TOOL FOR TRANSPORTING A WINDTURBINE POWER TRAIN SUBSET

The tool comprises a first support element (15) with: a first resting surface (16) for allowing the tool to rest on the floor; a first support surface (17) and a second support surface (18) for respectively supporting on the same a first arm (13) and a second arm (14) of a first support (12) of the subset that supports a low-speed shaft (10). Between the first support surface (17) and the first resting surface (16) is a first distance (D1) that is different from a second distance (D2) between the second support surface (18) and the first resting surface (16). The difference in distances (D1, D2) allows the low-speed shaft (10) to be transported in a container according to an inclined orientation, with the maximum dimension thereof oriented according to the diagonal of the container, thereby simplifying the transport costs and logistics.
DESCRIPTION OF THE INVENTION

[0007] The present invention describes a tool for transporting a windturbine power train subset, wherein the power train subset comprises: a shaft called "low-speed shaft", at least a first bearing, mounted on the low-speed shaft, and at least a second support for supporting the first bearing on said low-speed shaft, said first support being provided with a first arm and a second arm.

[0008] The tool of the invention comprises a first support element, which comprises a first resting surface for allowing the first support element to rest on the floor, and at least a first and second support surface, configured to support each one of the respective first arm and second arm of the first support.

[0009] Likewise, there is a first distance between the first support surface and the first resting surface, as well as a second distance between the second support surface and said first resting surface, wherein the first distance is different from the second distance.

[0010] According to a preferred embodiment, the power train subset additionally comprises a second bearing, mounted on the low-speed shaft, and a second support, for fastening the second bearing to the low-speed shaft, wherein the second support is provided with a third arm and a fourth arm, thus the tool additionally comprises a second support element which, in turn, comprises:

- a second resting surface, to allow the tool to rest on the floor, and
- a third support surface and a fourth support surface, configured to support the respective third arm and fourth arm on the same,

wherein there is a third distance between the third support surface and the second resting surface, said third distance being different from a fourth distance between the fourth support surface and said second resting surface.

[0011] Likewise, and also according to a preferred embodiment, the tool further comprises an additional support element which, in turn, comprises:

- an additional resting surface, and
- on said additional resting surface, an additional sup-
As a complement to the description provided herein and for the purpose of helping to make the characteristics of the invention more readily understandable, in accordance with a preferred practical embodiment thereof, said description is accompanied by a set of drawings constituting an integral part of the same, which by way of illustration and not limitation represent the following:

Figure 1 shows a tool for transporting a windturbine power train subset, including the low-speed shaft with the corresponding bearings and bearing supports, according to the state of the art.

Figure 2 shows a perspective view of a tool for transporting a windturbine power train subset, according to a first particular embodiment of the present invention, wherein a first support element and an additional second support element can be seen along with the subset, which includes the low-speed shaft, a first bearing and a first support.

Figure 3 shows a perspective view of a tool for transporting a windturbine power train subset, according to a second particular embodiment of the present invention, wherein a first support element and a second support element, the subset, which includes the low-speed shaft, first and second bearings and first and second supports can be seen.

Figure 4 shows a perspective view of a tool for transporting a windturbine power train subset, according to a third particular embodiment of the present invention, wherein a first support element and a second support element connected to each other can be seen along with the subset, which includes a low-speed shaft, first and second bearings and first and second supports about to be mounted in the tool.

Figure 5 shows the tool object of the invention with the set loaded.

Figures 6A and 6B: Figure 6A shows a perspective view of the tool according to the invention, wherein the distances between the support surfaces and the resting surfaces are shown. Figure 6B shows a side view of the subset of the low-speed shaft, mounted on the tool of the invention, wherein the actual maximum width and the maximum transport width are shown.

Subsequently, with the help of the aforementioned attached Figures 1-6B, a detailed description is provided of a preferred embodiment of a tool for transporting a windturbine power train subset, object of the present invention.

The tool of the invention is intended as a tool for transporting a windturbine power train subset. In particular, the tool is intended to transport a power train subset formed at least by the following elements: a shaft, called low-speed shaft (10), along with at least a first bearing (11) mounted on the low-speed shaft (10), and a first support (12) intended to support the first bearing (11) and the low-speed shaft (10) on a frame (not shown) of the wind turbine, and wherein the first support (12) comprises a first arm (13) and a second arm (14).

To this end, the tool comprises a first support element (15) which, in turn, incorporates a first resting surface (16) to allow the first support element (15) to rest on a floor. The first support element (15) further comprises a first support surface (17) and a second support surface (18) so that the first arm (13) and the second arm (14), respectively, can rest on the same.

Between the first support surface (17) and the first resting surface (16) is a first distance (D1), and between the second support surface (18) and said first resting surface (16) is a second distance (D2), wherein the first distance D1 and the second distance D2 are different. To define the first distance (D1) and the second distance (D2), homologous reference points are preferably taken on the first support surface (17) and on the second support surface (18), especially when said first (17) and second (18) support surfaces are not horizontal. For example, the lowest points of each one of them may be taken as a reference, as seen in the figures.

In Figure 6B one can see how the power train subset has an actual maximum width (AR), as well as a maximum transport width (AT), which corresponds to a projection of the actual maximum width (AR) on a horizontal plane. The previously described invention allows the power train subset to incline, from which the maximum transport width (AT) is smaller than the actual maximum width (AR). As a result, in an embodiment, it allows for the tool of the invention, along with the power train subset, to be introduced in a conventional transport container (not shown).

Preferably, the first support element (15) incorporates, on the first resting surface (16), a first support body (19) and a second support body (20), one on each right and left side of said first resting surface (16), the first support surface (17) situated on the first support body (19) and the second support surface (18) situated on the second support body (20).

In this case, to help stabilise the power train on the first support element (15), the tool additionally comprises an additional support element (21) which, in turn, comprises an additional resting surface (22), and on said additional resting surface (22) an additional support body (23), provided with at least an additional support surface (24) on the upper part thereof for supporting one end of the low-speed shaft (10) longitudinally opposite the first support element (15).

In another embodiment, the power train subset
can additionally incorporate a second bearing (39) mounted on the low-speed shaft (10), as well as a second support (25) to fasten the second bearing (39) to the low-speed shaft (10), and which, in turn, is provided with a third arm (26) and a fourth arm (27). The tool additionally comprises a second support element (28) which, in turn, comprises a second resting surface (29) to allow the second support element (28) to rest on a floor in a stable way. The second support element (28) further comprises a third support surface (30) and a fourth support surface (31) so that the third arm (26) and the fourth arm (27) of the second support (25) can rest on the same.

Between the third support surface (30) and the second resting surface (29) is a third distance D3, and between the fourth support surface (31) and said second resting surface (29) is a fourth distance D4, wherein the third distance D3 and the fourth distance D4 are different. Preferably, the third distance (D3) and the fourth distance (D4) are respectively equal to the first distance (D1) and the second distance (D2). In a similar way to what was previously mentioned for the case of the first distance (D1) and the second distance (D2), it holds that the homologous reference points are preferably taken on the third support surface (30) and the fourth support surface (31), especially when said third (30) and fourth (31) support surfaces are not horizontal. For example, the lowest points of each one of them may be taken as a reference, as seen in the figures.

On the other hand, the second support element (28) preferably comprises, on the second resting surface (29), a third support body (32) and a fourth support body (33), one on each right and left side of said second resting surface (29), wherein the third support surface (30) is situated on the third support body (32) and the fourth support surface (31) is situated on the fourth support body (33).

The tool preferably comprises a longitudinal direction of the tool, the first support body (19) and the second support body (20) being located on the same first section along the longitudinal direction of the tool. Likewise, the third support body (32) and the fourth support body (33) are preferably located on the same second section along the longitudinal direction of the tool.

Preferably, any one, several, or all of the first (17), second (18), third (30) and fourth (31) support surfaces are inclined with respect to a horizontal plane.

Likewise, also preferably, the support bodies (19, 20, 23, 32, 33) can comprise vertical beams. In particular, the first (19) and/or second (20) support bodies can comprise first beams, while the third (32) and fourth (33) support bodies can comprise second beams and the additional support body (23) can comprise a third beam.

On the other hand, also preferably, any one, several, or all of the first (17), second (18), third (30) and fourth (31) support surfaces have a greater area than the surface of the corresponding arm (13, 14, 26, 27) that rests on the same.

Likewise, on the other hand, the first (17), second (18), third (30), fourth (31) and additional (24) support surfaces comprise fastening means to be fastened in a separable way to the corresponding arms (13, 14, 26, 27). In particular, the first (17) and/or second (18) support surfaces can comprise first fastening means, while the third (30) and/or fourth (31) support surfaces can comprise second fastening means; and the additional support surface (24) can comprise third fastening means. The fastening means preferably comprise holes (34, 40, 42) made on the first (17), second (18), third (30), fourth (31) and additional (24) support surfaces; as well as bolts (35, 41) for cooperating with the holes (34, 40). In particular, the first fastening means comprise first bolts (35) and first holes (34), while the second fastening means comprise second bolts (41) and second holes (40), and the third fastening means comprise third bolts (not shown) and third holes (42). The holes (34, 40, 42) are preferably perpendicular to the corresponding first (17), second (18), third (30), fourth (31) and additional (24) surfaces thereof. As an alternative to the holes (34, 40, 42) and the bolts (35, 41), the fastening means can preferably comprise clamps. Instead of having third fastening means, the end of the low-speed shaft (10) could simply rest on the additional support surface (24).

In relation to the preceding paragraph, the fastening means, in particular the holes (34, 40) can be used as reference points for measuring the heights (D1, D2, D3, D4).

Preferably, the first (17), second (18), third (30), fourth (31) and additional (24) support surfaces comprise positioning elements (36, 43, 44) for longitudinally and/or transversally positioning the corresponding arms (13, 14, 26, 27) and, if applicable, the corresponding end of the low-speed shaft (10). The positioning elements (36, 43, 44) comprise: first positioning elements (36) for the first (17) and second (18) support surfaces, second positioning elements (43) for the third (30) and fourth (31) support surfaces; and third positioning elements (44) for the additional support surface (24). The positioning elements (36, 43, 44) are preferably located on a lower area, and/or on a side area of the first (17), second (18), third (30), fourth (31) and additional (24) support surfaces. The positioning elements (36, 43, 44) act as stops that limit the movement of the arms (13, 14, 26, 27) and of the low-speed shaft (10), if necessary.

According to a preferred embodiment, as shown in Figures 4 and 5, the first (17) and third (30) support surfaces can form part of a single body, for example a beam. Optionally, although in the figures the second (18) and fourth (31) support surfaces are shown as separated bodies, they can likewise form part of a single body, a beam for example.

Preferably, the first support element (15) and the second support element (28), and optionally, if necessary, the first support element (15) and the additional support element (21), are connected to each other. According to a first example, the tool incorporates a base (37), which the first resting surface (16) and/or the second
2. The tool for transporting a wind turbine power train subset according to claim 1, characterised in that the first resting surface (16) comprises a right and left side, wherein the first support element (15) comprises on the first resting surface (16), a first support body (19) and a second support body (20), one on each right and left side of the first resting surface (16), wherein the first support surface (17) is situated on the first support body (19) and the second support surface (18) is situated on the second support body (20).

3. The tool for transporting a wind turbine power train subset according to claim 2, characterised in that it comprises a longitudinal direction of the tool, wherein the first support body (19) and the second support body (20) are located in the same first cross section along the longitudinal direction of the tool.

4. The tool for transporting a wind turbine power train subset according to any one of claims 1-3, characterised in that any one, several, or all of the first (17) and second (18) support surfaces are inclined with respect to a horizontal plane.

5. The tool for transporting a wind turbine power train subset according to any one of claims 1-4, characterised in that any one, several, or all of the first (17) and second (18) support surfaces have a greater area than the surface of the corresponding first arm (13) and second arm (14) that rest on the same.

6. The tool for transporting a wind turbine power train subset according to any one of claims 1-5, characterised in that any one, several, or all of the first (17) and second (18) support surfaces comprise fastening means to be fastened to the corresponding first arm (13) and second arm (14) in a separable way.

7. The tool for transporting a wind turbine power train subset according to claim 6, characterised in that the first fastening means comprise:

- first holes (34) made in the first (17) and second (18) support surfaces; and
- first bolts (35) for cooperating with the first holes (34).

8. The tool for transporting a wind turbine power train subset according to claim 7, characterised in that the first holes (34) are perpendicular to the first (17) and second (18) support surfaces.

9. The tool for transporting a wind turbine power train subset according to any one of claims 1-8, characterised in that the first (17) and/or second (18) support surfaces comprise first positioning elements (36) for longitudinally and/or transversally positioning the first arm (13) and the second arm (14).

10. The tool for transporting a wind turbine power train subset according to claim 9, characterised in that the first positioning elements (36) are located in a lower area and/or in a side area of the first (17) and/or second (18) support surfaces.
11. The tool for transporting a windturbine power train subset according to any one of claims 2-10, characterised in that the first (19) and second (20) support bodies comprise first vertical beams.

12. The tool for transporting a windturbine power train subset according to any one of claims 1-11, which additionally comprises a base (37) which, in turn, comprises the first resting surface (16), the first support element (15) being able to be coupled to said base (37).

13. The tool for transporting a windturbine power train subset according to any one of claims 1-12, characterised in that it additionally comprises an additional support element (21) which, in turn comprises:

- an additional resting surface (22), and
- on said additional resting surface (22), an additional support body (23) provided with at least one additional support surface (24) on the upper part for supporting one end of the low-speed shaft (10).

14. The tool for transporting a windturbine power train subset according to claim 13, characterised in that it additionally comprises a base (37) which, in turn, comprises the additional resting surface (22), the additional support element (21) being able to be coupled to said base (37).

15. The tool for transporting a power train subset of a wind turbine according to any one of claims 1-12, characterised in that the power train subset additionally comprises a second bearing (39), mounted on the low-speed shaft (10), and a second support (25), for fastening the second bearing (39) to the low-speed shaft (10), and which is provided with a third arm (26) and a fourth arm (27), wherein the tool additionally comprises a second support element (28) which, in turn, comprises:

- a second resting surface (29), to allow the tool to rest on the floor, and
- a third support surface (30) and a fourth support surface (31), configured to support the respective third arm (26) and fourth arm (27) on the same, wherein there is a third distance (D3) between the third support surface (30) and the second resting surface (29), said third distance (D3) being different from a fourth distance (D4) between the fourth support surface (31) and said second resting surface (29).

16. The tool for transporting a windturbine power train subset according to claim 15, characterised in that the second support element (28) comprises, on the second resting surface (29), a third support body (32) and a fourth support body (33), one on each right and left side of said second resting surface (29), wherein the third support surface (30) is situated on the third support body (32) and the fourth support surface (31) is situated on the fourth support body (33).

17. The tool for transporting a windturbine power train subset according to claim 16, characterised in that it comprises a longitudinal direction of the tool, wherein the third support body (32) and the fourth support body (33) are located in the same second cross section along the longitudinal direction of the tool.

18. The tool for transporting a windturbine power train subset according to any one of claims 15-17, characterised in that any one, several or all of the third (30) and fourth (31) support surfaces are inclined with respect to a horizontal plane.

19. The tool for transporting a windturbine power train subset according to any one of claims 15-18, characterised in that the third (30) and fourth (31) support surfaces have a greater area than the surface of the corresponding third arm (26) and fourth arm (27) that rest on the same.

20. The tool for transporting a windturbine power train subset according to any one of claims 15-19, characterised in that the third (30) and fourth (31) support surfaces comprise second fastening means to be fastened to the corresponding third arm (26) and fourth arm (27) in a separable way.

21. The tool for transporting a windturbine power train subset according to claim 20, characterised in that the second fastening means comprise:

- second holes (40) made in the third (30) and fourth (31) support surfaces; and
- second bolts (41) for cooperating with the second holes (40).

22. The tool for transporting a windturbine power train subset according to claim 21, characterised in that the second holes (40) are perpendicular to the third (30) and fourth (31) support surfaces.

23. The tool for transporting a windturbine power train subset according to claims 6 or 20, characterised in that the fastening means comprise clamps.

24. The tool for transporting a windturbine power train subset according to any one of claims 15-23, characterised in that the third (30) and fourth (31) support surfaces comprise second positioning elements (43) for longitudinally and/or transversally position-
ing the third arm (26) and the fourth arm (27).

25. The tool for transporting a windturbine power train subset according to claim 24, **characterised in that** the second positioning elements (43) are located in a lower area and/or in a side area of the third (30) and/or fourth (31) support surfaces.

26. The tool for transporting a windturbine power train subset according to any one of claims 16-25, **characterised in that** the third (32) and fourth (33) support bodies comprise second vertical beams.

27. The tool for transporting a windturbine power train subset according to any one of claims 15-26, which additionally comprises a base (37) which, in turn, comprises the second resting surface (29), the second support element (28) being able to be coupled to said base (37).

28. The tool for transporting a windturbine power train subset according to claims 1 and 15, **characterised in that** the third distance (D3) is substantially equal to the first distance (D1) and/or the fourth distance (D4) is substantially equal to the second distance (D2).

29. The tool for transporting a windturbine power train subset according to claim 1, 13 and 15, **characterised in that** it additionally comprises a base (37) which, in turn, comprises the first resting surface (16) and the second resting surface (29), or the first resting surface (16) and the additional resting surface (22), the first support element (15), the second support element (28) and the additional support element (21) respectively being able to be coupled to said base (37).
FIG.1
STATE OF THE ART
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>KR 2012 0102213 A (PYEONG SAN CO LTD [KR]) 18 September 2012 (2012-09-18) * abstract; figures 1-5 *</td>
<td>1,2,4,6,7,9-12</td>
<td>F03D13/40</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 17-04-2019. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 20120102213 A 18-09-2012 NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 102013003191 A1 11-09-2014 NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.