BI-DIRECTIONAL FACE METAL SEALING SEAL THAT CAN BE SELF-POWERED BY PRESSURE

The invention refers to a new metal airtight seal with bidirectional face, self-energizable by pressure, with axisymmetric or non-axisymmetric configuration, comprising teeth guided at acute angles, both towards the center of the ring and outside, radially. This new geometry as proposed grants to the airtight seal the characteristic of being self-energizable by fluid pressure and providing bidirectional sealing, both to the internal pressure and to the external pressure. Furthermore, an element has a course stopper, so to limit the deformation of said metal airtight seal. The elements (4) and (8) grant to the airtight seal high resistance against internal and external pressure, due to the control of radial slacks (6) and (7), respectively.

Figure 2
Description

Field of the Invention

[0001] The invention refers to a new metal hermetic seal structure with bidirectional face, self-energizable by pressure, being said seal used for the isolation of liquid or gaseous fluids, especially in the oil and gas industry, being able to operate both under low and high pressures and in conditions of high and low temperatures. However, we highlight that, due to the high range of admissible pressure values, the use of the seal of the invention is not limited to the oil and gas fields, and it may be applied in any other sealing system, be it submarine or on surface, as present in the numerous fields of engineering.

Background of the Invention

[0002] As it is well known among the experts in the art, metal airtight face seals are widely used in equipment requiring the separation of two regions under different pressure. Especially in the oil and gas industry, special seals are required, considering the high order of magnitude of acting pressures in that field of industry, which may reach up to 30,000 psi.

[0003] For that purpose, numerous enhancements have been observed in the field. In its majority, we can highlight the use in submarine equipment of face seals standardized by API (American Petroleum Institute) for various classes of pressure. Said seals are of the ring type and, as a few examples as widely known and used by the experts in the art, we can mention those of the "R", "RX" and "BX" types.

[0004] They are widely used for sealing of API flanges, but they are not self-energizable by pressure, being thus extremely dependent on the pre-load of the connection as applied between the constituents to guarantee the sealing as required. The device used for this kind of sealing uses the principle of plastic deformation of the seal material, requiring high loads to energize and maintain sealing in the working loads of the equipment.

[0005] Therefore, the document US 2002140184A1 discloses a ring for metal-metal sealing for use in well heads, besides having other applications. The conception as used for that sealing was based on the separation of the structural element from the sealing element. That separation has enabled the use of smoother metal alloys, which may be introduced to the structural element, e.g. by pressure. That conception also enabled the re-use of rings, merely by exchanging the sealing element. Other clear aspects for the experts in the art are higher resistance against corrosion, use of low steel alloys and protection for the sealing element by the structural element against pressure.

[0006] The document US 2015316150A1 also shows a metal sealing ring. The conception used in that case was the adoption of a tooth geometry, similar to the shape of a "fish bone", with the teeth in acute angles turned to the source of pressure and with rounded contact surfaces.

[0007] However, in the documents as mentioned and examples in the state of the art, there is still no solution comprising all the demands as required for a sealing of that kind, notably concerning energization and bidirectional operation.

Brief Description of the Invention

[0008] Therefore, it is the main object of the invention to provide a new structural conception of a metal-metal face airtight seal advantageously solving the deficiencies in the state of the art, and cumulatively presenting advantages for its self-energization being reached both by the action of internal pressure and by external pressure coming from the hydrostatic column, i.e. bidirectional energization.

[0009] According to the invention, a new structural conception of a metal airtight seal with a face with a similar shape to a "fishbone", but with the peculiarity of having teeth guided at acute angles both to outside and to inside the ring, radially, making it become a bidirectional seal.

[0010] As will be appreciated, this new conception grants to the metal face airtight seal, object of the invention, the characteristic of being self-energizable both at internal pressure and at external pressure, coming from the hydrostatic column and from another source of pressure.

[0011] Furthermore, the airtight seal of the invention also comprises two assembling options, each one with its specific advantages, also covering other characteristics such as low production and assembly costs and low assembly load, besides being very resistant at high pressures as usually present in submarine applications, among others.

[0012] The airtight seal and its respective lodging have, in a simple version, axisymmetric geometry, but, depending on the project, the airtight seal may present a non-axisymmetric configuration.

Brief Description of the Drawings

[0013] The metal airtight seal with bidirectional face, self-energizable by pressure of the invention may be well understood from the illustrative drawings as attached, which represent, schematically and not limiting its scope:

- Figure 1: perspective view of a section of the metal airtight seal with bidirectional face, self-energizable by pressure of the invention;
- Figure 2: schematic front view of the geometry of the crosswise section of the metal airtight seal of the invention;
- Figure 3: view of a schematic crosswise section of a first option of assembly of the metal airtight seal of the invention;
- Figure 4: view of a schematic crosswise section of...
In a first aspect, according to Figure 1, the invention provides a metal airtight seal with bidirectional face, self-energizable by pressure, having a new geometry comprising two kinds of teeth, being a first kind of teeth (10) guided at acute angles radially towards the center of the seal and a second kind of teeth (9) guided at acute angles, radially towards outside the seal. Said metal airtight seal with bidirectional face, self-energizable by pressure of the invention is embodied as shown by Figures 3, 5, 6 and 7. The element (4) shown by Figure 3 has a groove for stiffening from the contribution of rigidity of the part (4) towards the center of the seal and a second kind of teeth (9) guided comprising protuberances on its upper edges, defining regions (3). Furthermore, as we can see from Figure 2, the metal airtight seal with bidirectional face, self-energizable by pressure, has axisymmetric geometry over the axis (2) passing through its center in a simplified version. Therefore, that new structure grants to the metal airtight seal with bidirectional face of the invention the characteristic of being self-energizable by fluid pressure, both at internal pressure and at external pressure, the latter one coming from the hydrostatic column or from any other source of pressure.

In a second aspect, the first assembling option of the metal airtight seal with bidirectional face, self-energizable by pressure of the invention is embodied as shown by Figure 3. The element (4) has a groove for assembling the airtight seal (1), wherein the element (5) presses said airtight seal (1) at a given predefined value in the project, so to guarantee better pre-load for its assembly. The elements (4) and (5) form a pod, partially covering the airtight seal (1), wherein said element (5) also has a course-limiting stopper, so to limit the deformation of said airtight seal (1).

That first assembling option grants to the airtight seal (1) of the invention high resistance against internal pressure due to the control of the maximum radial slack of the seal (6) between said airtight seal (1) and the wall of the groove of the element (4). Said application of internal pressure produces radial displacement of the seal until filling the radial slack (6), producing, from that moment, stiffening from the contribution of rigidity of the part (4) to the airtight seal (1).

In a third aspect, according to Figure 4, the invention also provides a second assembling option, with the elements (4), (5) and (8) forming a pod for the airtight seal (1), fully covering it. This second assembling option presents the same advantage of the first assembling option concerning internal pressure but has better behavior upon the application of external pressure, due to the use of the same stiffening conception, limiting the maximum radial slack (7) to the internal diameter of the seal regarding the element (8).

In given design situations, the use of a non-axisymmetric airtight seal with geometric configuration which may be convex or non-convex may be advantageous. Therefore, the invention also covers a configuration of a non-axisymmetric airtight seal (1) over the axis (2), as shown by Figures 5, 6 and 7. Said configuration may be used in convex geometries, such as elliptical, or any other geometry, even if not fully convex. That variation of embodiment of the airtight seal of the invention allows significant savings of raw material, since an airtight seal with elliptical or another kind of convex geometry requires less space than a circular seal. We should also add to this advantageous aspect of this embodiment, the advantage concerning the apparent reduction of costs, notably when applied to a face sealing (20) with more than one orifice (30, 40). An example of this application is shown by Figure 7.

Therefore, the experts in the art will also appreciate that the geometry of the metal airtight seal with bidirectional face, self-energizable by pressure (1), embodied for use in submarine equipment, aiming to separate fluids, allows to change the system for fixing the bonnet to the block of submarine valves, with the consequent exclusion of prisoners. That possibility brings in substantially lower production and assembling costs than those costs as imposed by airtight seals of the state of the art. Furthermore, another great advantage as provided by the invention refers to the use of the metal airtight seal with bidirectional face, self-energizable by pressure in a predominantly elastic form, with plastic deformation of the material just in a few locations, significantly reducing the assembly load of the sealing element.

Furthermore, considering all the advantages as mentioned herein, the experts in the art will conclude that the metal airtight seal with bidirectional face, self-energizable by pressure of the invention is not solely applicable to the oil and gas industry, and may be used for any application requiring sealing to separate fluids in regions with different pressures, both in submarine and terrestrial environments, in any field of engineering.

Claims

1. METAL AIRTIGHT SEAL WITH BIDIRECTIONAL FACE, SELF-ENERGIZABLE BY PRESSURE, with geometry similar to a "fish bone", characterized by comprising teeth (10) guided at acute angles radially towards the center of the seal, and teeth (9) guided at acute angles radially towards outside the ring, said teeth (10) and (9) comprising protuberances on its upper edges, defining regions (3).

2. AIRTIGHT SEAL of claim 1, characterized by the face sealing region being defined by the regions pro-
vided with said protuberances defining regions (3).

3. AIRTIGHT SEAL of claim 1, characterized by the arrangement of the teeth (10) and (9) making the sealing become bidirectional, both against internal pressure and against external pressure.

4. AIRTIGHT SEAL of claim 1, characterized by its geometry granting to the system the characteristic of being self-energizable by pressure.

5. AIRTIGHT SEAL of claim 1, characterized by comprising a first assembling option for the elements (4), having a groove for assembling said airtight seal (1) and on the element (5), so to form a pod partially covering said airtight seal (1).

6. AIRTIGHT SEAL of claim 5, characterized by, during the assembly, the maximum radial slack (6) being controlled between said airtight seal (1) and the wall of the groove of said elements (4), so to grant high resistance against internal pressure.

7. AIRTIGHT SEAL of claim 1, characterized by, in a second assembling option for the elements (4) having grooves for assembling said airtight seal (1), additional elements (5) and (8) forming a pod fully covering said airtight seal (1).

8. AIRTIGHT SEAL of claim 7, characterized by the maximum radial slack (6) being controlled between said airtight seal (1), the element (8) and the wall of the groove of the element (4), so to grant high resistance against external pressure.

9. AIRTIGHT SEAL of any of claims 5 or 7, characterized by said element (5) having a stopper to limit deformations of said airtight seal (1).

10. AIRTIGHT SEAL of claim 1, characterized by predominantly working in the elastic regimen of the material, so that plastic deformation only occurs in given locations, thus reducing the pre-load as required for assembling the system.

11. AIRTIGHT SEAL of any of claims 1 to 10, characterized by having axisymmetric configuration over the axis (2).

12. AIRTIGHT SEAL of any of claims 1 to 10, characterized by having non-axisymmetric configuration over the axis (2), with convex or non-convex geometry.

13. AIRTIGHT SEAL of claim 13, characterized by having elliptical form.

14. AIRTIGHT SEAL of claim 1, characterized by being used in mechanical systems requiring the separation of two regions under different pressure.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 F16J15/08 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

 F16J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

 Banco de patentes brasileiro - INPI/BR

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

 EPDOC, ESPACENET, PATENTSCOPE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB 246554 A (EDWARD ALLAN THOMSON) 27 January 1926 (1926-01-27) The whole document.</td>
<td>1 a 14</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search 05/09/2017

Date of mailing of the international search report 03/10/2017

Name and mailing address of the ISA/BR INPI
Rua São Paulo n° 1, 17th andar cep. 20229-015, Centro - Rio de Janeiro/RJ +55 21 3037-3653
Facsimile No.

Authorized officer Marcio Feres Bessa
Telephone No. +55 21 3037-3493/3742

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Form PCT/ISA/210 (continuation of second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Publication</th>
<th>Filing Date</th>
<th>Application</th>
<th>Priority Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4787642 A</td>
<td>1988-11-29</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>GB 246554 A</td>
<td>1926-01-27</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>US 4582330 A</td>
<td>1986-04-15</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 2002140184 A1 [0005]
- US 2015316150 A1 [0006]