HYSTERESIS POWER SUPPLY CIRCUIT

A hysteresis power supply circuit, comprising:

- an input circuit (102), a switch combination circuit (104), a sampling and control circuit (108), a feedback circuit (106) and an output circuit (110). The input circuit (102) is connected to a power supply input terminal, and rectifies a power supply input and provides isolation protection for the input terminal. The switch combination circuit (104) is connected to the input circuit (102), and is turned on or off to control the output power of the power supply output terminal. The sampling and control circuit (108) samples the output voltage and compares the output voltage with the reference voltage, and controls the switch combination circuit to be turned on or off according to the result of the comparison. The feedback circuit (106) is connected between the switch combination circuit (104) and the sampling and control circuit (108). The switch combination circuit (104) outputs a positive feedback signal to the sampling and control circuit (108) through the feedback circuit (106), and the positive feedback signal causes a hysteresis effect on the comparison action of a reference power supply chip. The output circuit (110) is connected to the switch combination circuit (104), filters the output of the switch combination circuit (104) and provides isolation protection for the output terminal, and its output serves as an output of a hysteresis power supply circuit.
Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] Embodiments of the present invention relate to the field of low voltage electrical appliances, and more particularly to a power supply circuit for supplying power to circuit breakers.

2. The Related Art

[0002] With the continuous improvement of the low-voltage electrical appliance industry, plastic case circuit breakers (molded case circuit breakers) are evolving toward more intelligent and communication-capable. The intelligence of molded case circuit breakers is mainly realized by electronic devices, and therefore, a power supply circuit for supplying power to molded case circuit breakers is also required. The reliability and stability of intelligent controllers are inseparable from the improvement of power supply circuit performance and reliability. At the same time, the power supply circuit is prone to overvoltage, overcurrent, breakdown, electromagnetic interference and other problems due to conversion in strong and weak current circuits. It is imperative to improve its stability and anti-interference ability so that the power supply circuit can not only receive high power input without being damaged, but also provide a stable output under low power input. Therefore, it is imperative to design a power supply circuit that is simple, effective, stable, safe and reliable.

[0003] A power supply circuit comprising a fast saturation current transformer, a rectifier circuit, a switching circuit unit, and a control unit is proposed in the prior art. The control unit controls the switching circuit unit to be turned-on or turned-off, and the control unit uses a positive feedback hysteresis unit having an operational amplifier. In this scheme, an operational amplifier is used to generate a hysteresis signal. Thus, the circuit is complicated, costly, and prone to failure.

[0004] A power supply circuit comprising an input filter circuit, a rectification filter circuit, a single-ended switch conversion circuit, a switching power supply control circuit, and a secondary rectification filter circuit, is also proposed in the prior art. The power supply circuit can detect an amplitude of an energy output by an energy coil when the energy coil is separately powered, and realize the control of a two-way power supply according to the amplitude. In this scheme, an isolated switching power supply is used, such that the control circuit has a complicated structure and large size, which is not suitable for a miniaturized molded case circuit breaker.

[0005] A power supply circuit is also provided in the prior art, comprising an overvoltage sampling module for determining whether an overvoltage signal is generated, and an undervoltage signal is generated, and a signal generation module for generating a protection signal with the overvoltage or undervoltage signal, and a signal hysteresis module for delayed processing of the protection signal and outputting the processed protection signal. In this scheme, the hysteresis effect is achieved by changing a resistor divider value, which requires complicated calculations and operations, and separate sampling of the overvoltage signal and the undervoltage signal makes the circuit more complicated. In addition, an auxiliary DC power supply is also required.

[0006] A power supply circuit is further provided in the prior art, comprising a voltage sampling circuit, a control circuit, a hysteresis circuit, power supply input voltage terminal, DC bias voltage terminal, and switching power supply control terminal. The input sampling circuit uses three resistors in series to form a resistor divider. The control circuit uses an error amplifier, and the error amplifier is connected to a bias resistor to control the level of protection point switching power supply control terminal according to the sampling signal of the input sampling circuit. When the switching power supply is higher than a set value, the switching power supply is turned off to protect the switching power supply. Three series resistors are used as a voltage divider resistor in this scheme, making the calculation more complicated and an auxiliary DC power supply must also be used.

[0007] In sum, the prior art generally has the problems of a complicated circuit, large volume, multiple devices, complicated calculation process, and high cost.

SUMMARY

[0008] Embodiments of the present invention disclose a hysteresis power supply circuit, comprising: an input circuit; a switch combination circuit; a sampling and control circuit; a feedback circuit; and an output circuit. The input circuit is connected to a power supply input terminal, rectifies a power supply input and provides isolation protection for the input terminal. The switch combination circuit is connected to the input circuit and is turned on or off to control an output power of a power supply output terminal. The sampling and control circuit samples an output voltage and compares the output voltage with a reference voltage, and the sampling and control circuit controls the switch combination circuit to be turned on or off according to the comparison result. The feedback circuit is connected between the switch combination circuit and the sampling and control circuit. The switch combination circuit outputs a positive feedback signal to the sampling and control circuit through the feedback circuit, and the positive feedback signal causes a hysteresis effect on a comparison action of a reference power supply chip. The output circuit is connected to the switch combination circuit, filters an output of the switch combination circuit and provides isolation protection for the output terminal, and an output of the output circuit serves as an output of the hysteresis power supply circuit.
In one embodiment, the output of the output circuit supplies power to a controller in a molded case circuit breaker.

In one embodiment, the output of the output circuit supplies power to a controller in a molded case circuit breaker and a magnetic flux controller of a tripper in the molded case circuit breaker.

In one embodiment, the output circuit is also connected to an auxiliary DC power supply. The output circuit comprises a plurality of paths between the power supply input terminal, the auxiliary DC power supply, and the power supply output terminal, a tripping magnetic flux power supply output terminal.

In one embodiment, the switch combination circuit comprises a field effect transistor (FET) and a voltage regulator tube, and controls the output power of the power supply output terminal by controlling the turn-on or turn-off of the field effect transistor and the voltage regulator tube.

In one embodiment, the switch combination circuit comprises a field effect transistor (FET) and a voltage regulator tube, and controls the output power of a power supply output terminal by controlling the turn-on or turn-off of the field effect transistor and the voltage regulator tube.

In one embodiment, the sampling and control circuit comprises a reference power supply chip that produces a reference voltage. The sampling and control circuit controls the turn-on or turn-off of the field effect transistor and the voltage regulator tube in the switch combination circuit according to the comparison result.

In one embodiment, the sampling and control circuit comprises a sampling circuit comprising a pair of sampling resistors, and the ratio of the resistance values of the pair of sampling resistors is 1: [Vout / Vref] -1, wherein Vout is the output voltage, and Vref is the reference voltage, and a point between the pair of sampling resistors is a sampling point.

In one embodiment, the feedback circuit is a feedback resistor connected between the feedback point and the sampling point, the sampling point is connected to a reference terminal of the reference power supply chip.

In one embodiment, the output circuit comprises a filter circuit.

In one embodiment, an isolation protection device is provided in the input circuit and the output circuit.

The hysteretic power supply circuit according to one or more embodiments of the present invention uses a reference power supply chip instead of an operational amplifier to generate a control signal, which makes the circuit simpler in structure and lower in cost. The feedback circuit directly connects the feedback point and the sampling point, and feeds back to the reference power supply chip. The circuit is simple but can increase a hysteresis of the reference power supply chip, so that the control of the reference power supply chip is more stable and the anti-interference ability is stronger. As a large current power FET is disposed in the circuit, which can absorb and consume excess power when a large current input occurs, and protect the back circuit from large current impact, so that the upper limit of the input current is significantly improved.

In general, the hysteretic power supply circuit according to one or more embodiments of the present invention is small in size, low in cost, small in device loss, long in service life, and capable of reducing high-frequency electromagnetic interference.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other features, aspects and advantages of the present invention will become more apparent from the description of the appended claims, wherein:

FIG.1 is a block diagram showing the structure of a hysteretic power supply circuit in accordance with an embodiment of the present invention.

FIG. 2 illustrates a circuit schematic of the first embodiment of a hysteretic power supply circuit in accordance with the present invention.

FIG. 3 illustrates a circuit schematic of the second embodiment of a hysteretic power supply circuit in accordance with the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Referring to FIG. 1, FIG. 1 is a block diagram showing the structure of a hysteretic power supply circuit in accordance with an embodiment of the present invention. As shown in FIG. 1, the hysteretic power supply circuit of the present invention comprises an input circuit 102, a switch combination circuit 104, a feedback circuit 106, a sampling and control circuit 108, and an output circuit 110.

The input circuit 102 is connected to a power supply input terminal, and the input circuit 102 rectifies a power supply input and provides isolation protection for the input terminal.

The switch combination circuit 104 is connected to the input circuit 102 and is turned on or off to control an output power of a power supply output terminal. In one embodiment, the switch combination circuit 104 comprises a field effect transistor and a voltage regulator tube, and controls the output power of the power supply output terminal by controlling the turn-on or turn-off of the field effect transistor and the voltage regulator tube.

The sampling and control circuit 108 samples an output voltage and compares the output voltage with a reference voltage, and the sampling and control circuit 108 rectifies the switch combination circuit to be turned on or off according to the comparison result. In one em-
bodiment, the sampling and control circuit 108 comprises a reference power supply chip that produces the reference voltage. The sampling and control circuit 108 controls the turn-on or turn-off of the field effect transistor and the voltage regulator tube in the switch combination circuit 104 according to the comparison result.

Referring to FIG. 2, FIG. 2 illustrates a circuit schematic of the first embodiment of a hysteretic power supply circuit in accordance with the present invention. In the first embodiment shown in FIG. 2, the input circuit 102 is a first diode D1. The first diode D1 functions to rectify and isolate a power supply input. The switch combination circuit 104 comprises a first FET V1, a second FET V2, a second diode D2, a third diode D3, a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4. The first FET V1 is an N-channel enhancement type field effect transistor, and the second FET V2 is an N-channel large current power field effect transistor. The second diode D2 and the third diode D3 function as a voltage regulator and are voltage regulator tubes. The feedback circuit 106 is a seventh resistor R7. The sampling and control circuit 108 comprises a reference power supply chip U1, a fifth resistor R5, and a sixth resistor R6. The reference power supply chip U1 is a three-terminal adjustable shunt reference power supply chip, and the reference power supply chip U1 generates a reference power supply. The fifth resistor R5 and the sixth resistor R6 are used as a voltage dividing resistor, and the fifth resistor R5 and the sixth resistor R6 are used to sample the output voltage and supply it to the reference power supply chip U1. The output circuit 110 comprises a fourth diode D4, a first capacitor C1, and a second capacitor C2, and the first capacitor C1 and the second capacitor C2 constitute a filter circuit.

The feedback circuit 106 is connected between the switch combination circuit 104 and the sampling and control circuit 108. The switch combining circuit 104 outputs a positive feedback signal to the sampling and control circuit 108 through the feedback circuit 106, which causes the comparison action of the reference power supply chip to produce a hysteresis effect. The positive feedback signal enables the reference power supply chip to be more stable based on the comparison of the reference voltage and the sampled output voltage, avoiding frequent switching of the switch combination circuit due to voltage fluctuation, and thus reducing energy loss and electromagnetic interference due to frequent switching.

The output circuit 110 is connected to the switch combination circuit 104, filters the output of the switch combination circuit 104 and provides isolation protection for the output terminal, and the output of the output circuit 110 services as an output of the hysteretic power supply circuit. The output of the output circuit 110 can supply power to a controller in a molded case circuit breaker and/or provide a trip voltage for a magnetic flux controller of a tripper in the molded case circuit breaker.

In the first embodiment shown in FIG. 2, the feedback circuit 106 is connected between the switch combination circuit 104 and the sampling and control circuit 108 through the feedback circuit 106, which causes the comparison action of the reference power supply chip to produce a hysteresis effect. The positive feedback signal enables the reference power supply chip to be more stable based on the comparison of the reference voltage and the sampled output voltage, avoiding frequent switching of the switch combination circuit due to voltage fluctuation, and thus reducing energy loss and electromagnetic interference due to frequent switching.

Referring to FIG. 2, FIG. 2 illustrates a circuit schematic of the first embodiment of a hysteretic power supply circuit in accordance with the present invention. In the first embodiment shown in FIG. 2, the input circuit 102 is a first diode D1. The first diode D1 functions to rectify and isolate a power supply input. The switch combination circuit 104 comprises a first FET V1, a second FET V2, a second diode D2, a third diode D3, a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4. The first FET V1 is an N-channel enhancement type field effect transistor, and the second FET V2 is an N-channel large current power field effect transistor. The second diode D2 and the third diode D3 function as a voltage regulator and are voltage regulator tubes. The feedback circuit 106 is a seventh resistor R7. The sampling and control circuit 108 comprises a reference power supply chip U1, a fifth resistor R5, and a sixth resistor R6. The reference power supply chip U1 is a three-terminal adjustable shunt reference power supply chip, and the reference power supply chip U1 generates a reference power supply. The fifth resistor R5 and the sixth resistor R6 are used as a voltage dividing resistor, and the fifth resistor R5 and the sixth resistor R6 are used to sample the output voltage and supply it to the reference power supply chip U1. The output circuit 110 comprises a fourth diode D4, a first capacitor C1, and a second capacitor C2, and the first capacitor C1 and the second capacitor C2 constitute a filter circuit.

The power supply input terminal Vin is connected to the anode of the first diode D1 and the drain of the second FET (N-channel large current power FET) V2. The cathode of the first diode D1 is connected to the first end of the first resistor R1, the first end of the fourth resistor R4 and the first end of the fifth resistor R5; the first resistor R1, the fourth resistor R4, and the fifth resistor R5 all implement the function of a voltage dividing resistor, and the role here is to pull up potential; the first resistor R1, the fourth resistor R4, and the fifth resistor R5 are used as pull-up resistors. The second end of the first resistor R1 is connected to the cathode of the second diode (voltage regulator tube) D2. The anode of the second diode D2 is connected to the gate of the second FET V2, the drain of the first FET (N-channel enhancement field effect transistor) V1, the first end of the seventh resistor R7, and the second resistor R2. The intersection point of the above circuits is the feedback point A. The seventh resistor R7 is a feedback resistor, the second resistor R2 is a voltage dividing resistor, and the second resistor R2 functions to pull down potential and is used as a pull-down resistor. The source of the second FET V2 is grounded. The second end of the seventh resistor (feedback resistor) R7 is connected to the reference pole of the reference power supply chip (three-terminal adjustable shunt reference power supply chip) U1, and the above-mentioned circuit intersection is the sampling point B. The second end of the second resistor R2 is grounded. The gate of the first FET V1 is connected to the anode of the third diode (voltage regulator tube) D3 and the first end of the third resistor R3, and the source of the first FET V1 is grounded. The third resistor R3 is a voltage dividing resistor, and the third resistor R3 functions to pull down potential and is used as a pull-down resistor. The second end of the third resistor R3 is grounded. The cathode of the third diode D3 is connected to the cathode of the reference power supply chip U1 and the second end of the fourth resistor R4. The anode of the reference power supply chip U1 is grounded. The reference pole of the reference power supply chip U1 is connected to the second end of the seventh resistor R7, the second end of the fifth resistor R5, and the first end of the sixth resistor R6. The seventh resistor R7 is a feedback resistor. The feedback resistor, i.e., the seventh resistor R7, is connected between the feedback point and the sampling point, i.e., point A and point B, thereby forming a positive feedback of the switch combination circuit 104 to the sampling and control circuit 108. The fifth resistor R5 and the sixth resistor R6 are voltage dividing resistors, where the reference voltage is divided. The first end of the fifth resistor R5 is connected to the first end of the fourth resistor R4 and is also connected to the anode of the fourth diode D4. The second end of the sixth resistor R6 is grounded. The first capacitor C1 and the second capacitor C2 are connected between the anode of the fourth diode D4 and the ground, and the first capacitor C1 and the second capacitor C2 are filter capacitors. The cathode of the fourth diode D4 is connected to the power supply output terminal VCC.

In the first embodiment shown in FIG. 2, the
output circuit 110 has only one power supply output PVcc for supplying power to a controller in a molded case circuit breaker.

[0032] In the first embodiment shown in Fig. 2, the model or parameter of each component is selected as follows: The reference power supply chip is a three-terminal adjustable shunt reference power supply chip, which can be selected from the TL431AIDBZR model. The first FET V1 is an N-channel enhancement type field effect transistor, which can be selected from the 2N7002K model. The second FET is an N-channel large current power FET, which can be selected from the STD60NF06 model. The second diode D2 is a voltage regulator tube, which can be selected from the BZX84-C15 model. The third diode D3 is a voltage regulator tube, which can be selected from the BZX84-C5V1 model. The first resistor R1 is a pull-up resistor having a resistance value of 1k. The second resistor R2 is a pull-down resistor having a resistance value of 10k. The third resistor R3 is a pull-down resistor having a resistance value of 10k. The fourth resistor R4 is a pull-up resistor having a resistance value of 4.7k. The fifth resistor R5 and the sixth resistor R6 serve as voltage dividing and sampling resistors, and the resistor ratio satisfies the following requirements: R5/R6=(Vout/Vref)-1, where Vref is the reference voltage generated by the reference terminal of the reference power supply chip. The resistance values of R5 and R6 are selected according to the requirements of the output voltage Vout. In one embodiment, the fifth resistor R5 has a resistance value of 100k, and the sixth resistor R6 has a resistance value of 10k. The seventh resistor R7 is a feedback resistor having a resistance value of 100k. The first capacitor C1 and the second capacitor C2 are filter capacitors. The capacitance of the first capacitor C1 is 220uF, and the capacitance of the second capacitor C2 is 100nF.

[0033] The working principle of the hysteresis power supply circuit of the first embodiment is as follows. When an external power supply voltage is just turned on, the input voltage of the power supply input terminal Vin rises slowly. The output voltage value of the output terminal PVcc is less than a preset value, and the sampling resistors R5 and R6 of appropriate resistor ratio are selected to sample the output voltage value. A voltage dividing value is generated at the series connection point of the resistors R5 and R6, and the voltage dividing value is compared with a reference voltage Vref generated by the reference terminal of the three-terminal adjustable shunt reference power supply chip U1. In one embodiment, the reference voltage Vref is 2.5V. If the above-mentioned voltage dividing value is less than the reference voltage of 2.5V, the three-terminal adjustable shunt reference power supply chip U1 is in an off state, and the cathode thereof is maintained at a high level, at which time the voltage regulator tube D3 is turned on, so that the gate of the first FET V1 is at a high level, and the first FET V1 is in an on state. The drain of the first FET V1 is grounded such that the second FET V2 is turned off and does not affect the continued rise of the input voltage.

[0034] When the input voltage of the power supply input terminal Vin rises slowly, and the output voltage value of the power supply output terminal PVcc reaches and exceeds the preset value, the voltage dividing value obtained by sampling the output voltage values by the sampling resistors R5 and R6 is compared with the reference voltage of the reference terminal of the three-terminal adjustable shunt reference power supply chip U1. When the voltage dividing value reaches and is greater than the reference voltage of 2.5V, the three-terminal adjustable shunting reference power supply chip U1 is in an on state, the cathode voltage of which is pulled low, and outputs the 2V turn-on voltage. The turn-on voltage causes the voltage regulator tube D3 to turn off, and the gate of the first FET V1 is pulled to the low level by the pull-down resistor R3, and the first FET V1 is in turn-off state. Due to the voltage division of the resistor R1, the voltage regulator tube D2 and the resistor R2, the drain voltage of the first FET V1 is greater than 7V, and the feedback point A positively feeds the voltage of the point back to the reference terminal of the three-terminal adjustable shunt reference power supply chip U1. The three-terminal adjustable shunt reference power supply chip U1 is continuously turned on, and the second FET V2 is turned on. After the second FET V2 is turned on, the power supply input terminal Vin is grounded. Since the second FET is an N-channel large current power FET, the energy input to the power supply input is consumed by the second FET V2 in the form of thermal energy. The input voltage of the power supply input terminal Vin gradually decreases, but due to the positive feedback of the feedback point A, the three-terminal adjustable shunt reference power supply chip U1 remains turned on until the voltage of the feedback point A decreases to a certain value, such that the sampling point B is again smaller than the reference voltage 2.5V, and the three-terminal adjustable shunt reference power supply chip U1 is turned off again. The turn-on of first FET V1 makes the second FET V2 turns off again, and the input voltage of the power supply input terminal Vin is no longer lowered. But at this time, the level of the feedback point A is still low level, and is fed back to the reference point of the three-terminal adjustable shunt reference power supply chip U1, so that the three-terminal adjustable shunt reference power supply chip U1 is continuously turned off until the input voltage of the power supply input terminal Vin rises again to the preset value.

[0035] The positive feedback signal of the feedback circuit causes a hysteresis effect on the comparison action of the reference power supply chip. The positive feedback signal enables the reference power supply chip to be more stable based on the comparison of the reference voltage and the sampled output voltage, avoiding frequent switching of the switch combination circuit due to voltage fluctuation, and thus reducing energy loss and electromagnetic interference due to frequent switching.
The second FET in switch combination circuit 104 is an N-channel large current power FET, such as the STD60NF06 model. The large current power FET can absorb excess power in the event of a large current surge and consume power in the form of thermal energy, thereby increasing the input current limit, and the input current limit can be increased from tens of milliamps to several amps.

Referring to FIG. 3, FIG. 3 illustrates a circuit schematic of the second embodiment of a hysteretic power supply circuit in accordance with the present invention. As shown in FIG. 3, the second embodiment makes some modifications to the output circuit 110 based on the circuit schematic of the first embodiment. In the second embodiment, the output circuit 110 comprises a fourth diode D4, a fifth diode D5, a sixth diode D6, a seventh diode D7, a first capacitor C1, and a second capacitor C2, a third capacitor C3 and a fourth capacitor C4. The output circuit 110 has two inputs and two outputs. In terms of output, in addition to the power supply output terminal PVcc, the tripping magnetic flux power supply output terminal TVcc is also included. In terms of input, in addition to the power supply input terminal Vin, an auxiliary DC power supply Vcc is included. As shown in FIG. 3, through the fifth diode D5, the sixth diode D6, and the seventh diode D7, the output circuit 110 establishes a plurality of paths between the two input terminals and the two output terminals. The fifth diode D5, the sixth diode D6, and the seventh diode D7 described above all function to rectify and isolate the power supply input.

Input circuit 102 is still the first diode D1. The first diode D1 functions to rectify and isolate a power supply input. The switch combination circuit 104 still comprises a first FET V1, a second FET V2, a second diode D2, a third diode D3, a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4. The first FET V1 is an N-channel enhancement type field effect transistor, and the second FET V2 is an N-channel large current power field effect transistor. The second diode D2 and the third diode D3 function as a voltage regulator and are voltage regulator tubes. The feedback circuit 106 is a seventh resistor R7. The sampling and control circuit 108 comprises a reference power supply chip U1, a fifth resistor R5, and a sixth resistor R6. The reference power supply chip U1 is a three-terminal adjustable shunt reference power supply chip, and the reference power supply chip U1 generates a reference power supply. The fifth resistor R5 and the sixth resistor R6 are used as a voltage dividing resistor, and the fifth resistor R5 and the sixth resistor R6 are used to sample the output voltage and supply it to the reference power supply chip U1.

The circuit diagram of the first embodiment remains unchanged as part of the circuit diagram of the second embodiment, providing a current path from the power supply input terminal Vin to the power supply output terminal PVcc, and the power supply output terminal PVcc is used to supply power to a controller in a molded case circuit breaker.
In general, the hysteresis power supply circuit of the present invention is small in size, low in cost, small in device loss, long in service life, and capable of reducing high-frequency electromagnetic interference.

The above embodiments are provided to those skilled in the art to implement or use the present invention, and those skilled in the art can make various modifications or changes to the above embodiments without departing from the inventive concept. The scope of protection of the present invention is not limited by the above embodiments, but should be the maximum range of the innovative features mentioned in the claims.

Claims

1. A hysteresis power supply circuit, comprising:
 an input circuit that is connected to a power supply input terminal, rectifies a power supply input and provides isolation protection for the input terminal;
 a switch combination circuit that is connected to an input circuit and is turned on or off to control an output power of a power supply output terminal;
 a sampling and control circuit that samples an output voltage, compares the output voltage with a reference voltage, controls the switch combination circuit to be turned on or off according to the comparison result;
 a feedback circuit that is connected between the switch combination circuit and the sampling and control circuit, wherein the switch combination circuit outputs a positive feedback signal to the sampling and control circuit through the feedback circuit, and the positive feedback signal causes a hysteresis effect on a comparison action of a reference power supply chip;
 an output circuit that is connected to the switch combination circuit, filters an output of the switch combination circuit and provides isolation protection for an output terminal, wherein the output of the output circuit serves as an output of the hysteresis power supply circuit.

2. The hysteresis power supply circuit of claim 1, wherein the output circuit is also connected to an auxiliary DC power supply;
 the output circuit comprises a plurality of paths between the power supply input terminal, the auxiliary DC power supply, and the power supply output terminal, the tripping magnetic flux power supply output terminal.

3. The hysteresis power supply circuit of any of claims 1 to 4, wherein the switch combination circuit comprises a field effect transistor and a voltage regulator tube and controls the turn-on or turn-off of the field effect transistor and the voltage regulator tube to control an output power of the power supply output.

4. The hysteresis type power supply circuit of claim 3, wherein the output circuit is also connected to an auxiliary DC power supply;
 the output circuit comprises a plurality of paths between the power supply input terminal, the auxiliary DC power supply, and the power supply output terminal, the tripping magnetic flux power supply output terminal.

5. The hysteresis type power supply circuit of any of claims 1 to 4, wherein the switch combination circuit comprises a field effect transistor and a voltage regulator tube and controls the turn-on or turn-off of the field effect transistor and the voltage regulator tube to control an output power of the power supply output.

6. The hysteresis power supply circuit according to claim 5, wherein the field effect transistor comprises a large current power field effect transistor.

7. The hysteresis power supply circuit of claim 6, wherein the field effect transistor comprises an enhanced field effect transistor and a large current power field effect transistor, the gate of the large current power field effect transistor is connected to the drain of the enhanced field effect transistor, wherein the connection point serves as a feedback point.

8. The hysteresis power supply circuit of claim 7, wherein the sampling and control circuit comprises a reference power supply chip, and the reference power supply chip generates a reference voltage;
 the sampling and control circuit controls the turn-on or turn-off of the field effect transistor and the voltage regulator tube in the switch combination circuit according to the comparison result.

9. The hysteresis power supply circuit of claim 8, wherein the sampling and control circuit comprises a sampling circuit, wherein the sampling circuit comprises a pair of sampling resistors, wherein a ratio of resistance values of the pair of sampling resistors is 1: \ ([V_{out}/V_{ref}]-1\), where Vout is the output voltage, Vref is the reference voltage, and a point between the pair of sampling resistors is a sampling point.

10. The hysteresis power supply circuit of claim 9, wherein said feedback circuit is a feedback resistor connected between the feedback point and the sampling point, the sampling point being connected to a reference terminal of the reference power supply chip.

11. The hysteresis power supply circuit of claim 5, wherein the output circuit comprises a filter circuit.

12. The hysteresis power supply circuit of claim 5,
wherein an isolation protection device is provided in the input circuit and the output circuit.
FIG 1
FIG 3
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H02M 3/158 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H02H; H02M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, EPODOC, WPI, CNKI, IEEE: steady voltage, over voltage, under voltage, hysteresis, voltage, stabilization, over, under, sluggish, delay, slow, circuit, feedback, reference, compare, input, output, switch, sampling, control, filtering, isolation, jitter, shake

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>CN 106026656 A (SEARIE ELECTRICAL APPARATUS TECHNOLOGY CO., LTD.; SHANGHAI NOARK ELECTRIC CO., LTD.; ZHEJIANG CHINT ELECTRICS CO., LTD.), 12 October 2016 (12.10.2016), claims 1-12</td>
<td>1-12</td>
</tr>
<tr>
<td>PX</td>
<td>CN 205864260 U (SEARIE ELECTRICAL APPARATUS TECHNOLOGY CO., LTD.; SHANGHAI NOARK ELECTRIC CO., LTD.; ZHEJIANG CHINT ELECTRICS CO., LTD.), 04 January 2017 (04.01.2017), claims 1-12</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>CN 201846066 U (DONGGUAN AOYUAN ELECTRONIC TECHNOLOGY CO., LTD.), 25 May 2011 (25.05.2011), description, paragraphs [0003]-[0010], and figure 1</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>CN 205141657 U (MORSUN GUANGZHOU SCIENCE & TECHNOLOGY LTD.), 06 April 2016 (06.04.2016), the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>CN 103951185 A (ZHEJIANG DELING TECHNOLOGY CO., LTD.), 17 April 2013 (17.04.2013), the whole document</td>
<td>1-12</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.

See patent family annex.

A document defining the general state of the art which is not considered to be of particular relevance

E” earlier application or patent but published on or after the international filing date

L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O” document referring to an oral disclosure, use, exhibition or other means

P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

24 August 2017 (24.08.2017)

Date of mailing of the international search report

29 September 2017 (29.09.2017)

Name and mailing address of the ISA/CN:

State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Jiemianqiao
Haidian District, Beijing 100088, China
Facsimile No.: (86-10) 62019451

Authorized officer

WU, Yuanyuan

Telephone No.: (86-10) 010-52871143

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 106026656 A</td>
<td>12 October 2016</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 205864260 U</td>
<td>04 January 2017</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 201846066 U</td>
<td>25 May 2011</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 205141657 U</td>
<td>06 April 2016</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 103051185 A</td>
<td>17 April 2013</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)