region among the plurality of regions.

[0013] The details of other embodiments are included in the following description and the accompanying drawings.

[0014] The embodiments of the present invention have one or more effects as follows.

[0015] First, it is possible to secure a sufficient amount of light using a plurality of micro LEDs.

[0016] Second, it is possible to realize various light outputting effects because the plurality of micro LEDs is controllable on the basis of a predetermined unit.

[0017] Third, it is possible to provide an amount of light as much as needed to each region of a light irradiation area.

[0018] Effects of the present invention should not be limited to the aforementioned effects and other unmentioned effects will be clearly understood by those skilled in the art from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] The embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:

FIG. 1 is a diagram illustrating the exterior appearance of a vehicle according to an embodiment of the present invention;

FIG. 2 is a block diagram illustrating a lamp for a vehicle according to an embodiment of the present invention;

FIGS. 3A to 3C are diagrams illustrating a lamp for a vehicle according to an embodiment of the present invention;

FIG. 4 is a diagram illustrating an array in which a plurality of micro LED chips are arranged, according to an embodiment of the present invention;

FIG. 5 is a diagram illustrating an array in which micro LED chips are arranged, according to an embodiment of the present invention;

FIG. 6 is a diagram illustrating an array module according to an embodiment of the present invention;

FIG. 7A is an example of a top view of an integrated array module according to an embodiment of the present invention;

FIG. 7B is an example of a side view of an integrated array module according to an embodiment of the present invention;

FIG. 8 is a diagram illustrating an array module in which a plurality of micro LED chips is arranged, according to an embodiment of the present invention;

FIG. 9 is a diagram schematically illustrating an array module according to an embodiment of the present invention;

FIG. 10 is a diagram illustrating an array module according to an embodiment of the present invention;
FIG. 11 is a diagram illustrating an array module according to an embodiment of the present invention; FIG. 12 is a diagram illustrating an array module according to an embodiment of the present invention; FIG. 13 is a diagram illustrating an array module according to an embodiment of the present invention; FIG. 14 is a diagram illustrating an array module according to an embodiment of the present invention; FIG. 15 is a diagram illustrating an array module according to an embodiment of the present invention; FIG. 16 is a diagram illustrating an array module according to an embodiment of the present invention; and FIGS. 17A to 17D are diagrams illustrating an array module according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0020] Hereinafter, the embodiments disclosed in the present specification will be described in detail with reference to the accompanying drawings, and the same or similar elements are denoted by the same reference numerals even though they are depicted in different drawings and redundant descriptions thereof will be omitted. In the following description, with respect to constituent elements used in the following description, the suffixes "module" and "unit" are used or combined with each other only in consideration of ease in the preparation of the specification, and do not have or serve as different meanings. Accordingly, the suffixes "module" and "unit" may be interchanged with each other. In addition, in the following description of the embodiments disclosed in the present specification, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the embodiments disclosed in the present specification rather unclear. In addition, the accompanying drawings are provided only for a better understanding of the embodiments disclosed in the present specification and are not intended to limit the technical ideas disclosed in the present specification. Therefore, it should be understood that the accompanying drawings include all modifications, equivalents and substitutions included in the scope and spirit of the present invention.

[0021] It will be understood that although the terms "first," "second," etc., may be used herein to describe various components, these components should not be limited by these terms. These terms are only used to distinguish one component from another component.

[0022] It will be understood that when a component is referred to as being "connected to" or "coupled to" another component, it may be directly connected to or coupled to another component or intervening components may be present. In contrast, when a component is referred to as being "directly connected to" or "directly coupled to" another component, there are no intervening components present.

[0023] As used herein, the singular form is intended to include the plural forms as well, unless the context clearly indicates otherwise.

[0024] In the present application, it will be further understood that the terms "comprises," includes," etc. specify the presence of stated features, integers, steps, operations, elements, components, or combinations thereof, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.

[0025] A vehicle as described in this specification may include an automobile and a motorcycle. Hereinafter, a description will be given based on an automobile.

[0026] A vehicle as described in this specification may include all of an internal combustion engine vehicle including an engine as a power source, a hybrid vehicle including both an engine and an electric motor as a power source, and an electric vehicle including an electric motor as a power source.

[0027] In the following description, "the left side of the vehicle" refers to the left side in the forward driving direction of the vehicle, and "the right side of the vehicle" refers to the right side in the forward driving direction of the vehicle.

[0028] In the following description, an array module 200m may include one or more arrays.

[0029] The array module 200m may include one or more layers, and one array may be disposed on one layer.

[0030] FIG. 1 is a diagram illustrating the exterior appearance of a vehicle according to an embodiment of the present invention.

[0031] Referring to FIG. 1, a vehicle 10 may include a lamp 100.

[0032] The lamp 100 may include a head lamp 100a, a rear combination lamp 100b, and a fog lamp 100c.

[0033] The array 100 may include features, steps, components, elements, or combinations thereof.

[0034] Meanwhile, the term "overall length" means the length from the front end to the rear end of the vehicle 100, the term "overall width" means the width of the vehicle 100, and the term "overall height" means the height from the bottom of the wheel to the roof. In the following description, the term "overall length direction L" may mean the reference direction for the measurement of the overall length of the vehicle 100, the term "overall width direction W" may mean the reference direction for the measurement of the overall width of the vehicle 100, and the term "overall height direction H" may mean the reference direction for the measurement of the overall height of the vehicle 100.

[0035] FIG. 2 is a block diagram illustrating a lamp for a vehicle according to an embodiment of the present invention.

[0036] Referring to FIG. 2, the lamp 100 may include a light generation unit 160, a processor 170, and a power supply unit 190.
The lamp 100 may further include an input unit 110, an interface unit 130, a memory 140, and a position adjustment unit 165 individually or in combination thereof.

The input unit 110 may receive a user input for controlling the lamp 100.

The input unit 110 may include one or more input devices. For example, the input unit 110 may include at least one of a touch input device, a mechanical input device, a gesture input device, and a sound input device.

The input unit 110 may receive a user input for controlling operation of the light generation unit 160.

For example, the input unit 110 may receive a user input for turning on or off the light generation unit 160.

The sensing unit 120 may include one or more sensors.

For example, the sensing unit 120 may include at least one of a temperature sensor and an illumination sensor.

The sensing unit 120 may acquire temperature information of the light generation unit 160.

The sensing unit 120 may acquire illumination information about the outside of the vehicle 10.

The interface unit 130 may exchange information, data, or a signal with another device provided in the vehicle 10.

The interface unit 130 may transmit at least one of information, data, and a signal, received from another device provided in the vehicle 10, to the processor 170.

The interface unit 130 may exchange information, data, or a signal with another device provided in the vehicle 10.

The interface unit 130 may transmit at least one of information, data, and a signal, generated by the processor 170, to another device provided in the vehicle 10.

The interface unit 130 may receive driving situation information.

The driving situation information may include at least one of the following: information about an object outside the vehicle 10, navigation information, and vehicle state information.

The information about an object outside the vehicle 10 may include the following: information about the presence of the object, information about a location of the object, information about movement of the object, information about a distance between the vehicle 10 and the object, information about a relative speed between the vehicle 10 and the object, and information about a type of the object.

The information about the object may be generated by an object detection apparatus provided in the vehicle 10. The object detection apparatus may detect an object based on sensing data generated by one or more of a camera, a radar, a lidar, an ultrasonic sensor, and an infrared sensor.

The object may include a line, another vehicle, a pedestrian, a two-wheeled vehicle, a traffic sign, light, a road, a structure, a bump, a geographic feature, an animal, etc.

The navigation information may include at least one of the following: map information, information on a set destination, information on a route to the set destination, and information on various object located along the route, lane information, and information on the current location of the vehicle 10.

The navigation information may be generated by a navigation device provided in the vehicle 10.

The vehicle state information may include at least one of the following: vehicle position information, vehicle speed information, vehicle tilt information, vehicle weight information, vehicle direction information, vehicle battery information, vehicle fuel information, vehicle tire pressure information, vehicle steering information, in-vehicle temperature information, in-vehicle humidity information, pedal position information, vehicle engine temperature information, etc.

The vehicle state information may be generated based on sensing information about any of various sensors provided in the vehicle 10.

The memory 140 may store basic data for each unit of the lamp 100, control data for the operational control of each unit of the lamp 100, and input/output data of the lamp 100.

The memory 140 may be any of various hardware storage devices, such as a ROM, a RAM, an EPROM, a flash drive, and a hard drive.

The memory 140 may store various data for the overall operation of the lamp 100, such as programs for the processing or control of the processor 170.

The memory 140 may be classified as a sub-element of the processor 170.

The light generation unit 160 may convert electrical energy into light energy under the control of the processor 170.

The light generation unit 160 may include an array module 200m in which multiple groups of micro Light Emitting Diode (LED) chips are arranged.

The array module 200m may be formed flexible.

For example, the array 200 may be formed flexible in a manner such that a Flexible Copper Clad Laminated (FCCL) substrate is disposed on a polyimide (PI) layer and then LED chips each few micrometers (um) are transferred onto the FCCL substrate.

The array module 200m may include one or more micro LED arrays 200.

In some embodiments, the array module 200m may be formed such that a plurality of arrays are stacked on each other.

The multiple groups of micro LED chips may have different shapes.

A micro LED chip may be referred to as a micro LED light emitting device package.

A micro LED chip may include a light emitting device.

A micro LED chip may be of a few micrometers (um). For example, a micro LED chip may be 5-15um.

A light emitting device of a micro LED chip may be transferred onto a substrate.
The array 200 may include a substrate, and a subarray in which a plurality of micro LED chips are arranged. In the array, one or more subarrays may be provided.

The subarray may have any of various shapes. For example, the subarray may be in the shape of a figure of a predetermined area.

For example, the subarray may be in the shape of a circle, a polygon, a fan, etc.

It is desirable that the substrate include an FC-CL substrate.

For example, a base 911 (see FIG. 5) and a first electrode 912 (see FIG. 5) may make up the substrate.

For example, a base 911 (see FIG. 5) and a second anode 912b (see FIG. 8) may make up a substrate.

The position adjustment unit 165 may adjust a position of the light generation unit 160.

The position adjustment unit 165 may control the light generation unit 160 to be tilted. Due to the tilting control of the light generation unit 160, an output light may be adjusted in an upward-downward direction (e.g., an overall height direction).

The position adjustment unit 165 may control the light generation unit 160 to be panned. Due to the panning control of the light generation unit 160, an output light may be adjusted in a left-right direction (e.g., an overall width direction).

The position adjustment unit 165 may further include a driving force generation unit (e.g., a motor, an actuator, and a solenoid) which provides a driving force required to adjust a position of the light generation unit 160.

When the light generation unit 160 generates a low beam, the position adjustment unit 165 may adjust a position of the light generation unit 160 so that the light generation unit 160 outputs a light downward further than when generating a high beam.

When the light generation unit 160 generates a high beam, the position adjustment unit 165 may adjust a position of the light generation unit 160 so that the light generation unit 160 outputs a light upward further than when generating a low beam.

The processor 170 may be electrically connected to each unit of the lamp 100. The processor 170 may control overall operation of each unit of the lamp 100.

The processor 170 may control the light generation unit 160.

The processor 170 may control the light generation unit 160 by adjusting an amount of electrical energy to be supplied to the light generation unit 160.

The processor 170 may control the array module 200m on the basis of each region.

For example, the processor 170 may control the array module 200m on the basis of each region by supplying a different amount of electrical energy to micro LED chips arranged in each region of the array module 200m.

The processor 170 may control the array module 200m on the basis of each layer. A plurality of layers in the array module 200m may be composed of a plurality of arrays 200.

For example, the processor 170 may control the array module 200m on the basis of each layer by supplying a different amount of electrical energy to each layer.

Under the control of the processor 170, the power supply unit 190 may supply electrical energy required to operate each unit of the lamp 100. In particular, the power supply unit 190 may be supplied with power from a battery inside the vehicle 10.

Referring to FIGS. 3A and 3B, the lamp 100 may include a light generation unit 160, a reflector 310, and a lens 320a.

The reflector 310 may reflect light generated by the light generation unit 160. The reflector 310 may guide light to be emitted forward or rearward of the vehicle 10.

The reflector 310 may be formed of a highly reflective material, such as aluminum (AL) and silver (Ag), or may be coated on a reflective surface.

The lens 320a may include a light generation unit 160, and a lens 320b. The lens 320b may cover the light generation unit 160 or light reflected by the reflector 310, and allow the refracted light to pass therethrough. The lens 320a may be an aspheric lens.

The lens 320a may change an optical path of light generated by the light generation unit 160.

The lens 320a may be formed of a transparent synthetic resin or glass.

As illustrated in FIG. 3A, the light generation unit 160 may output light in an overall height direction.

As illustrated in FIG. 3B, the light generation unit 160 may output light in an overall length direction.

FIG. 3C is a diagram illustrating a lamp for a vehicle according to an embodiment of the present invention.

FIGS. 3A to 3C are diagrams illustrating a lamp according to an embodiment of the present invention.

FIGS. 3C is an example of a cross-sectional view of the lamp 100 implemented as a head lamp 100a.

FIGS. 3A and 3B are examples of a cross-sectional view of the lamp 100 implemented as a rear combination lamp 100a.

FIGS. 3A and 3B are examples of a cross-sectional view of the lamp 100 implemented as a head lamp 100a.
FIG. 4 is a diagram illustrating an array in which a plurality of micro LED chips is arranged, according to an embodiment of the present invention.

The first electrode 912 and the second electrode 915 may be light transmissive electrodes.

In some embodiments, the polyimide layer 911 may be formed flexible.

The FCCL substrate 912 may be formed of copper (Cu), chromium (Cr), palladium (Pd), vanadium (V), cobalt (Co), niobium (Nb), zirconium (Zr), indium tin oxide (ITO), aluminum zinc oxide (AZO) and Indium Zinc Oxide (IZO).

The first electrode 912 may be an anode.

The second electrode 915 may be light transmissive electrodes.

The first electrode 912 may be an anode.

The second electrode 915 may be a cathode.

The plurality of micro LED chips 920 may be transferred onto the array 200.

An interval between micro LED chips 920 on the flexible array 200, and a density of micro LED chips 920 (that is, the number of micro LED chips per unit area) on the flexible array 200 may be determined depending on a transfer interval.

The plurality of micro LED chips 920 may be arranged, according to an embodiment of the present invention.
For example, the light generation unit 160 may include a first array 210 and a second array 220. The first array 210 may be different from the second array 220 in terms of at least one of the following: an interval between a plurality of micro LED chips, positions of the plurality of micro LED chips, and a density of the plurality of micro LED chips.

The second array 220 may be different from the first array 210 in terms of at least one of the following: an interval between a plurality of micro LED chips, positions of the plurality of micro LED chips, and a density of the plurality of micro LED chips.

The first group of micro LED chips may be disposed on the first array 210 in a first pattern. The first pattern may be determined by at least one of the following: an interval between micro LED chips in the first group, positions of the micro LED chips in the first group on an array module, and a density of the micro LED chips in the first group.

A plurality of micro LED chips included in the first array 210 may be disposed at a first interval. A plurality of micro LED chips included in the first group may be disposed at the first interval. The second array 220 may be disposed on the second array 220 not to overlap the plurality of micro LED chips.

The second group may be disposed at an interval as the same as the interval at which the plurality of micro LED chips included in the first array 210 is disposed.

The plurality of micro LED chips included in the second group may be disposed at an interval as the same as the interval at which the plurality of micro LED chips included in the first group is disposed.

That is, the plurality of LED chips included in the second group may be disposed at the first interval. The plurality of micro LED chips included in the second group may be disposed not to overlap the plurality of micro LED chips included in the first group in a vertical or horizontal direction.

For example, the first group of micro LED chips may be disposed on the first array 210 not to overlap the second group of micro LED chips, when viewed from above with the first array 210 and the second array 220 overlapping each other.

The second group of micro LED chips may be disposed on the second array 220 not to overlap the first group of micro LED chips, when viewed from above with the second array 220 and the first array 210 overlapping each other.

For example, the first group of micro LED chips may be disposed on the first array 210 in a first pattern. The first pattern may be determined by at least one of the following: an interval between micro LED chips in the first group, positions of the micro LED chips in the first group on an array module, and a density of the micro LED chips in the first group.

A plurality of micro LED chips included in the first array 210 may be disposed at a first interval. A plurality of micro LED chips included in the first group may be disposed at the first interval. The second array 220 may be disposed on the second array 220 not to overlap the plurality of micro LED chips.

The second group may be disposed at an interval as the same as the interval at which the plurality of micro LED chips included in the first array 210 is disposed.

The plurality of micro LED chips included in the second group may be disposed at an interval as the same as the interval at which the plurality of micro LED chips included in the first group is disposed.

That is, the plurality of LED chips included in the second group may be disposed at the first interval. The plurality of micro LED chips included in the second group may be disposed not to overlap the plurality of micro LED chips included in the first group in a vertical or horizontal direction.

For example, the first group of micro LED chips may be disposed on the first array 210 not to overlap the second group of micro LED chips, when viewed from above with the first array 210 and the second array 220 overlapping each other.

The second group of micro LED chips may be disposed on the second array 220 not to overlap the first group of micro LED chips, when viewed from above with the second array 220 and the first array 210 overlapping each other.

The density of the plurality of micro LED chips indicates the number of micro LED chips per unit area.

A first group of micro LED chips may be disposed on the first array 210 in a first pattern. The first pattern may be determined by at least one of the following: an interval between micro LED chips in the first group, positions of the micro LED chips in the first group on an array module, and a density of the micro LED chips in the first group.

A plurality of micro LED chips included in the first array 210 may be disposed at a first interval. A plurality of micro LED chips included in the first group may be disposed at the first interval. The second array 220 may be disposed on the second array 220 not to overlap the plurality of micro LED chips.

The second group may be disposed at an interval as the same as the interval at which the plurality of micro LED chips included in the first array 210 is disposed.

The plurality of micro LED chips included in the second group may be disposed at an interval as the same as the interval at which the plurality of micro LED chips included in the first group is disposed.

That is, the plurality of LED chips included in the second group may be disposed at the first interval. The plurality of micro LED chips included in the second group may be disposed not to overlap the plurality of micro LED chips included in the first group in a vertical or horizontal direction.

For example, the first group of micro LED chips may be disposed on the first array 210 not to overlap the second group of micro LED chips, when viewed from above with the first array 210 and the second array 220 overlapping each other.

The second group of micro LED chips may be disposed on the second array 220 not to overlap the first group of micro LED chips, when viewed from above with the second array 220 and the first array 210 overlapping each other.

Due to such arrangement, it is possible to minimize intervention of the micro LED chips belonging to the first group in output power from the micro LED chips belonging to the second group.

In some embodiments, the light generation unit 160 may include three or more arrays.

FIG. 7A is an example of a top view of an integrated array module according to an embodiment of the present invention.

FIG. 7B is an example of a side view of an integrated array module according to an embodiment of the present invention.

Referring to FIGS. 7A and 7B, the processor 170 may control the array module 200m on the basis of each region (regions 201 to 209).

The processor 170 may adjust a light distribution pattern by controlling the array module 200m on the basis of each region.

The array module 200m may be divided into a plurality of regions 201 to 209.

The processor 270 may adjust an amount of electrical energy to be supplied to each of the plurality of regions 201 to 209.

The processor 170 may control the array module 200m on the basis of each layer.

The processor 270 may adjust an amount of output light by controlling the array module 200m on the basis of each layer.

The array module 200m may be composed of a plurality of layers. The plurality of layers may be composed of a plurality of arrays, respectively.

For example, a first layer of the array module 200m may be formed by a first array, and a second layer of the array module 200m may be formed by a second array.

The processor 270 may adjust an amount of electrical energy to be supplied to each of the plurality of layers.

FIG. 8 is a diagram illustrating an array module in which a plurality of micro LED chips is arranged, according to an embodiment of the present invention.

FIG. 8 shows an example in which the array module 200m includes a first array 210 and a second array 220, but the array module 200m may include three or more arrays.

Referring to FIG. 8, the array module 200m may include a polyimide layer 911, the first array 210, and a second array 220.

In some embodiments, the array module 200m may further include a phosphor layer 917, a color filter film 918, and a cover film 919 individually or in combination thereof.

The polyimide layer 911 may be formed flexible.

The second array 220 may be disposed on the base 911.

In some embodiments, a layer composed of the polyimide layer 911 or a second anode 912b may be referred to as a base.
In some embodiments, the polyimide layer 911 may be referred to as a base.

The second array 220 may be disposed between the first array 210 and the base 911.

The second array 220 may include a second anode 912b, a reflective layer 913, a second inter-layer dielectric film 914b, a second group of micro LED chips 920b, a second optical spacer 916b, and a second cathode 915b.

The second anode 912b may be an FCCL substrate. The second anode 912b may be formed of copper.

The second anode 912b and the second cathode 915b may be formed of silver Ag.

The second anode 912b and the second cathode 915b may be light transmissive electrodes.

The second array 220 may include a transparent electrode.

The second anode 912b and the second cathode 915b may include a metal material which is one or a combination of the following: nickel (Ni), platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), tantalum (Ta), molybdenum (Mo), titanium (Ti), silver (Ag), tungsten (W), copper (Cu), chromium (Cr), palladium (Pd), vanadium (V), cobalt (Co), niobium (Nb), zirconium (Zr), indium tin oxide (ITO), aluminum zinc oxide (AZO) and Indium Zinc Oxide (IZO).

The reflective layer 913 may be formed on the reflective layer 913. The reflective layer 913 may be light transmissive electrodes.

The second cathode 915b may be formed on the second inter-dielectric film 914b.

The reflective layer 913 may be formed on the second inter-dielectric film 914b.

The reflective layer 913 may be the second anode 912b. The reflective layer 913 may reflect light generated by the plurality of micro LED chips 920. It is desirable that the reflective layer 913 may be formed of silver Ag.

The second inter-layer dielectric film 914b may be formed on the reflective layer 913.

The second group of micro LED chips 920b may be formed on the second anode 912b. Each micro LED chip 920b belonging to the second group may be attached to the reflective layer 912 or the second anode 912b using a solder material or an Anisotropic Conductive Film (ACF).

The second optical spacer 916b may be formed on the reflective layer 913. The optical spacer 916b is used to keep the micro LED chips 920b and the first flexible array 210 at a distance from each other, and the optical spacer 916b may be made of an insulating material.

The first array 210 may be formed on the second array 220.

The first array 210 may include a first anode 912a, a first inter-layer dielectric film 914a, a first group of micro LED chips 920a, a first optical spacer 916a, and a first cathode 915a.

The first anode 912a may be a FCCL substrate. The first anode 912a may be formed of copper.

The first anode 912a and the first cathode 915a may be light transmissive electrodes.

The first anode 912a and the first cathode 915a may include a metal material which is one or a combination of the following: nickel (Ni), platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), tantalum (Ta), molybdenum (Mo), titanium (Ti), silver (Ag), tungsten (W), copper (Cu), chromium (Cr), palladium (Pd), vanadium (V), cobalt (Co), niobium (Nb), zirconium (Zr), indium tin oxide (ITO), aluminum zinc oxide (AZO) and Indium Zinc Oxide (IZO).

The first array 210 may be formed on the first inter-layer dielectric layer 914a.

The first anode 912a and the first cathode 915a may include a metal material which is one or a combination of the following: nickel (Ni), platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), tantalum (Ta), molybdenum (Mo), titanium (Ti), silver (Ag), tungsten (W), copper (Cu), chromium (Cr), palladium (Pd), vanadium (V), cobalt (Co), niobium (Nb), zirconium (Zr), indium tin oxide (ITO), aluminum zinc oxide (AZO) and Indium Zinc Oxide (IZO).

The first anode 912a may be formed between the second optical spacer 916b and the first inter-layer dielectric film 914a.

The first cathode 915a may be formed on the first inter-layer dielectric layer 914a.

The first anode 912a and the first cathode 915a may include a metal material which is one or a combination of the following: nickel (Ni), platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), tantalum (Ta), molybdenum (Mo), titanium (Ti), silver (Ag), tungsten (W), copper (Cu), chromium (Cr), palladium (Pd), vanadium (V), cobalt (Co), niobium (Nb), zirconium (Zr), indium tin oxide (ITO), aluminum zinc oxide (AZO) and Indium Zinc Oxide (IZO).

The first optical spacer 916a may be formed on the first inter-layer dielectric film 914a. The first optical spacer 916a is used to keep a distance between the first group of micro LED chips 920a and the phosphor layer 917, and may be formed of an insulating material.

The phosphor layer 910 may be formed on the first array 210 and the second array 220.

The phosphor layer 917 may be formed on the first optical spacer 916a. The phosphor layer 917 may be formed of resin in which a phosphorus is evenly distributed. Depending on a wavelength of light emitted from the micro LED chips 920a and 920b belonging to the first and second groups, any one selected from a blue light-emitting phosphor, a blue-green light-emitting phosphor, a green light-emitting phosphor, a yellow-green light-emitting phosphor, a yellow light-emitting phosphor, a yellow-red light-emitting phosphor, an orange light-emitting phosphor, and a red light-emitting phosphor may be applied as the phosphor.

The phosphor 917 may change a wavelength of lights emitted from the first and second micro LED chips 920a and 920b.
The cover film 919 may be formed on the color filter film 918. The cover film 919 may protect the array module 200m.

Meanwhile, the plurality of micro LED chips 920b included in the second array 220 may be disposed not to overlap the plurality of micro LED chips 920a included in the first array 210 in a vertical or horizontal direction.

The plurality of micro LED chips 920b included in the second group may be disposed not to overlap the plurality of micro LED chips 920a included in the first group in a vertical or horizontal direction.

The vertical direction may be a direction in which the array module 200m is stacked.

The first and second groups of micro LED chips 920a and 920b may output light in the vertical direction.

The horizontal direction may be a direction in which the first and second groups of micro LED chips 920a and 920b are arranged.

The horizontal direction may be a direction in which the base 911, the first and second anodes 912a and 912b, or the phosphor layer 917 extends.

Meanwhile, the lamp 100 may further include a wire for supplying power to the array module 200m.

For example, the lamp 100 may include a first wire 219 and a second wire 229.

The first wire 219 may supply power to the first array 210. The first wire 219 may be a pair of wires. The first wire 219 may be connected to the first anode 912a and/or the first cathode 915a.

The second wire 229 may supply power to the second array 220. The second wire 229 may be a pair of wires. The second wire 229 may be connected to the second anode 912b and/or the second cathode 915b.

The first wire 219 and the second wire 229 may be disposed not to overlap each other.

As described above with reference to FIGS. 1 to 8, the lamp 100 may include the array module 200m in which a plurality of micro LED chips is arranged.

FIG. 9 is a diagram schematically illustrating an array module according to an embodiment of the present invention.

For example, the first region 1010 may include stacked arrays, the number of which is different from the number of arrays stacked in at least one of the first region 1010, the second region 1020, the third region 1030, the fourth region 1040, and the fifth region 1050.

For example, the second region 1020 may include stacked arrays, the number of which is different from the number of arrays stacked in at least one of the first region 1010, the third region 1030, the fourth region 1040, and the fifth region 1050.

For example, the third region 1030 may include stacked arrays, the number of which is different from the number of arrays stacked in at least one of the first region 1010, the second region 1020, the fourth region 1040, and the fifth region 1050.

For example, the fourth region 1040 may include stacked arrays, the number of which is different from the number of arrays stacked in at least one of the first region 1010, the second region 1020, the third region 1030, and the fifth region 1050.

For example, the fifth region 1050 may include stacked arrays, the number of which is different from the number of arrays stacked in at least one of the first region 1010, the second region 1020, the third region 1030, and the fourth region 1040.

FIG. 9 shows an example in which the array module 200m is divided into five regions, but the number of regions of the array module 200m is not limited thereto.

FIG. 10 is a diagram illustrating an array module according to an embodiment of the present invention.

Referring to FIG. 10, the array module 200m may include a plurality of regions 1110, 1120, 1130, and 1140 each including one or more arrays.

According to a regulation on an amount of light emitted from a headlamp, a different amount of light is required for a central area and a peripheral area.

In addition, a different amount of light is required in a high-beam area and a low-beam area of the head lamp.

In addition, in order to prevent a headlamp from dazzling a driver’s eyes on wet road surfaces, a less amount of light needs to be emitted from a lower side of the light irradiation area than from other sides thereof.

According to a regulation on an amount of light from a rear combination lamp, a central area and a peripheral area of the rear combination lamp are required to emit a different amount of light.

In addition, a tail lamp area and a brake lamp area of the rear combination lamp are required to emit a different amount of light.

The present invention provides a lamp for a vehicle, which includes an array module 200 in which each irradiation region of the lamp provides a different amount of light.

As illustrated in FIG. 9, the array module 200m may include a first region 1010, a second region 1020, a third region 1030, a fourth region 1040, and a fifth region 1050.

For example, the first region 1010 may include stacked arrays, the number of which is different from the number of arrays stacked in at least one of the second region 1020, the third region 1030, the fourth region 1040, and the fifth region 1050.

For example, the second region 1020 may include stacked arrays, the number of which is different from the number of arrays stacked in at least one of the first region 1010, the third region 1030, the fourth region 1040, and the fifth region 1050.

For example, the third region 1030 may include stacked arrays, the number of which is different from the number of arrays stacked in at least one of the first region 1010, the second region 1020, the fourth region 1040, and the fifth region 1050.

For example, the fourth region 1040 may include stacked arrays, the number of which is different from the number of arrays stacked in at least one of the first region 1010, the second region 1020, the third region 1030, and the fifth region 1050.

For example, the fifth region 1050 may include stacked arrays, the number of which is different from the number of arrays stacked in at least one of the first region 1010, the second region 1020, the third region 1030, and the fourth region 1040.

FIG. 9 shows an example in which the array module 200m is divided into five regions, but the number of regions of the array module 200m is not limited thereto.

FIG. 10 is a diagram illustrating an array module according to an embodiment of the present invention.

Referring to FIG. 10, the array module 200m may include a plurality of regions 1110, 1120, 1130, and 1140 each including one or more arrays.

At least one of the plurality of regions 1110,
1120, 1130, and 1140 may include stacked arrays, the number of which is different from the number of arrays stacked in another region among the plurality of regions 1110, 1120, 1130, and 1140.

[0248] The heights 1111, 1121, and 1131 of regions shown in FIG. 10 conceptually illustrates the number of stacked arrays.

[0249] For example, the height 1111 of arrays in the first region 1110 may be smaller than the height 1121 of arrays in the second region 1120, and the number of arrays stacked in the first region 1110 is less than the number of arrays stacked in the second region 1120.

[0250] For example, the height 1121 of arrays in the second region 1120 is greater than the height 1111 of arrays in the first region 1110, and the number of arrays stacked in the second region 1120 is more than the number of arrays stacked in the second region 1120.

[0251] For example, the height 1121 of arrays in the second region 1120 is smaller than the height 1131 of arrays in the third region 1130, and the number of arrays stacked in the second region 1120 is less than the number of arrays stacked in the third region 1130.

[0252] For example, the height 1131 of arrays in the third region 1130 is greater than the height 1121 of arrays in the second region 1120, and the number of arrays stacked in the third region 1130 is more than the number of arrays stacked in the second region 1120.

[0253] For example, the height 1111 of arrays in the first region 1110 is smaller than the height 1131 of arrays in the third region 1130, and the number of arrays stacked in the first region 1110 is less than the number of arrays stacked in the third region 1130.

[0254] For example, the height 1131 of arrays in the third region 1130 is smaller than the height 1111 of arrays in the first region 1110, and the number of arrays stacked in the third region 1130 is less than the number of arrays stacked in the first region 1110.

[0255] Meanwhile, in the case where a different number of arrays is stacked in each of the plurality of regions 1110, 1120, 1130, and 1140 of the array module 200m, the plurality regions 1110, 1120, 1130, and 1140 may have different focal lengths.

[0256] If the plurality regions 1110, 1120, 1130, and 1140 of the array module 200m has different focal lengths, it is not possible to output light uniformly.

[0257] Following is description about an array module 200m including a plurality of regions 1110, 1120, 1130, and 1140 in each of which a different number of arrays is stacked, and which remains at a constant focal length.

[0258] FIG. 11 is a diagram illustrating an array module according to an embodiment of the present invention.

[0259] Referring to FIG. 11, the array module 200m may further include a Flexible Printed Circuit Board (FPCB). One or more arrays may be disposed on the FPCB.

[0260] The array module 200m may be bendable.

[0261] At least one of the plurality of regions 1110, 1120, 1130, and 1140 may be bendable.

[0262] The array module 200m may include at least one of the following: a first bending region 1120 and 1130 which bends toward a light emission direction of a light generated by the array module 200m, a second bending region 1110 which bends toward a direction opposite to the light emission direction, and an unbending region 1140.

[0263] The array module 200m may include a first bending region.

[0264] The first bending region may be a portion that bends toward a light emission direction of a light generated by the array module 200m.

[0265] Referring to FIG. 11, the second region 1120 and the third region 1130 may correspond to the first bending region.

[0266] The first bending region 1120 or 1130 may be a region in which a relatively more number of arrays is stacked.

[0267] A region in which two or more arrays are stacked has a focal length shorter than a focal length of a region in which two or more arrays are not stacked. In this case, lights may be concentrated at a certain region, and therefore, the lamp 100 fails to achieve uniform light distribution.

[0268] As a region in which a relatively more number of arrays is stacked bends toward a light emission direction, it is possible to enable the lamp 100 to achieve uniform light distribution.

[0269] A degree of bending of the first bending region 1120 or 1130 may be determined based on the number of arrays stacked in the first bending region 1120 or 1130.

[0270] For example, if a more number of arrays is stacked in the first bending region 1120 or 1130, the first bending region 1120 or 1130 may bend to a greater degree.

[0271] For example, the third region 1130 may include arrays more than arrays stacked in the second region 1120. In this case, the third region 1130 may bend to a degree greater than a degree of bending of the second region 1120.

[0272] For example, if a less number of arrays is stacked in the first bending region 1120 or 1130, the first bending region 1120 or 1130 may bend to a smaller degree.

[0273] For example, the second region 1120 may have arrays more than arrays stacked in the third region 1130. In this case, the second region 1120 may bend to a degree less than a degree of bending of the third region 1130.

[0274] Meanwhile, the first bending region 1120 or 1130 may bend in at least one of a left-right direction and an upward-downward direction.

[0275] For example, when light generated by the array module 200m is emitted forward of the vehicle 10, the first bending region 1120 or 1130 may bend in the overall width direction or the overall height direction.
[0276] For example, when light generated by the array module 200m is emitted rearward of the vehicle 10, the first bending region 1120 or 1130 may bend in the overall width direction or the overall height direction.

[0277] Meanwhile, the lamp 100 may further include a projection lens. The projection lens may be disposed before the array module 200m.

[0278] The array module 200m may output a parallel light. For example, the array module 200m may output a parallel light which is incident onto projection lens in a parallel direction.

[0279] The array module 200m may include a 1a bending region 1120 and a 1b bending region 1130.

[0280] The 1a bending region 1120 may generate a first light.

[0281] The 1a bending region 1120 may bend toward a light emission direction of a light generated by the array module 200m.

[0282] The 1b bending region 1130 may generate a second light.

[0283] The 1b bending region 1130 may include arrays, the number of which is different from the number of arrays stacked in the 1b bending region 1120.

[0284] The 1b bending region 1130 may bend toward the light emission direction of the light generated by the array module 200m.

[0285] The first light and the second light may be output in parallel due to the bending of the 1a bending region 1120 and the bending of the 1b bending region 1130.

[0286] The array module 200m may further include one or more second bending regions 1110 which bend toward a direction opposite to the light emission direction of a light generated by the array module 200m.

[0287] Meanwhile, the array module 200m may include a first bending region and a second bending region.

[0288] Meanwhile, the array module 200m may include a first bending region and an unbending region.

[0289] Meanwhile, the array module 200m may include a second bending region and an unbending region.

[0290] Meanwhile, the array module 200m may include a first bending region, a second bending region, and an unbending region.

[0291] FIG. 12 is a diagram illustrating an array module according to an embodiment of the present invention.

[0292] The same description described with reference to FIGS. 1 to 11 may be applied to what is not described according to an embodiment of the present invention.

[0293] Referring to FIG. 12, the array module 200m may include a plurality of regions 1210, 1220, 1230, and 1240 each including one or more arrays.

[0294] At least one of the plurality of regions 1210, 1220, 1230, and 1240 may include stacked arrays, the number of which is different from the number of arrays stacked in another region among the plurality of regions 1210, 1220, 1230, and 1240.

[0295] At least one of the plurality of regions 1210, 1220, 1230, and 1240 may be bendable.

[0296] The array module 200m may include a second bending region.

[0297] The second bending region may be a region which bends toward a direction opposite to the light emission direction of a light generated by the array module 200m.

[0298] Referring to FIG. 12, the first region 1210 and the third region 1240 may correspond to a second bending region.

[0299] The second bending region 1210 or 1230 may include a plurality of regions 1210, 1220, and 1230, and may bend toward a direction opposite to the light emission direction, thereby reducing their respective focal lengths. By reducing the focal lengths, it is possible to guide light to a target located outside the vehicle 10.

[0300] The first region 1210 and the third region 1230 may bend toward a direction opposite to the light emission direction, thereby reducing their respective focal lengths. By reducing the focal lengths, it is possible to guide light to a target located outside the vehicle 10.

[0301] Meanwhile, the second bending region 1210 or 1230 may bend in at least one of a left-right direction and an upward-downward direction.

[0302] For example, when light generated by the array module 200m is output forward of the vehicle 10, the second bending region 1210 or 1230 may bend in the overall width direction or the overall height direction.

[0303] For example, when light generated by the array module 200m is output rearward of the vehicle 10, the second bending region 1210 or 1230 may bend in the overall width direction or the overall height direction.

[0304] FIG. 13 is a diagram illustrating an array module according to an embodiment of the present invention.

[0305] The same description described with reference to FIGS. 1 to 13 may be applied to what is not described with reference to FIG. 13.

[0306] Referring to FIG. 13, the lamp 100 may further include a bracket 1320.

[0307] The bracket 1320 may support the array module 200m.

[0308] A surface of the bracket 1320 facing the array module 200m may be determined by a bending shape of the array module 200m.

[0309] At least portion of the bracket 1320 may be convex toward a light emission direction.

[0310] For example, if the array module 200m includes a first bending region, a portion of the bracket 1320 corresponding to the first bending region may be convex toward the light emission direction. In this case, the portion of the bracket 1320 corresponding to the first bending region may be convex with the same degree to which the first bending region bends toward the light emission direction.

[0311] At least portion of the bracket 1320 may be concave toward the light emission direction.

[0312] For example, if the array module 200m includes a second bending region, a portion of the bracket 1320 corresponding to the second bending region may be convex toward the light emission direction. In this case, a portion of the bracket 1320 corresponding to the second bending region may be concave with the same degree to which the second bending region bends toward the
FIG. 14 is a diagram illustrating an array module according to an embodiment of the present invention.

A different amount of heat may be generated depending on the number of stacked arrays.

The heat dissipation part 1620 may include heat dissipation pins having different number and size in each region of the array module 200m.

As illustrated in FIG. 17A, the heat dissipation part 1620 may include heat dissipation pins which are of a different number for each region of the array module 200m.

If more arrays are stacked in the first region than in the second region, the heat dissipation part 1620 may include heat dissipation pins which are positioned more in an area corresponding to the first region than an area corresponding to the second region.

As illustrated in FIG. 17B, the heat dissipation part 1620 may include heat dissipation pins which are of a different thickness for each region of the array module 200m.

If more arrays are stacked in the first region than in the second region, the heat dissipation part 1620 may include heat dissipation pins which are thicker in an area corresponding to the first region than in an area corresponding to the second region.

As illustrated in FIG. 17C, the heat dissipation part 1620 may be of a different thickness for each region of the array module 200m.

As illustrated in FIG. 17D, the heat dissipation part 1620 may be formed such that a surface of the heat dissipation part 1620 facing the array module 200m is formed round.

The heat dissipation part 1620 may be formed such that a surface of the heat dissipation part 1620 in contact with the array module 200m is convex toward a light emission direction or toward a direction opposite to the light emission direction.

The present invention as described above may be implemented as code that can be written on a computer-readable medium in which a program is recorded and thus read by a computer. The computer-readable medium includes all kinds of recording devices in which data is stored in a computer-readable manner. Examples of the computer-readable recording medium may include a hard disk drive (HDD), a solid state disk (SSD), a silicon disk drive (SDD), a read only memory (ROM), a random access memory (RAM), a compact disk read only memory (CD-ROM), a magnetic tape, a floppy disc, and an optical data storage device. In addition, the computer-readable medium may be implemented as a carrier wave (e.g., data transmission over the Internet). In addition, the computer may include a processor or a controller. Thus, the above detailed description should not be construed as being limited to the embodiments set forth here-in all terms, but should be considered by way of ex-
ample. The scope of the present invention should be determined by the reasonable interpretation of the accompanying claims and all changes in the equivalent range of the present invention are intended to be included in the scope of the present invention.

[0346] Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternatives uses will also be apparent to those skilled in the art.

Claims

1. A lamp (100) for a vehicle, comprising an array module (200m) including a plurality of micro Light Emitting Diode (LED) chips, wherein the array module (200m) comprises a plurality of regions (1010, 1020, 1030, 1040, 1050) each including one or more arrays of micro LED chips, and wherein at least one of the plurality of regions (1010, 1020, 1030, 1040, 1050) comprises stacked arrays, a number of which is different from a number of arrays stacked in another of the plurality of regions.

2. The lamp (100) according to claim 1, wherein the array module (200m) further comprises a Flexible Printed Circuit Board (FPCB) on which the one or more arrays are disposed.

3. The lamp (100) according to claim 1 or 2, wherein the array module (200m) comprises a first bending region (1120, 1130) which is bent toward a light emission direction of the array module.

4. The lamp (100) according to claim 3, wherein a degree of bending of the first bending region (1120, 1130) depends on a number of arrays stacked in the first bending region.

5. The lamp (100) according to claim 4, wherein the degree of bending of the first bending region (1120, 1130) is proportional to the number of arrays stacked in the first bending region.

6. The lamp (100) according to any one of claims 3 to 5, wherein the first bending region (1120, 1130) is bent in at least one of a left-right direction and an upward-downward direction.

7. The lamp (100) according to any one of claims 3 to 6, wherein the array module (200m) comprises:

 a 1a bending region (1120) for generating a first light, being bent toward a light emission direction; and
 a 1b bending region (1130) for generating a second light, being bent toward a light emission direction, and comprising stacked arrays, a number of which is different from a number of arrays stacked in the 1a bending region, and

wherein the 1a bending region (1120) and the 1b bending region (1130) are configured such that the first light and the second light are output in parallel with each other.

8. The lamp (100) according to any one of claims 1 to 7, wherein the array module (200m) further comprises one or more second bending regions (1210, 1230) bent toward a direction opposite to a light emission direction of the array module.

9. The lamp (100) according to claim 8, wherein the one or more second bending regions (1210, 1230) are configured to guide light generated therein toward a target located outside the vehicle.

10. The lamp (100) according to claim 8 or 9, wherein the one or more second bending regions (1210, 1230) are bent in at least one of a left-right direction and an upward-downward direction.

11. The lamp (100) according to any one of claims 3 to 10, further comprising a bracket (1320) supporting the array module (200m), wherein a surface of the bracket (1320) facing the array module (200m) is shaped to match a bending shape of the array module (200m).

12. The lamp (100) according to claim 11, further comprising a holder (1330) fixing the array module (200m) onto the bracket (1320).

13. The lamp (100) according to claim 11 or 12, further comprising a heat dissipation part (1620) for transferring away heat generated by the array module (200m), wherein a surface of the heat dissipation part (1620) penetrates the bracket (1320).

14. The lamp (100) according to claim 13, further comprising an adhesive portion (1610) attaching the array module (200m) and the heat dissipation part (1620) to each other.

15. A vehicle (10) comprising the lamp (100) according to any one of claims 1 to 14.
FIG. 5
FIG. 7A
FIG. 9

200m
FIG. 10

200m

Light emission
FIG. 12

200m

Light emission
FIG. 13

200m

1320

200m

Light emission
FIG. 17A

200m

FIG. 17B

200m
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y DE 20 16 103287 U1 (HELMHOLZ & PAULI GMBH [DE]) 15 July 2016 (2016-07-15)</td>
<td>1,15</td>
<td>F21S41/155</td>
<td></td>
</tr>
<tr>
<td>A * claims 1, 7-14; figures 1,4-7 *</td>
<td>2-14</td>
<td>F21S41/255</td>
<td></td>
</tr>
<tr>
<td>Y WO 2010/014032 A1 (GLO AB [SE]; KONSEK STEVEN LOUIS [SE]; OHLSSON JONAS [SE]; MARTYNOV YO) 4 February 2010 (2010-02-04)</td>
<td>1,15</td>
<td>F21S43/145</td>
<td></td>
</tr>
<tr>
<td>A * abstract; figure 6 *</td>
<td>F21S43/31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A EP 1 033 525 A2 (OSRAM OPTO SEMICONDUCTORS GMBH [DE]) 6 September 2000 (2000-09-06)</td>
<td>1,15</td>
<td>H01L25/075</td>
<td></td>
</tr>
<tr>
<td>A * abstract; figure 1 *</td>
<td>F21K9/00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X JP 2017 228699 A (STANLEY ELECTRIC CO LTD) 28 December 2017 (2017-12-28)</td>
<td>1,15</td>
<td>H01L27/15</td>
<td></td>
</tr>
<tr>
<td>X * paragraphs [0051], [0066]; figures 1, 3e, 5a *</td>
<td>F21Y15/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X EP 2 626 900 A2 (LEXTRAR ELECTRONICS SUZHOU CORP [CN]; LEXTRAR ELECTRONICS CORP [TW]) 14 August 2013 (2013-08-14)</td>
<td>1,15</td>
<td>F21Y10/70</td>
<td></td>
</tr>
<tr>
<td>X * figure 1 *</td>
<td>F21Y10/50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X * paragraph [0002] *</td>
<td>F21S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A EP 3 210 828 A1 (VALEO VISION [FR]) 30 August 2017 (2017-08-30)</td>
<td>1,2</td>
<td>F21V</td>
<td></td>
</tr>
<tr>
<td>A * paragraph [0026]; figure 1 *</td>
<td>H01L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A JP 2017 174830 A (KTO MFG CO LTD) 28 September 2017 (2017-09-28)</td>
<td>1-15</td>
<td>F21K</td>
<td></td>
</tr>
<tr>
<td>A * figures 1-8 *</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examinee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>26 March 2019</td>
<td>Giraud, Pierre</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- **T**: theory or principle underlying the invention
- **B**: earlier patent document, published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **A**: technological background
- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **O**: non-written disclosure
- **P**: intermediate document
- **N**: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDF file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

26-03-2019

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 202016103287 U1</td>
<td>15-07-2016</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 2010014032 A1</td>
<td>04-02-2010</td>
<td>CN 102089893 A</td>
<td>08-06-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103022282 A</td>
<td>03-04-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2297794 A1</td>
<td>23-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5836122 B2</td>
<td>24-12-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011527519 A</td>
<td>27-10-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20110039313 A</td>
<td>15-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011254034 A1</td>
<td>20-10-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014239327 A1</td>
<td>28-08-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017279017 A1</td>
<td>28-09-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010014032 A1</td>
<td>04-02-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0906717 A</td>
<td>31-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1276111 A</td>
<td>18-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19909399 C1</td>
<td>04-01-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1033525 A2</td>
<td>06-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4478282 B2</td>
<td>09-06-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000261165 A</td>
<td>22-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6299337 B1</td>
<td>09-10-2001</td>
</tr>
<tr>
<td>JP 2017228699 A</td>
<td>28-12-2017</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>EP 2626900 A2</td>
<td>14-08-2013</td>
<td>CN 102543987 A</td>
<td>04-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2626900 A2</td>
<td>14-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013162123 A</td>
<td>19-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201333364 A</td>
<td>16-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20132060408 A1</td>
<td>08-08-2013</td>
</tr>
<tr>
<td>EP 3210828 A1</td>
<td>30-08-2017</td>
<td>CN 107120590 A</td>
<td>01-09-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3216828 A1</td>
<td>30-08-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 3047941 A1</td>
<td>25-08-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2017154730 A</td>
<td>07-09-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2017009795 A</td>
<td>01-09-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017240106 A1</td>
<td>24-08-2017</td>
</tr>
<tr>
<td>JP 2017174830 A</td>
<td>28-09-2017</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• KR 1020180001843 [0001]