STACKED HERBICIDE TOLERANCE EVENT 8264.44.06.1, RELATED TRANSGENIC SOYBEAN LINES, AND DETECTION THEREOF

This invention relates in part to soybean event pDAB8264.44.06.1 and includes a novel expression cassettes and transgenic inserts comprising multiple traits conferring resistance to glyphosate, aryloxyalkanoate, and glufosinate herbicides. This invention also relates in part to methods of controlling resistant weeds, plant breeding and herbicide tolerant plants. In some embodiments, the event sequence can be "stacked" with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. This invention further relates in part to endpoint TaqMan PCR assays for the detection of Event pDAB8264.44.06.1 in soybeans and related plant material. Some embodiments can perform high throughput zygosity analysis of plant material and other embodiments can be used to uniquely identify the zygosity of and breed soybean lines comprising the event of the subject invention. Kits and conditions useful in conducting these assays are also provided.
Glyphosate (N-phosphonomethylglycine), a broad-spectrum herbicide, inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme in the shikimate biosynthetic pathway that produces the essential aromatic amino acids in plant cells. Inhibition of EPSPS effectively disrupts protein synthesis and thereby kills the affected plant cells. Because glyphosate is non-selective, it kills both weeds and crop plants. Thus it is useful with crop plants when one can modify the crop plants to be resistant to glyphosate, allowing the desirable plants to survive exposure to the glyphosate.

Recombinant DNA technology has been used to isolate mutant EPSP synthases that are glyphosate-resistant. Such glyphosate-resistant mutant EPSP synthases can be transformed into plants and confer glyphosate-resistance upon the transformed plants. By way of example, a glyphosate tolerance gene was isolated from Agrobacterium strain CP4 as described in U.S. Patent No. 5,633,435. This reference and all references cited herein are hereby incorporated by reference.

Examples of events providing resistance to glyphosate in soybeans include soybean line GTS40-3-2 (Padgette et al. 1995), soybean event MON89788 (U.S. Patent No. 7,608,761), U.S. Patent No. 7,608,761 relates to soybean event MON89788, each of which was produced by inserting the cp4 epsps gene into soybean.

The widespread adoption of the glyphosate tolerant cropping system and the increasing use of glyphosate has contributed to the prevalence of glyphosate-resistant and difficult-to-control weeds in recent years. In areas where growers are faced with glyphosate resistant weeds or a shift to more difficult-to-control weed species, growers can compensate for glyphosate’s weaknesses by tank mixing or alternating with other herbicides that will control the missed weeds.

One popular and efficacious tankmix partner for controlling broadleaf escapes in many instances has been 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D, which has been used as a herbicide for more than 60 years, provides broad spectrum, post-emergence control of many annual, biennial, and perennial broadleaf weeds including several key weeds in corn, soybeans, and cotton. Key weeds controlled by 2,4-D (560 - 1120 g ae/ha rates) in row crop production include Ambrosia artemisiifolia, Ambrosia trifida, Xanthium strumarium, Chenopodium album, Helianthus annuus, Ipomoea sp., Abutilon theophrasti, Conyza Canadensis, and Senna obtusifolia. 2,4-D provides partial control of several key weeds including Polygonum pensylvanicum, Polygonum persicaria, Cirsium arvense, Taraxacum officinale, and Amaranthus sp. including Amaranthus rudis, and Amaranthus palmeri.

A limitation to further use of 2,4-D is that its selectivity in dicot crops like soybean or cotton is very poor, and hence 2,4-D is not typically used on (and generally not near) sensitive dicot crops. Additionally, 2,4-D’s use in grass crops is somewhat limited by the nature of crop injury that can occur. 2,4-D in combination with glyphosate has been used to provide a more robust burndown treatment prior to planting no-till soybeans and cotton; however, due to these dicot species’ sensitivity to 2,4-D, these burndown treatments must occur at least 14-30 days prior to planting (Agriliance, 2005).

One organism that has been extensively researched for its ability to degrade 2,4-D is Ralstonia eutropha, which contains a gene that codes for tfdA (Streber et al., 1987), an enzyme which catalyzes the first step in the mineralization pathway. (See U.S. Pat. No. 6,153,401 and GENBANK Acc. No. M16730). tfdA has been reported to degrade 2,4-D (Smejkal et al., 2001). The products that result from the degradation have little to no herbicidal activity compared to 2,4-D. tfdA has been used in transgenic plants to impart 2,4-D resistance in dicot plants (e.g., cotton and tobacco) normally sensitive to 2,4-D (Streber et al. (1989), Lyon et al. (1989), Lyon (1993), and U.S. Pat. No. 5,608,147).

A number of tfdA-type genes that encode proteins capable of degrading 2,4-D have been identified from the environment and deposited into the Genbank database. Many homologues are similar to tfdA (>85% amino acid identity). However, there are a number of polynucleotide sequences that have a significantly lower identity to tfdA (25-50%), yet have the characteristic residues associated with α-ketoglutarate dioxygenase Fe (II) dioxygenases.

An example of a 2,4-D-degrading gene with low sequence identity (<35%) to tfdA is the aad-12 gene from Delftia acidovorans (US Patent App 2011/0203017). The aad-12 gene encodes an S-enantiomer-specific α-ketoglutarate-
dependent dioxygenase which has been used in plants to confer tolerance to certain phenoxy auxin herbicides, including, but not limited to: phenoxyacetic acid herbicides such as 2,4-D and MCPA; and phenoxybutanoic acid herbicides, such as 2,4-DB and MCPB) and pyridyloxyalkanoic acid herbicides (e.g., pyridyloxyacetic acid herbicides such as triclopyr and fluroxypyr), and including salt, or ester forms of the active ingredient(s). (See, e.g., WO 2007/053482).

0012] Glufosinate-ammonium ("glufosinate") is a non-systemic, non-selective herbicide in the phosphinothricin class of herbicides. Used primarily for post-emergence control of a wide range of broadleaf and grassy weeds, L-phosphinothricin, the active ingredient in glufosinate, controls weeds through the irreversible inhibition of glutamine-synthase, an enzyme which is necessary for ammonia detoxification in plants. Glufosinate herbicides are sold commercially, for example, under the brand names Ignite®, BASTA, and Liberty®.

0013] The enzyme phosphinothricin N-acetyl transferase (PAT), isolated from the soil bacterium Streptomyces viridochromogenes, catalyzes the conversion of L-phosphinothricin to its inactive form by acetylation. A plant-optimized form of the gene expressing PAT has been used in soybeans to confer tolerance to glufosinate herbicide. One such example of glufosinate resistant soybeans is event A5547-127. Most recently, the use of glufosinate herbicide in combination with the glufosinate-tolerance trait has been proposed as a non-selective means to effectively manage ALS- and glyphosate resistant weeds.

0014] The expression of heterologous or foreign genes in plants is influenced by where the foreign gene is inserted in the chromosome. This could be due to chromatin structure (e.g., heterochromatin) or the proximity of transcriptional regulation elements (e.g., enhancers) close to the integration site (Weising et al., Ann. Rev. Genet 22:421-477, 1988), for example. The same gene in the same type of transgenic plant (or other organism) can exhibit a wide variation in expression level amongst different events. There may also be differences in spatial or temporal patterns of expression. For example, differences in the relative expression of a transgene in various plant tissues may not correspond to the patterns expected from transcriptional regulatory elements present in the introduced gene construct.

0015] Thus, large numbers of events are often created and screened in order to identify an event that expresses an introduced gene of interest to a satisfactory level for a given purpose. For commercial purposes, it is common to produce hundreds to thousands of different events and to screen those events for a single event that has desired transgene expression levels and patterns. An event that has desired levels and/or patterns of transgene expression is useful for introgressing the transgene into other genetic backgrounds by sexual outcrossing using conventional breeding methods. Progeny of such crosses maintain the transgene expression characteristics of the original transformant. This strategy is used to ensure reliable gene expression in a number of varieties that are well adapted to local growing conditions.

0016] The subject invention can provide, in part, effective means for managing weed resistance, which helps preserve the usefulness of herbicide-tolerant technologies. The subject invention can also provide growers with great flexibility and convenience in weed control options.

0017] More specifically, the present invention relates in part to the soybean (Glycine max) event designated pDABB8264.44.06.1 ("Event pDABB8264.44.06.1") having representative seed deposited with American Type Culture Collection (ATCC) with Accession No. PTA-11336, and progeny derived thereof. The subject invention includes soybean plants comprising Event pDABB8264.44.06.1 (and includes soybean plants comprising a transgenic insert in a genomic segment comprising SEQ ID NO:1 and SEQ ID NO:2).

0018] The transgenic insert present in the subject event and deposited seed comprises three herbicide tolerance genes: aad-12, 2mepsps, and a pat gene. The aad-12 gene, derived from Delftia acidovorans, encodes the aryloxyalkanoate dioxygenase (AAD-12) protein, which confers tolerance to, e.g., 2,4-dichlorophenoxyacetic acid and pyridyloxyacetate herbicides. The 2mepsps gene, a modified EPSPS sequence isolated from maize, produces a protein which confers tolerance to glyphosate herbicides. The pat gene, from the soil bacterium Streptomyces viridochromogenes, confers tolerance to the herbicide glufosinate.

0019] Other aspects of the invention comprise progeny plants, soybeans, seeds, and/or regeneratable parts of the plants and seeds comprising soybean event pDABB8264.44.06.1, as well as food or feed products made from any thereof. The invention also includes plant parts of Event pDABB8264.44.06.1 that include, but are not limited to, pollen, ovule, flowers, shoots, roots, leaves, nuclei of vegetative cells, pollen cells, and other plant cells that comprise Event pDABB8264.44.06.1. The invention further relates to soybean plants having tolerance to multiple herbicides including phenoxyacetic acid herbicides, phenoxybutanoic acid herbicides, pyridyloxyalkanoic acid herbicides, glyphosate, and/or glufosinate. Such soybean plants may also be stacked with genes that confer tolerance to various other non-selective and selective herbicides, including but not limited to dicamba, imidazolinone, and HPPD herbicides. The invention further includes novel genetic compositions Event pDABB8264.44.06.1 and aspects of agronomic performance of soybean plants comprising Event pDABB8264.44.06.1.

0020] This invention relates in part to plant breeding and herbicide tolerant plants. This invention includes a novel transformation event in soybean plants comprising a polynucleotide, as described herein, inserted into a specific site
within the genome of a soybean cell.

[0021] In some embodiments, said event / polynucleotide can be “stacked” with other traits, including, for example, agronomic traits and/or insect-inhibitory proteins. However, the subject invention includes plants having the single event, as described herein.

[0022] In some embodiments, the subject herbicide tolerance event can be combined in a breeding stack with an insect resistance event. In some of these embodiments, the insect resistance event comprises a cry1F gene and a cry1Ac gene. Some such events and stacks are specifically exemplified herein, including soybean event 9582.812.9.1 ("the 812 Event") and soybean event 9582.814.19.1 ("the 814 Event"). Plants, plant cells, and seeds, for example, comprising any combination of the subject events are included in the subject invention. In some embodiments, the subject invention includes the Soybean Event 9582.812.9.1 (‘812 Event), alone, as discussed in more detail below.

[0023] The additional traits may be stacked into the plant genome, or into the same locus as Event pDAB8264.44.06.1, for example via plant breeding, re-transformation of the transgenic plant containing Event DAS-8264.44.06.1, or addition of new traits through targeted integration via homologous recombination.

[0024] Other embodiments include the excision of a portion or all of the transgenic insert and/or flanking sequences of Event DAS-8264.44.06.1. Upon excision, another and/or additional insert can be targeted to the specific chromosomal site of Event DAS-8264.44.06.1. The exemplified insert can be replaced, or further insert(s) can be stacked, in this manner, with the exemplified insert of the subject soybean event.

[0025] In one embodiment, the present invention encompasses a soybean chromosomal target site located on chromosome 6. In some embodiments, the target site comprises a heterologous nucleic acid. In some embodiments, the soybean chromosomal target site is located between or within the genomic flanking sequences set forth in SEQ ID NO:1 and SEQ ID NO:2.

[0026] In one embodiment, the present invention encompasses a method of making a transgenic soybean plant comprising inserting a heterologous nucleic acid at a position on chromosome 6. In another embodiment, the heterologous nucleic acid is inserted on chromosome 6 near or between various exemplified polynucleotide segments as described herein.

[0027] Additionally, the subject invention provides assays for detecting the presence of the subject event in a sample (of soybeans, for example). The assays can be based on the DNA sequence of the recombinant construct, inserted into the soybean genome, and on the genomic sequences flanking the insertion site. Kits and conditions useful in conducting the assays are also provided.

[0028] Thus, the subject invention relates in part to the cloning and analysis of the DNA sequences of the whole exemplified insert and the border regions thereof (in transgenic soybean lines). These sequences are unique. Based on these insert and border (and junction) sequences, event-specific primers can be and were generated. PCR analysis demonstrated that the events can be identified by analysis of the PCR amplicons generated with these event-specific primer sets. Thus, these and other related procedures can be used to uniquely identify soybean lines comprising the event of the subject invention.

[0029] The subject invention also relates in part to realtime or endpoint TaqMan PCR assays for the detection of event 8264.44.06.1. Some embodiments are directed to assays that are capable of high throughput zygosity analysis. The subject invention further relates, in part, to the use of a GMFL01-25-J19 (GenBank:AK286292.1) reference gene for use in determining zygosity. These and other related procedures can be used to uniquely identify the zygosity of Event pDAB8264.44.06.1 and breed soybean lines comprising the event.

BRIEF DESCRIPTION OF THE FIGURES

[0030]

Figure 1 is a plasmid map of pDAB8264.
Figure 2 is a schematic diagram depicting primer locations for soybean Event pDAB8264.44.06.1.
Figure 3 is a schematic diagram depicting primer locations and genomic DNA deletion in soybean Event pDAB8264.44.06.1.
Figure 4 is a schematic diagram depicting primer locations for the TaqMan assay detection of soybean Event pDAB8264.44.06.1.

BRIEF DESCRIPTION OF THE SEQUENCES

[0031]

SEQ ID NO:1 provides the 5’ flanking border sequence for the subject soybean Event pDAB8264.44.06.1.
SEQ ID NO:2 provides the 3’ flanking border sequence for the subject soybean Event pDAB8264.44.06.1.
The invention described herein includes novel transformation events of soybean plants (soybean) comprising a cassette for the expression of multiple herbicide tolerance genes inserted into a specific locus within the genome of a soybean cell.

More specifically, the subject invention relates in part to transgenic soybean Event pDAB8264.44.06.1, plant lines comprising these events, and the cloning and analysis of the DNA sequences of this insert, and/or the border regions thereof. Plant lines of the subject invention can be detected using sequences disclosed and suggested herein.

This invention relates in part to plant breeding and herbicide tolerant plants. In some embodiments, said polynucleotide sequence can be "stacked" with other traits (such as other herbicide tolerance gene(s) and/or gene(s) that encode insect inhibitory proteins or inhibitory RNA sequences, for example). However, the subject invention also includes plants having a single event, as described herein.

In some embodiments, the subject herbicide tolerance event can be combined in a breeding stack with an insect resistance event. In some embodiments, the insect resistance event is selected from the group consisting of the 812 Event and the 814 Event (as defined in greater detail below), each of which comprises a cry1F gene and a cry1Ac gene. Plants, plant cells, and seeds, for example, comprising any combination of the subject events are included in the
subject invention. The subject invention also includes the novel 812 Event, alone, in certain embodiments, including plants, plant cells, and seeds, for example.

[0037] U.S. provisional application serial number 61/471,845, filed April 5, 2011, relates in part to soybean lines comprising Soybean Event 9582.812.9.1 (the 812 Event). Seeds comprising this event were deposited and made available to the public without restriction (but subject to patent rights), with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA, 20110. The deposit, designated as ATCC Deposit No. PTA-11602, was made on January 20, 2011. This deposit was made and will be maintained in accordance with and under the terms of the Budapest Treaty with respect to seed deposits for the purposes of patent procedure.

[0038] U.S. provisional applications serial numbers 61/511,664 (filed July 26, 2011) and 61/521,798 (filed August 10, 2011) relates in part to soybean lines comprising soybean event 9582.814.19.1 (the 814 Event). Seeds comprising this event were deposited with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA, 20110. The deposit, ATCC Patent Deposit Designation PTA-12006, was received by the ATCC on July 21, 2011. This deposit was made and will be maintained in accordance with and under the terms of the Budapest Treaty with respect to seed deposits for the purposes of patent procedure.

[0039] The subject invention also includes plants, seeds, and plant cells, for example, comprising SEQ ID NO:27 (Event pDAB8264.44.06.1; the 4406 Event), SEQ ID NO:28 (the 812 Event), and/or SEQ ID NO:29 (the 814 Event), and variants of these sequences having, for example, at least 95%, 96%, 97%, 98%, or 99% identity with such sequences. It is not uncommon for some variation (such as deletion of some segments) to occur upon integration of an insert sequence within the plant genome. This is discussed in more detail in Example 7, for example.

[0040] The subject invention also provides assays for detecting the presence of the subject event in a sample. Aspects of the subject invention include methods of designing and/or producing any diagnostic nucleic acid molecules exemplified or suggested herein, particularly those based wholly or partially on the subject flanking sequences.

[0041] In some embodiments, a polynucleotide segment exemplified or described herein (such as SEQ ID NO:1, SEQ ID NO:2, and/or the insert therebetween, as depicted in Figure 2 for example) can be excised and subsequently re-targeted with additional polynucleotide sequence(s).

[0042] In some embodiments, this invention relates to herbicide-tolerant soybean lines, and the identification thereof. The subject invention relates in part to detecting the presence of the subject event in order to determine whether progeny of a sexual cross contain the event of interest. In addition, a method for detecting the event is included and is helpful, for example, for complying with regulations requiring the pre-market approval and labeling of foods derived from recombinant crop plants, for example. It is possible to detect the presence of the subject event by any well-known nucleic acid detection method such as polymerase chain reaction (PCR) or DNA hybridization using nucleic acid probes. Event-specific PCR assays are discussed herein. (See e.g. Windels et al. (Med. Fac. Landbouww, Univ. Gent 64/5b:459462, 1999) for another example.) Some of these examples relate to using a primer set spanning the junction between the insert and flanking DNA. More specifically, one primer included sequence from the insert and a second primer included sequence from flanking DNA.

[0043] Exemplified herein is soybean Event pDAB8264.44.06.1, and its selection and characterization for stability and expression in soybean plants from generation to generation. Both flanking sequences of Event pDAB8264.44.06.1 have been sequenced and are described herein as SEQ ID NO:1 and SEQ ID NO:2. Event specific assays were developed. It has also been mapped onto the soybean genome (soybean chromosome 6). Event pDAB8264.44.06.1 can be introgressed into elite cultivars where it will confer tolerance to phenoxy auxin, glyphosate and glufosinate herbicides in inbred and hybrid soybean lines.

[0044] The subject EPSPS gene encodes a mutant 5-enolpyruvyl-3-phosphoshikimic acid synthase (EPSPS). The wild-type EPSPS gene was originally isolated from Zea mays, and the sequence was deposited under GenBank accession number X63374. See also U.S. Patent No. 6,566,587 (in particular, SEQ ID No. 3 therein).

[0045] To obtain high expression of heterologous genes in plants, it may be preferred to reengineer said genes so that they are more efficiently expressed in plant cells. Modification of the wild-type plant EPSPS nucleotide sequence can provide such resistance when expressed in a plant cell. As described in the ’587 patent, when comparing an EPSPS polypeptide to the wild-type polypeptide, modification to substitute isoleucine for threonine at residue 102 and substitute serine for proline at position 106 of the protein, the result is the double mutant EPSPS polypeptide (2mEPSPS) used in the subject insert. When expressed in a plant cell, it provides tolerance to glyphosate. The subject EPSPS gene, also referred to as the “2mepsps gene” or DMMG, can alternatively be optimized to improve expression in both dicotyledonous plants as well as monocotyledonous plants, and in particular in soybean. Codon usage can be selected based upon preferred hemicot codon usage, i.e. redesigned such that the protein is encoded by codons having a bias toward both monocot and dicot plant usage. Deleterious sequences and superfluous restriction sites can be removed to increase the efficiency of transcription/translation of the 2mepsps coding sequence and to facilitate DNA manipulation steps. A hemicot-optimized version of the subject monocot gene is further detailed in U.S.S.N. 13/303,502 (filed November 23, 2011, claiming priority to December 3, 2010) entitled, “OPTIMIZED EXPRESSION OF GLYPHOSATE RESISTANCE ENCODING NUCLEIC ACID MOLECULES IN PLANT CELLS.”
As previously referenced herein, the introduction and integration of a transgene into a plant genome involves some random events (hence the name "event" for a given insertion that is expressed). That is, with many transformation techniques such as Agrobacterium transformation, the "gene gun," and WHISKERS, it is unpredictable where in the genome a transgene will become inserted. Thus, identifying the flanking plant genomic DNA on both sides of the insert can be important for identifying a plant that has a given insertion event. For example, PCR primers can be designed that generate a PCR amplicon across the junction region of the insert and the host genome. This PCR amplicon can be used to identify a unique or distinct type of insertion event.

During the process of introducing an insert into the genome of plant cells, it is not uncommon for some deletions or other alterations of the insert and/or genomic flanking sequences to occur. Thus, the relevant segment of the plasmid sequence provided herein might comprise some minor variations. The same is true for the flanking sequences provided herein. Thus, a plant comprising a polynucleotide having some range of identity with the subject flanking and/or insert sequences is within the scope of the subject invention. Identity to the sequence of the present invention can be a polynucleotide sequence having at least 65% sequence identity, more preferably at least 70% sequence identity, more preferably at least 75% sequence identity, more preferably at least 80% identity, and more preferably at least 85% identity, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% sequence identity with a sequence exemplified or described herein. Hybridization and hybridization conditions as provided herein can also be used to define such plants and polynucleotide sequences of the subject invention. The sequence which comprises the flanking sequences plus the full insert sequence can be confirmed with reference to the deposited seed.

As "events" are originally random events, as part of this disclosure at least 2500 seeds of a soybean line comprising Event pDAB8264.44.06.1 have been deposited and made available to the public without restriction (but subject to patent rights), with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA, 20110. The deposit has been designated as ATCC Deposit No. PTA-11336. 100 packets (25 seeds per packet) of Glycine max seeds ("Soybean Seed Glycine max L.: pDAB8264.44.06.1") were deposited on behalf of Dow AgroSciences LLC and M.S. Technologies, Inc. on September 14, 2010. The deposit was tested on October 04, 2010, and on that date, the seeds were viable. This deposit was made and will be maintained in accordance with and under the terms of the Budapest Treaty with respect to seed deposits for the purposes of patent procedure. The deposit will be maintained without restriction at the ATCC depository, which is a public depository, for a period of 30 years, or five years after the most recent request, or for the effective life of the patent, whichever is longer, and will be replaced if it becomes nonviable during that period.

As part of this disclosure at least 2500 seeds of a soybean line comprising Event pDAB9582.812.9.1 and Event pDAB8264.44.06.1 (the subject herbicide tolerance event and the 812 insect resistance event) have been deposited and made available to the public without restriction (but subject to patent rights), with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA, 20110. The deposit has been identified as "Designation: pDAB9582.812.9.1: Event pDAB8264.44.06.1" by the ATCC. 100 packets (25 seeds per packet) of Glycine max seeds ("Soybean Seed Glycine max L.: pDAB8264.44.06.1") were deposited on November 18, 2011. This deposit was made and will be maintained in accordance with and under the terms of the Budapest Treaty with respect to seed deposits for the purposes of patent procedure. The deposit will be maintained without restriction at the ATCC depository, which is a public depository, for a period of 30 years, or five years after the most recent request, or for the effective life of the patent, whichever is longer, and will be replaced if it becomes nonviable during that period.

The deposited seeds are part of the subject invention. Clearly, soybean plants can be grown from these seeds, and such plants are part of the subject invention. The subject invention also relates to DNA sequences contained in these soybean plants that are useful for detecting these plants and progeny thereof. Detection methods and kits of the subject invention can be directed to identifying any one, two, or even all three of these events, depending on the ultimate purpose of the test.

Definitions and examples are provided herein to help describe the present invention and to guide those of ordinary skill in the art to practice the invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. The nomenclature for DNA bases as set forth at 37 CFR § 1.822 is used.

As used herein, the term "progeny" denotes the offspring of any generation of a parent plant which comprises soybean Event pDAB8264.44.06.1.

A transgenic "event" is produced by transformation of plant cells with heterologous DNA, i.e., a nucleic acid construct that includes a transgene of interest, regeneration of a population of plants resulting from the insertion of the transgene into the genome of the plant, and selection of a particular plant characterized by insertion into a particular genome location. The term "event" refers to the original transformant and progeny of the transformant that include the heterologous DNA. The term "event" also refers to progeny produced by a sexual outcross between the transformant and another variety that includes the genomic/transgene DNA. Even after repeated back-crossing to a recurrent parent, the inserted transgene DNA and flanking genomic DNA (genomic/transgene DNA) from the transformed parent is present in the progeny of the cross at the same chromosomal location. The term "event" also refers to DNA from the original
transformant and progeny thereof comprising the inserted DNA and flanking genomic sequence immediately adjacent to the inserted DNA that would be expected to be transferred to a progeny that receives inserted DNA including the transgene of interest as the result of a sexual cross of one parental line that includes the inserted DNA (e.g., the original transformant and progeny resulting from selfing) and a parental line that does not contain the inserted DNA.

[0054] A "junction sequence" spans the point at which DNA inserted into the genome is linked to DNA from the soybean native genome flanking the insertion point, the identification or detection of one or the other junction sequences in a plant’s genetic material being sufficient to be diagnostic for the event. Included are the DNA sequences that span the insertions in herein-described soybean events and similar lengths of flanking DNA. Specific examples of such diagnostic sequences are provided herein; however, other sequences that overlap the junctions of the insertions, or the junctions of the insertions and the genomic sequence, are also diagnostic and could be used according to the subject invention.

[0055] The subject invention relates in part to event identification using such flanking, junction, and insert sequences. Related PCR primers and amplicons are included in the invention. According to the subject invention, PCR analysis methods using amplicons that span across inserted DNA and its borders can be used to detect or identify commercialized transgenic soybean varieties or lines derived from the subject proprietary transgenic soybean lines.

[0056] The binary plasmid, pDAB8264 (SEQ ID NO:13) comprises the genetic elements depicted in Figure 1. The following genetic elements (T-strand border sequences are not included) are contained within the T-strand region of pDAB8264. In Table 1, the residue numbering of the genetic elements is provided with respect to SEQ ID NO:13 disclosed herein.

Table 1: Residue Numbering of the Genetic Elements Comprising Binary Plasmid pDAB8264 (SEQ ID NO: 13).

<table>
<thead>
<tr>
<th>Genetic Element</th>
<th>Position</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB7 MARv3 (Matrix Attachment Region)</td>
<td>137 bp - 1302 bp</td>
<td>Thompson and Myatt, (1997) Plant Mol. Biol., 34: 687-692.; WO9727207</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>1303 bp - 1341 bp</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>2003 bp - 2025 bp</td>
<td>Not applicable</td>
</tr>
<tr>
<td>2mepsps v1</td>
<td>2026 bp - 3363 bp</td>
<td>U.S. Pat. No. 6,566,587</td>
</tr>
<tr>
<td>OTPc (optimized transit peptide)</td>
<td>3364 bp - 3735 bp</td>
<td>U.S. Pat. No. 5,510,471</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>3736 bp - 3748 bp</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>5170 bp - 5261 bp</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>6584 bp - 6591 bp</td>
<td>Not applicable</td>
</tr>
<tr>
<td>aad-12 v1</td>
<td>6592 bp - 7473 bp</td>
<td>WO 2007/053482</td>
</tr>
<tr>
<td>Intervening Sequence containing stop codons in all 6-frames</td>
<td>7474 bp - 7575 bp</td>
<td>Not applicable</td>
</tr>
<tr>
<td>AtuORF233’UTR (Agrobacterium tumefaciens Open Reading Frame 23 UTR)</td>
<td>7576 bp - 8032 bp</td>
<td>U.S. Pat. No. 5,428,147</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>8033 bp - 8146 bp</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Intervening Sequence</td>
<td>8664 bp - 8670 bp</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
SEQ ID NOs: 14 and 15, respectively, are the 5' and 3' flanking sequences together with 5' and 3' portions of the insert sequence, as described in more detail below, and thus include the 5' and 3' "junction" or "transition" sequences of the insert and the genomic DNA. With respect to SEQ ID NO:14, residues 1-570 are 5' genomic flanking sequence, and residues 571-859 are residues of the 5' end of the insert. With respect to SEQ ID NO:15, residues 1-220 are residues of the 3' end of the insert, and residues 221-1719 are 3' genomic flanking sequence. The junction sequence or transition with respect to the 5' end of the insert thus occurs at residues 570-571 of SEQ ID NO:14. The junction sequence or transition with respect to the 3' end of the insert thus occurs at residues 220-221 of SEQ ID NO:15. Polynucleotides of the subject invention include those comprising, for example, 5, 10, 20, 50, 100, 150, or 200 bases, or possibly more, and any increments therebetween, on either side of the junction sequence. Thus, a primer spanning the junction sequence could comprise, for example, 5-10 bases that would hybridize with flanking sequence and 5-10 bases that would hybridize with insert sequence. Probes and amplicons could be similarly designed, although they would often be longer than primers.

The subject sequences (including the flanking sequences) are unique. Based on these insert and flanking sequences, event-specific primers were generated. PCR analysis demonstrated that these soybean lines can be identified in different soybean genotypes by analysis of the PCR amplicons generated with these event-specific primer sets. Thus, these and other related procedures can be used to uniquely identify these soybean lines. The sequences identified herein are unique.

Detection techniques of the subject invention are especially useful in conjunction with plant breeding, to determine which progeny plants comprise a given event, after a parent plant comprising an event of interest is crossed with another plant line in an effort to impart one or more additional traits of interest in the progeny. These PCR analysis methods benefit soybean breeding programs as well as quality control, especially for commercialized transgenic soybean seeds. PCR detection kits for these transgenic soybean lines can also now be made and used. This can also benefit product registration and product stewardship.

Furthermore, flanking soybean/genomic sequences can be used to specifically identify the genomic location of each insert. This information can be used to make molecular marker systems specific to each event. These can be used for accelerated breeding strategies and to establish linkage data.

Still further, the flanking sequence information can be used to study and characterize transgene integration processes, genomic integration site characteristics, event sorting, stability of transgenes and their flanking sequences, and gene expression (especially related to gene silencing, transgene methylation patterns, position effects, and potential expression-related elements such as MARS [matrix attachment regions], and the like).

In light of the subject disclosure, it should be clear that the subject invention includes seeds available under ATCC Deposit No. PTA-11336. The subject invention also includes a herbicide-tolerant soybean plant grown from a seed deposited with the ATCC under accession number PTA-11336. The subject invention further includes parts of said plant, such as leaves, tissue samples, seeds produced by said plant, pollen, and the like (wherein they comprise a transgenic insert flanked by SEQ ID NO:1 and SEQ ID NO:2).

Still further, the subject invention includes descendant and/or progeny plants of plants grown from the deposited seed, preferably a herbicide-resistant soybean plant wherein said plant has a genome comprising a detectable wild-type genomic DNA/insert DNA junction sequence as described herein. As used herein, the term "soybean" means *Glycine max* and includes all varieties thereof that can be bred with a soybean plant.

The invention further includes processes of making crosses using a plant of the subject invention as at least one parent. For example, the subject invention includes an F1 hybrid plant having as one or both parents any of the plants exemplified herein. Also within the subject invention is seed produced by such F1 hybrids of the subject invention. This invention includes a method for producing an F1 hybrid seed by crossing an exemplified plant with a different (e.g. in-bred parent) plant and harvesting the resultant hybrid seed. The subject invention includes an exemplified plant that is either a female parent or a male parent. Characteristics of the resulting plants may be improved by careful consideration of the parent plants.

A herbicide-tolerant soybean plant of the subject invention can be bred by first sexually crossing a first parental soybean plant consisting of a soybean plant grown from seed of any one of the lines referred to herein, and a second parental soybean plant, thereby producing a plurality of first progeny plants; then selecting a first progeny plant that is...
resistant to a herbicide (or that possesses at least one of the events of the subject invention); selfing the first progeny plant, thereby producing a plurality of second progeny plants; and then selecting from the second progeny plants a plant that is resistant to a herbicide (or that possesses at least one of the events of the subject invention). These steps can further include the back-crossing of the first progeny plant or the second progeny plant to the second parental soybean plant or a third parental soybean plant. A soybean crop comprising soybean seeds of the subject invention, or progeny thereof, can then be planted.

[0066] It is also to be understood that two different transgenic plants can also be mated to produce offspring that contain two independently segregating, added, exogenous genes. Selfing of appropriate progeny can produce plants that are homozygous for both added, exogenous genes. Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated, as is vegetative propagation. Other breeding methods commonly used for different traits and crops are known in the art. Backcross breeding has been used to transfer genes for a simply inherited, highly heritable trait into a desirable homozygous cultivar or inbred line, which is the recurrent parent. The source of the trait to be transferred is called the donor parent. The resulting plant is expected to have the attributes of the recurrent parent (e.g., cultivar) and the desirable trait transferred from the donor parent. After the initial cross, individuals possessing the phenotype of the donor parent are selected and repeatedly crossed (backcrossed) to the recurrent parent. The resulting parent is expected to have the attributes of the recurrent parent (e.g., cultivar) and the desirable trait transferred from the donor parent.

[0067] The DNA molecules of the present invention can be used as molecular markers in a marker assisted breeding (MAB) method. DNA molecules of the present invention can be used in methods (such as, AFLP markers, RFLP markers, RAPD markers, SNPs, and SSRs) that identify genetically linked agronomically useful traits, as is known in the art. The herbicide-resistance trait can be tracked in the progeny of a cross with a soybean plant of the subject invention (or progeny thereof and any other soybean cultivar or variety) using the MAB methods. The DNA molecules are markers for this trait, and MAB methods that are well known in the art can be used to track the herbicide-resistance trait(s) in soybean plants where at least one soybean line of the subject invention, or progeny thereof, was a parent or ancestor.

The methods of the present invention can be used to identify any soybean variety having the subject event.

[0068] Methods of the subject invention include a method of producing a herbicide-tolerant soybean plant wherein said method comprises introgressing Event pDAB8264.44.06.1 into a soybean cultivar. More specifically, methods of the present invention can comprise crossing two plants of the subject invention, or one plant of the subject invention and any other plant. Preferred methods further comprise selecting progeny of said cross by analyzing said progeny for an event detectable according to the subject invention. For example, the subject invention can be used to track the subject event through breeding cycles with plants comprising other desirable traits, such as agronomic traits such as those tested herein in various Examples. Plants comprising the subject event and the desired trait can be detected, identified, selected, and quickly used in further rounds of breeding, for example. The subject event / trait can also be combined through breeding, and tracked according to the subject invention, with an insect resistant trait(s) and/or with further herbicide tolerance traits. One embodiment of the latter is a plant comprising the subject event combined with a gene encoding resistance to the herbicide dicamba.

[0069] Thus, the subject invention can be combined with, for example, additional traits encoding glyphosate resistance (e.g., resistant plant or bacterial glyphosate oxidase (GOX)), glyphosate acetyl transferase (GAT), additional traits for glufosinate resistance (e.g., bialaphos resistance (bar)), traits conferring acetolactate synthase (ALS)-inhibiting herbicide resistance (e.g., imidazolinones [such as imazethapyr], sulfonureas, triazolopyrimidine sulfonanilide, pyridinylthiobenzoates, and other chemistries [Crt, SurA, et al.]), bromoxynil resistance traits (e.g., Bxm), trans for resistance to dicamba herbicide (see, e.g., U.S. 2003/0135879), traits for resistance to inhibitors of HPPD (4-hydroxyphenyl-pyruvate-dioxygenase) enzyme, traits for resistance to inhibitors of phytoene desaturase (PDS), traits for resistance to photosystem II inhibiting herbicides (e.g., psbA), traits for resistance to photosystem I inhibiting herbicides, traits for resistance to protoporphyrinogen oxidase IX (PPO)-inhibiting herbicides (e.g., PPO-1), and traits for resistance to phenylurea herbicides (e.g., CYP76B1). One or more of such traits can be combined with the subject invention to provide the ability to effectively control, delay and/or prevent weed shifts and/or resistance to herbicides of multiple classes.

[0070] It will be appreciated by those of skill in the art that the aad-12 gene used in the subject invention also provides resistance to compounds that are converted to phenoxyacetate auxin herbicides (e.g., 2,4-DB, MCPB, etc.). The butyric acid moiety present in the 2,4-DB herbicide is converted through β-oxidation to the phytotoxic 2,4-dichlorophenoxyacetic acid. Likewise, MCPB is converted through β-oxidation to the phytotoxic MCPA. The butanoic acid herbicides are themselves nonherbicidal, but are converted to their respective acid from by β-oxidation within susceptible plants to produce the acetic acid form of the herbicide that is phytotoxic. Plants incapable of rapid β-oxidation are not harmed by the butanoic acid herbicides. However, plants that are capable of rapid β-oxidation and can convert the butanoic acid herbicide to the acetic form are subsequently protected by AAD-12.

[0071] Methods of applying herbicides are well known in the art. Such applications can include tank mixes of more than one herbicide. Preferred herbicides for use according to the subject invention are combinations of glyphosate, glufosinate, and a phenoxy auxin herbicide (such as 2,4-D; 2,4-DB; MCPA; MCPB). Other preferred combinations include
glyphosate plus 2,4-D or glufosinate plus 2,4-D mixtures. These three types of herbicides can be used in advantageous combinations that would be apparent to one skilled in the art having the benefit of the subject disclosure. One or more of the subject herbicides can be applied to a field/area prior to planting it with seeds of the subject invention. Such applications can be within 14 days, for example, of planting seeds of the subject invention. One or more of the subject herbicides can also be applied after planting prior to emergence. One or more of the subject herbicides can also be applied to the ground (for controlling weeds) or over the top of the weeds and/or over the top of transgenic plants of the subject invention. The subject three herbicides can be rotated or used in combination to, for example, control or prevent weeds that might to tolerant to one herbicide but not another. Various application times for the subject three types of herbicides can be used in various ways as would be known in the art.

Additionally, the subject event can be stacked with one or more additional herbicide tolerance traits, one or more additional input (e.g., insect resistance (e.g., the 812 Event or the 814 Event), fungal resistance, or stress tolerance, et al.) or output (e.g., increased yield, improved oil profile, improved fiber quality, et al.) traits, both transgenic and nontransgenic. Thus, the subject invention can be used to provide a complete agronomic package of improved crop quality with the ability to flexibly and cost effectively control any number of agronomic pests.

Methods to integrate a polynucleotide sequence within a specific chromosomal site of a plant cell via homologous recombination have been described within the art. For instance, site specific integration as described in U.S. Patent Application Publication No. 2009/0111188 A1, describes the use of recombinases or integrases to mediate the introduction of a donor polynucleotide sequence into a chromosomal target. In addition, International Patent Application No. WO 2008/021207 describes zinc finger mediated-homologous recombination to integrate one or more donor polynucleotides within specific locations of the genome. The use of recombinases such as FLP/FRT as described in U.S. Patent No. 6,720,475, or CRE/loxP as described in US Patent No. 5,658,772, can be utilized to integrate a polynucleotide sequence into a specific chromosomal site. Finally the use of meganucleases for targeting donor polynucleotides into a specific chromosomal location was described in Puchta et al., PNAS USA 93 (1996) pp. 5055-5060.

Various methods for site specific integration within plant cells are generally known and applicable (Kumar et al., Trends in Plant Sci. 6(4) (2001) pp. 155-159). Furthermore, site-specific recombination systems which have been identified in several prokaryotic and lower eukaryotic organisms may be applied to use in plants. Examples of such systems include, but are not limited to; the R/RS recombinase system from the pSR1 plasmid of the yeast Zygosaccharomyces rouxii (Araki et al. (1985) J. Mol. Biol. 182: 191-203), and the Gin/gix system of phage Mu (Maeser and Kahlmann (1991) Mol. Gen. Genet. 230: 170-176).

In some embodiments of the present invention, it can be desirable to integrate or stack a new transgene(s) in proximity to an existing transgenic event. The transgenic event can be considered a preferred genomic locus which was selected based on unique characteristics such as single insertion site, normal Mendelian segregation and stable expression, and a superior combination of efficacy, including herbicide tolerance and agronomic performance in and across multiple environmental locations. The newly integrated transgenes should maintain the transgene expression characteristics of the existing transformants. Moreover, the development of assays for the detection and confirmation of the newly integrated event would be overcome as the genomic flanking sequences and chromosomal location of the newly integrated event are already identified. Finally, the integration of a new transgene into a specific chromosomal location which is linked to an existing transgene would expedite the introgression of the transgenes into other genetic backgrounds by sexual out-crossing using conventional breeding methods.

In some embodiments of the present invention, it can be desirable to excise polynucleotide sequences from a transgenic event. For instance transgene excision as described in U.S. Patent Application No. 13/011,666, describes the use of zinc finger nucleases to remove a polynucleotide sequence, consisting of a gene expression cassette, from a chromosomally integrated transgenic event. The polynucleotide sequence which is removed can be a selectable marker. Upon excision and removal of a polynucleotide sequence the modified transgenic event can be retargeted by the insertion of a polynucleotide sequence. The excision of a polynucleotide sequence and subsequent retargeting of the modified transgenic event provides advantages such as re-use of a selectable marker or the ability to overcome unintended changes to the plant transcriptome which results from the expression of specific genes.

The subject invention discloses herein a specific site on chromosome 6 in the soybean genome that is excellent for insertion of heterologous nucleic acids. Also disclosed is a 5’ flanking sequence and a 3’ flanking sequence, which can also be useful in identifying and/or targeting the location of the insertion/targeting site on chromosome 6. Thus, the subject invention provides methods to introduce heterologous nucleic acids of interest into this preestablished target site or in the vicinity of this target site. The subject invention also encompasses a soybean seed and/or a soybean plant comprising any heterologous nucleotide sequence inserted at the disclosed target site or in the general vicinity of such site. One option to accomplish such targeted integration is to excise and/or substitute a different insert in place of the pat expression cassette exemplified herein. In this general regard, targeted homologous recombination, for example and without limitation, can be used according to the subject invention.

As used herein gene, event or trait “stacking” is combining desired traits into one transgenic line. Plant breeders stack transgenic traits by making crosses between parents that each have a desired trait and then identifying offspring
that have both of these desired traits. Another way to stack genes is by transferring two or more genes into the cell nucleus of a plant at the same time during transformation. Another way to stack genes is by re-transforming a transgenic plant with another gene of interest. For example, gene stacking can be used to combine two or more different traits, including for example, two or more different insect traits, insect resistance trait(s) and disease resistance trait(s), two or more herbicide resistance traits, and/or insect resistance trait(s) and herbicide resistant trait(s). The use of a selectable marker in addition to a gene of interest can also be considered gene stacking.

[0079] “Homologous recombination” refers to a reaction between any pair of nucleotide sequences having corresponding sites containing a similar nucleotide sequence through which the two nucleotide sequences can interact (recombine) to form a new, recombinant DNA sequence. The sites of similar nucleotide sequence are each referred to herein as a "homology sequence." Generally, the frequency of homologous recombination increases as the length of the homology sequence increases. Thus, while homologous recombination can occur between two nucleotide sequences that are less than identical, the recombination frequency (or efficiency) declines as the divergence between the two sequences increases. Recombination may be accomplished using one homology sequence on each of the donor and target molecules, thereby generating a "single-crossover" recombination product. Alternatively, two homology sequences may be placed on each of the target and donor nucleotide sequences. Recombination between two homology sequences on the donor with two homology sequences on the target generates a "double-crossover" recombination product. If the homology sequences on the donor molecule flank a sequence that is to be manipulated (e.g., a sequence of interest), the double-crossover recombination with the target molecule will result in a recombination product wherein the sequence of interest replaces a DNA sequence that was originally between the homology sequences on the target molecule. The exchange of DNA sequence between the target and donor through a double-crossover recombination event is termed "sequence replacement."

[0080] The subject event enables transgenic expression of three different herbicide tolerance proteins resulting in tolerance to combinations of herbicides that would control nearly all broadleaf and grass weeds. This multi-herbicide tolerance trait expression cassette/transgenic insert can be stacked with other herbicide tolerance traits (e.g., glyphosate resistance, glufosinate resistance, imidazolinone resistance, dicamba resistance, HPPD resistance, bromoxynil resistance, et al.), and insect resistance traits (such as Cry1F, Cry1Ab, Cry1Ac, Cry34/45, Cry1Be, Cry1Ca, Cry1Da, Cry1Eb, Cry1Fa, vegetative insecticidal proteins ("VIPS") - including VIP3A, and the like), for example. Additionally, the herbicide tolerance proteins in the expression cassette /transgenic insert of the subject invention can serve as one or more selectable marker sto aid in selection of primary transformants of plants genetically engineered with a second gene or group of genes.

[0081] These combinations of traits give rise to novel methods of controlling weeds (and like) species, due to the newly acquired resistance or inherent tolerance to herbicides (e.g., glyphosate). Thus, novel methods for controlling weeds using Event pDAB8264.44.06.1 are within the scope of the invention.

[0082] The use of the subject transgenic traits, stacked or transformed individually into crops, provides a tool for controlling other herbicide tolerant volunteer crops that do not contain genes for conferring tolerance to phenoxy, pyridloxy, glyphosate and/or glufosinate herbicides.

[0083] A preferred plant, or a seed, of the subject invention comprises in its genome the insert sequences, as identified herein, together with at least 20-500 or more contiguous flanking nucleotides on both sides of the insert, as described herein. Unless indicated otherwise, reference to flanking sequences refers to those identified with respect to SEQ ID NO:1 and SEQ ID NO:2. Again, the subject events include heterologous DNA inserted between the subject flanking genomic sequences immediately adjacent to the inserted DNA. All or part of these flanking sequences could be expected to be transferred to progeny that receives the inserted DNA as a result of a sexual cross of a parental line that includes the event.

[0084] The subject invention includes tissue cultures of regenerable cells of a plant of the subject invention. Also included is a plant regenerated from such tissue culture, particularly where said plant is capable of expressing all the morphological and physiological properties of an exemplified variety. Preferred plants of the subject invention have all the physiological and morphological characteristics of a plant grown from the deposited seed. This invention further comprises progeny of such seed and seed possessing the quality traits of interest.

[0085] Manipulations (such as mutation, further transfection, and further breeding) of plants or seeds, or parts thereof, may lead to the creation of what may be termed "essentially derived" varieties. The International Union for the Protection of New Varieties of Plants (UPOV) has provided the following guideline for determining if a variety has been essentially derived from a protected variety:

[A] variety shall be deemed to be essentially derived from another variety ("the initial variety") when

(i) it is predominantly derived from the initial variety, or from a variety that is itself predominantly derived from the initial variety, while retaining the expression of the essential characteristics that result from the genotype or combination of genotypes of the initial variety;
(ii) it is clearly distinguishable from the initial variety; and
(iii) except for the differences which result from the act of derivation, it conforms to the initial variety in the
expression of the essential characteristics that result from the genotype or combination of genotypes of the
initial variety.

of the Union.

[0087] As used herein, a “line” is a group of plants that display little or no genetic variation between individuals for at
least one trait. Such lines may be created by several generations of self-pollination and selection, or vegetative propa-
gation from a single parent using tissue or cell culture techniques.

[0088] As used herein, the terms “cultivar” and “variety” are synonymous and refer to a line which is used for commercial
production.

[0089] “Stability” or “stable” means that with respect to the given component, the component is maintained from
generation to generation and, preferably, at least three generations at substantially the same level, e.g., preferably ± 15%, more preferably ± 10%, most preferably ± 5%. The stability may be affected by temperature, location, stress and
the time of planting. Comparison of subsequent generations under field conditions should produce the component in a
similar manner.

[0090] “Commercial Utility” is defined as having good plant vigor and high fertility, such that the crop can be produced
by farmers using conventional farming equipment, and the oil with the described components can be extracted from the
seed using conventional crushing and extraction equipment. To be commercially useful, the yield, as measured by seed
weight, oil content, and total oil produced per acre, is within 15% of the average yield of an otherwise comparable
commercial canola variety without the premium value traits grown in the same region.

[0091] “Agronomically elite” means that a line has desirable agronomic characteristics such as yield, maturity, disease
resistance, and the like, in addition to the herbicide tolerance due to the subject event(s). Agronomic traits, taken
individually or in any combination, as set forth in Examples, below, in a plant comprising an event of the subject invention,
are within the scope of the subject invention. Any and all of these agronomic characteristics and data points can be used
to identify such plants, either as a point or at either end or both ends of a range of characteristics used to define such plants.

[0092] As one skilled in the art will recognize in light of this disclosure, preferred embodiments of detection kits, for
example, can include probes and/or primers directed to and/or comprising “junction sequences” or “transition sequences”
(where the soybean genomic flanking sequence meets the insert sequence). For example, this includes a polynucleotide
probes, primers, and/or amplicons designed to identify one or both junction sequences (where the insert meets the
flanking sequence), as indicated in the Table 1. One common design is to have one primer that hybridizes in the flanking
region, and one primer that hybridizes in the insert. Such primers are often each about at least 15 residues in length.
With this arrangement, the primers can be used to generate/amplify a detectable amplicon that indicates the presence
of an event of the subject invention. These primers can be used to generate an amplicon that spans (and includes) a
junction sequence as indicated above.

[0093] The primer(s) “touching down” in the flanking sequence is typically not designed to hybridize beyond about 200
bases or so beyond the junction. Thus, typical flanking primers would be designed to comprise at least 15 residues of
either strand within 200 bases into the flanking sequences from the beginning of the insert. That is, primers comprising
a sequence of an appropriate size from (or hybridizing to) residues within 100 to 200-500 or so bases from either or both
junction sequences identified above are within the scope of the subject invention. Insert primers can likewise be designed
anywhere on the insert, but residues on the insert (including the complement) within 100 to 200-500 or so bases in from
the junction sequence(s) identified above, can be used, for example, non-exclusively for such primer design.

[0094] One skilled in the art will also recognize that primers and probes can be designed to hybridize, under a range
of standard hybridization and/or PCR conditions, to segments of sequences exemplified herein (or complements thereof),
wherein the primer or probe is not perfectly complementary to the exemplified sequence. That is, some degree of
mismatch can be tolerated. For an approximately 20 nucleotide primer, for example, typically one or two or so nucleotides
do not need to bind with the opposite strand if the mismatched base is internal or on the end of the primer that is opposite
the amplicon. Various appropriate hybridization conditions are provided below. Synthetic nucleotide analogs, such as
inosine, can also be used in probes. Peptide nucleic acid (PNA) probes, as well as DNA and RNA probes, can also be
used. What is important is that such probes and primers are diagnostic for (able to uniquely identify and distinguish) the
presence of an event of the subject invention.

[0095] It should be noted that errors in PCR amplification can occur which might result in minor sequencing errors,
for example. That is, unless otherwise indicated, the sequences listed herein were determined by generating long
amplicons from soybean genomic DNAs, and then cloning and sequencing the amplicons. It is not unusual to find slight
differences and minor discrepancies in sequences generated and determined in this manner, given the many rounds of
amplification that are necessary to generate enough amplicon for sequencing from genomic DNAs. One skilled in the
art should recognize and be put on notice that any adjustments needed due to these types of common sequencing errors
or discrepancies are within the scope of the subject invention.

Components of the "insert" are illustrated in the Figures and are discussed in more detail below in the Examples. The DNA polynucleotide sequences of these components, or fragments thereof, can be used as DNA primers or probes in the methods of the present invention.

In some embodiments of the invention, compositions and methods are provided for detecting the presence of the transgene/genomic insertion region, in plants and seeds and the like, from a soybean plant. DNA sequences are provided that comprise the subject transgene/genomic insertion region junction sequence provided herein, segments comprising a junction sequence identified herein, and complements of any such exemplified sequences and any segments thereof. The insertion region junction sequence spans the junction between heterologous DNA inserted into the genome and the DNA from the soybean cell flanking the insertion site. Such sequences can be diagnostic for the given event.

Based on these insert and border sequences, event-specific primers can be generated. PCR analysis demonstrated that soybean lines of the subject invention can be identified in different soybean genotypes by analysis of the PCR amplicons generated with these event-specific primer sets. These and other related procedures can be used to uniquely identify these soybean lines. Thus, PCR amplicons derived from such primer pairs are unique and can be used to identify these soybean lines.

In some embodiments, DNA sequences that comprise a contiguous fragment of the novel transgene/genomic insertion region are an aspect of this invention. Included are DNA sequences that comprise a sufficient length of polynucleotides of transgene insert sequence and a sufficient length of polynucleotides of soybean genomic sequence from one or more of the aforementioned soybean plants and/or sequences that are useful as primer sequences for the production of an amplicon product diagnostic for one or more of these soybean plants.

Related embodiments pertain to DNA sequences that comprise at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more contiguous nucleotides of a transgene portion of a DNA sequence identified herein, or complements thereof, and a similar length of flanking soybean DNA sequence (such as SEQ ID NO:1 and SEQ ID NO:2 and segments thereof) from these sequences, or complements thereof. Such sequences are useful as DNA primers in DNA amplification methods. The amplicons produced using these primers are diagnostic for any of the soybean events referred to herein. Therefore, the invention also includes the amplicons produced by such DNA primers and homologous primers.

This invention also includes methods of detecting the presence of DNA, in a sample, that corresponds to the soybean event referred to herein. Such methods can comprise: (a) contacting the sample comprising DNA with a primer set that, when used in a nucleic acid amplification reaction with DNA from at least one of these soybean events, produces an amplicon that is diagnostic for said event(s); (b) performing a nucleic acid amplification reaction, thereby producing the amplicon; and (c) detecting the amplicon.

Further detection methods of the subject invention include a method of detecting the presence of a DNA, in a sample, corresponding to said event, wherein said method comprises: (a) contacting the sample comprising DNA with a probe that hybridizes under stringent hybridization conditions with DNA from at least one of said soybean events and which does not hybridize under the stringent hybridization conditions with a control soybean plant (non-event-of-interest DNA); (b) subjecting the sample and probe to stringent hybridization conditions; and (c) detecting hybridization of the probe to the DNA.

In still further embodiments, the subject invention includes methods of producing a soybean plant comprising Event pDAB8264.44.06.1, wherein said method comprises the steps of: (a) sexually crossing a first parental soybean line (comprising an expression cassettes of the present invention, which confers said herbicide resistance trait to plants of said line) and a second parental soybean line (that lacks this herbicide tolerance trait) thereby producing a plurality of progeny plants; and (b) selecting a progeny plant by the use of molecular markers. Such methods may optionally comprise the further step of back-crossing the progeny plant to the second parental soybean line to producing a true-breeding soybean plant that comprises said herbicide tolerance trait.

According to another aspect of the invention, methods of determining the zygosity of progeny of a cross with said event is provided. Said methods can comprise contacting a sample, comprising soybean DNA, with a primer set of the subject invention. Said primers, when used in a nucleic-acid amplification reaction with genomic DNA from at least one of said soybean events, produces a first amplicon that is diagnostic for at least one of said soybean events. Such methods further comprise performing a nucleic acid amplification reaction, thereby producing the first amplicon; detecting the first amplicon; and contacting the sample comprising soybean DNA with said primer set (said primer set, when used in a nucleic-acid amplification reaction with genomic DNA from soybean plants, produces a second amplicon comprising the native soybean genomic DNA homologous to the soybean genomic region; and performing a nucleic acid amplification reaction, thereby producing the second amplicon. The methods further comprise detecting the second amplicon, and comparing the first and second amplicons in a sample, wherein the presence of both amplicons indicates that the sample
DNA detection kits can be developed using the compositions disclosed herein and methods well known in the art of DNA detection. The kits are useful for identification of the subject soybean event DNA in a sample and can be applied to methods for breeding soybean plants containing this DNA. The kits contain DNA sequences homologous or complementary to the alleles, for example, disclosed herein, or to DNA sequences homologous or complementary to DNA contained in the transgenic genetic elements of the subject events. These DNA sequences can be used in DNA amplification reactions or as probes in a DNA hybridization method. The kits may also contain the reagents and materials necessary for the performance of the detection method.

A "probe" is an isolated nucleic acid molecule to which is attached a conventional detectable label or reporter molecule (such as a radioactive isotope, ligand, chemiluminescent agent, or enzyme). Such a probe is complementary to a strand of a target nucleic acid, in the case of the present invention, to a strand of genomic DNA from one of said soybean events, whether from a soybean plant or from a sample that includes DNA from the event. Probes according to the present invention include not only deoxyribonucleic or ribonucleic acids but also polyamides and other probe materials that bind specifically to a target DNA sequence and can be used to detect the presence of that target DNA sequence. An "isolated" polynucleotide connotes that the polynucleotide is in a non-natural state - operably linked to a heterologous promoter, for example. A "purified" protein likewise connotes that the protein is in a non-natural state.

Methods for preparing and using probes and primers are described, for example, in Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, ed. Sambrook et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989. PCR-primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose.

Primers and probes based on the flanking DNA and insert sequences disclosed herein can be used to confirm (and, if necessary, to correct) the disclosed sequences by conventional methods, by re-cloning and sequencing such sequences.

The nucleic acid probes and primers of the present invention hybridize specifically to a target sequence under high stringency hybridization conditions. Preferably, probes and primers according to the present invention have complete sequence similarity with the target sequence, although probes differing from the target sequence and that retain the ability to hybridize to target sequences may be designed by conventional methods.
molecule if they exhibit complete complementarity. As used herein, molecules are said to exhibit "complete complementarity" when every nucleotide of one of the molecules is complementary to a nucleotide of the other. Two molecules are said to be "minimally complementary" if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional "low-stringency" conditions. Similarly, the molecules are said to be "complementary" if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional "high-stringency" conditions. Conventional stringency conditions are described by Sambrook et al., 1989. Departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure. In order for a nucleic acid molecule to serve as a primer or probe it need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed.

As used herein, a substantially homologous sequence is a nucleic acid sequence that will specifically hybridize to the complement of the nucleic acid sequence to which it is being compared under high stringency conditions. The term "stringent conditions" is functionally defined with regard to the hybridization of a nucleic-acid probe to a target nucleic acid (i.e., to a particular nucleic-acid sequence of interest) by the specific hybridization procedure discussed in Sambrook et al., 1989, at 9.52-9.55. See also, Sambrook et al., 1989 at 9.47-9.52 and 9.56-9.58. Accordingly, the nucleotide sequences of the invention may be used for their ability to selectively form duplex molecules with complementary stretches of DNA fragments.

Depending on the application envisioned, one can use varying conditions of hybridization to achieve varying degrees of selectivity of probe towards target sequence. For applications requiring high selectivity, one will typically employ relatively stringent conditions to form the hybrids, e.g., with regards to endpoint TaqMan and real-time PCR applications, one will select 1.5mM to about 4.0mM MgCl2 at temperature of about 60°C to about 75°C and may vary hold times, as described herein, for increasing stringency. For other hybridization techniques one will typically employ relatively low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50°C to about 70°C. Stringent conditions, for example, could involve washing the hybridization filter at least twice with high-stringency wash buffer (0.2X SSC, 0.1% SDS, 65°C). Appropriate stringency conditions which promote DNA hybridization, for example, 6.0X sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0X SSC at 50°C are known to those skilled in the art. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0X SSC at 50°C to a high stringency of about 0.2X SSC at 50°C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22°C, to high stringency conditions at about 65°C. Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand. Detection of DNA sequences via hybridization is well-known to those of skill in the art, and the teachings of U.S. Patent Nos. 4,965,188 and 5,176,995 are exemplary of the methods of hybridization analyses.

In a particularly preferred embodiment, a nucleic acid of the present invention will specifically hybridize to one or more of the primers (or amplicons or other sequences) exemplified or suggested herein, including complements and fragments thereof, under high stringency conditions. In one aspect of the present invention, a marker nucleic acid molecule of the present invention has the nucleic acid sequence as set forth herein in one of the exemplified sequences, or complements and/or fragments thereof.

In another aspect of the present invention, a marker nucleic acid molecule of the present invention shares between 80% and 100% or 90% and 100% sequence identity with such nucleic acid sequences. In a further aspect of the present invention, a marker nucleic acid molecule of the present invention shares between 95% and 100% sequence identity with such sequence. Such sequences may be used as markers in plant breeding methods to identify the progeny of genetic crosses. The hybridization of the probe to the target DNA molecule can be detected by any number of methods known to those skilled in the art, these can include, but are not limited to, fluorescent tags, radioactive tags, antibody based tags, and chemiluminescent tags.

Regarding the amplification of a target nucleic acid sequence (e.g., by PCR) using a particular amplification primer pair, "stringent conditions" are conditions that permit the primer pair to hybridize only to the target nucleic-acid sequence to which a primer having the corresponding wild-type sequence (or its complement) would bind and preferably to produce a unique amplification product, the amplicon.

The term "specific for (a target sequence)" indicates that a probe or primer hybridizes under stringent hybridization conditions only to the target sequence in a sample comprising the target sequence. As used herein, "amplified DNA" or "amplicon" refers to the product of nucleic-acid amplification of a target nucleic acid sequence that is part of a nucleic acid template. For example, to determine whether the soybean plant resulting from a sexual cross contains transgenic event genomic DNA from the soybean plant of the present invention, DNA extracted from a soybean plant tissue sample may be subjected to nucleic acid amplification method using a primer pair that includes a primer derived from flanking sequence in the genome of the plant adjacent to the insertion site of inserted heterologous DNA, and a second primer derived from the inserted heterologous DNA to produce an amplicon.
that is diagnostic for the presence of the event DNA. The amplicon is of a length and has a sequence that is also
diagnostic for the event. The amplicon may range in length from the combined length of the primer pairs plus one
nucleotide base pair, and/or the combined length of the primer pairs plus about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177,
178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201,
202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225,
250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297,
322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345,
394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417,
466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489,
490, 491, 492, 493, 494, 495, 496, 497, 498, 499, or 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513,
514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537,
538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561,
as a change in polarization using a fluorometer. A change in polarization indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single base extension.

[0124] TAQMAN (PE Applied Biosystems, Foster City, Calif.) is a method of detecting and quantifying the presence of a DNA sequence. Briefly, a FRET oligonucleotide probe is designed that overlaps the genomic flanking and insert DNA junction. The FRET probe and PCR primers (one primer in the insert DNA sequence and one in the flanking genomic sequence) are cycled in the presence of a thermostable polymerase and dNTPs. During specific amplification, Taq DNA polymerase cleans and releases the fluorescent moiety away from the quenching moiety on the FRET probe. A fluorescent signal indicates the presence of the flanking/transgene insert sequence due to successful amplification and hybridization.

[0125] Molecular Beacons have been described for use in sequence detection. Briefly, a FRET oligonucleotide probe is designed that overlaps the flanking genomic and insert DNA junction. The unique structure of the FRET probe results in it containing secondary structure that keeps the fluorescent and quenching moieties in close proximity. The FRET probe and PCR primers (one primer in the insert DNA sequence and one in the flanking genomic sequence) are cycled in the presence of a thermostable polymerase and dNTPs. Following successful PCR amplification, hybridization of the FRET probe to the target sequence results in the removal of the probe secondary structure and spatial separation of the fluorescent and quenching moieties. A fluorescent signal results. A fluorescent signal indicates the presence of the flanking genomic/transgene insert sequence due to successful amplification and hybridization.

[0126] Having disclosed a location in the soybean genome that is excellent for an insertion, the subject invention also includes a soybean seed and/or a soybean plant comprising at least one non-aad12/pat2mepsps coding sequence in or around the general vicinity of this genomic location. One option is to substitute a different insert in place of the insert exemplified herein. In these general regards, targeted homologous recombination, for example, can be used according to the subject invention. This type of technology is the subject of, for example, WO 03/080809 A2 and the corresponding published U.S. application (U.S. 2003/0232410). Thus, the subject invention includes plants and plant cells comprising a heterologous insert (in place of or with multi-copies of the exemplified insert), flanked by all or a recognizable part of the flanking sequences identified herein as SEQ ID NO:1 and SEQ ID NO:2. An additional copy (or additional copies) of the exemplified insert or any of its components could also be targeted for insertion in this / these manner(s).

[0127] All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety to the extent they are not inconsistent with the explicit teachings of this specification.

[0128] The following examples are included to illustrate procedures for practicing the invention and to demonstrate certain preferred embodiments of the invention. These examples should not be construed as limiting. It should be appreciated by those of skill in the art that the techniques disclosed in the following examples represent specific approaches used to illustrate preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in these specific embodiments while still obtaining like or similar results without departing from the spirit and scope of the invention. Unless otherwise indicated, all percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

[0129] The following abbreviations are used unless otherwise indicated.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celcius</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DIG</td>
<td>digoxigenin</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μL</td>
<td>microliter</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>M</td>
<td>molar mass</td>
</tr>
<tr>
<td>OLP</td>
<td>overlapping probe</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PTU</td>
<td>plant transcription unit</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>SSC</td>
<td>a buffer solution containing a mixture of sodium chloride and sodium citrate, pH 7.0</td>
</tr>
<tr>
<td>TBE</td>
<td>a buffer solution containing a mixture of Tris base, boric acid and EDTA, pH 8.3</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
</tbody>
</table>
EXAMPLES

Example 1: Transformation and Selection of the 2mEPSPS and AAD-12 Soybean Event 8264.44.06.1

[0130] Transgenic soybean (Glycine max) containing the Soybean Event 8264.44.06.1 was generated through Agrobacterium-mediated transformation of soybean cotyledonal node explants. The disarmed Agrobacterium strain EHA101 (Hood et al., 2006), carrying the binary vector pDAB8264 (Figure 1) containing the selectable marker, pat, and the genes of interest, aad-12 and 2mepsps v1, within the T-strand DNA region, was used to initiate transformation. Agrobacterium-mediated transformation was carried out using a modified procedure of Zeng et al. (2004). Briefly, soybean seeds (cv Maverick) were germinated on basal media and cotyledonal nodes were isolated and infected with Agrobacterium. Shoot initiation, shoot elongation, and rooting media were supplemented with cefotaxime, timentin and vancomycin for removal of Agrobacterium. Glufosinate selection was employed to inhibit the growth of non-transformed shoots. Selected shoots were transferred to rooting medium for root development and then transferred to soil mix for acclimatization of plantlets.

[0131] Terminal leaflets of selected plantlets were leaf painted with glufosinate to screen for putative transformants. The screened plantlets were transferred to the greenhouse, allowed to acclimate and then leaf-painted with glufosinate to reconfirm tolerance and deemed to be putative transformants. The screened plants were sampled and molecular analyses for the confirmation of the selectable marker gene and/or the gene of interest were carried out. T₀ plants were allowed to self-fertilize in the greenhouse to give rise to T₁ seed.

[0132] This event, Soybean Event 8264.44.06.1, was generated from an independent transformed isolate. The T₁ plants were backcrossed and introgressed into elite varieties over subsequent generations. The event was selected based on its unique characteristics such as single insertion site, normal Mendelian segregation and stable expression, and a superior combination of efficacy, including herbicide tolerance and agronomic performance. The following examples contain the data which were used to characterize Soybean Event 8264.44.06.1.

Example 2: Characterization of AAD-12, 2mEPSPS and PAT Protein in Soybean Event 8264.44.06.1

[0133] The biochemical properties of the recombinant AAD-12, 2mEPSPS and PAT protein derived from the transgenic soybean event pDAB8264.44.06.1 were characterized. Quantitative enzyme-linked immunosorbent assay (ELISA) was used to characterize the biochemical properties of the protein and confirm expression of AAD-12, PAT and 2mEPSPS protein.

Example 2.1: Expression of the AAD-12 Protein in Plant Tissues

[0134] Levels of AAD-12 protein were determined in soybean event 8264.44.06.1. The soluble, extractable AAD-12 protein was measured using a quantitative enzyme-linked immunosorbent assay (ELISA) method from soybean leaf tissue.

[0135] Samples of soybean tissues were isolated from the test plants and prepared for expression analysis. The AAD-12 protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) containing 0.5% Bovine Serum Albumin (BSA). The plant tissue was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using an AAD-12 ELISA kit in a sandwich format. The kit was used following the manufacturer’s suggested protocol.

[0136] Detection analysis was performed to investigate the expression stability and heritability both vertically (between generations) and horizontally (between lineages of the same generation) in soybean event 8264.44.06.1. At the T4 generation soybean event 8264.44.06.1 expression was stable (not segregating) and consistent across all lineages. Field expression level studies were performed on soybean event; average expression across all lineages was approximately 200-400 ng/cm².

Example 2.2: Expression of the 2mEPSPS Protein in Plant Tissues

[0137] Levels of 2mEPSPS protein were determined in soybean event 8264.44.06.1. The soluble, extractable 2mEPSPS protein was measured using a quantitative enzyme-linked immunosorbent assay (ELISA) method from soybean leaf tissue.

[0138] Samples of soybean tissues were isolated from the test plants and prepared for expression analysis. The 2mEPSPS protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) containing 0.5% Bovine Serum Albumin (BSA). The plant tissue was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a 2mEPSPS ELISA kit in a sandwich format. The kit was used following the manufacturer’s suggested protocol.
Detection analysis was performed to investigate the expression stability and heritability both vertically (between generations) and horizontally (between lineages of the same generation) in soybean event 8264.44.06.1. At the T4 generation soybean event 8264.44.06.1 expression was stable (not segregating) and consistent across all lineages. Field expression level studies were performed on soybean event 8264.44.06.1. Average expression across all lineages was approximately 5,000 - 17,500 ng/cm². These expression levels were higher than the positive control which expressed the 2mEPSPS protein.

Example 2.3: Expression of the PAT Protein in Plant Tissues

Levels of PAT protein were determined in soybean event 8264.44.06.1. The soluble, extractable PAT protein was measured using a quantitative enzyme-linked immunosorbent assay (ELISA) method from soybean leaf tissue. Samples of soybean tissues were isolated from the test plants and prepared for expression analysis. The PAT protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) containing 0.5% Bovine Serum Albumin (BSA). The plant tissue was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a PAT ELISA kit in a sandwich format. The kit was used following the manufacturer's suggested protocol.

Detection analysis was performed to investigate the expression stability and heritability both vertically (between generations) and horizontally (between lineages of the same generation) in soybean event 8264.44.06.1. At the T4 generation soybean event 8264.44.06.1 expression was stable (not segregating) and consistent across all lineages. Field expression level studies were performed on soybean event 8264.44.06.1. Average expression across all lineages was approximately 15 - 25 ng/cm².

Example 3: Cloning and Characterization of DNA Sequence in the Insert and the Flanking Border Regions of Soybean Event pDAB8264.44.06.1

To characterize and describe the genomic insertion site, the sequence of the flanking genomic T-DNA border regions of soybean event pDAB8264.44.06.1 were determined. In total, 2,578 bp of soybean event pDAB8264.44.06.1 genomic sequence was confirmed, comprising 570 bp of 5' flanking border sequence (SEQ ID NO:1), 1,499 bp of 3' flanking border sequence (SEQ ID NO:2). PCR amplification based on the soybean Event pDAB8264.44.06.1 border sequences validated that the border regions were of soybean origin and that the junction regions are unique sequences for event pDAB8264.44.06.1. The junction regions could be used for event-specific identification of soybean event pDAB8264.44.06.1. In addition, the T-strand insertion site was characterized by amplifying a genomic fragment corresponding to the region of the identified flanking border sequences from the genome of wild type soybean. Comparison of soybean event pDAB8264.44.06.1 with the wild type genomic sequence revealed about 4,357 bp deletion from the original locus. Overall, the characterization of the insert and border sequence of soybean event pDAB8264.44.06.1 indicated that an intact copy of the T-strand was present in the soybean genome.

Table 2. Primers and sequences used to analyze Soybean Event pDAB8264.44.06.1

<table>
<thead>
<tr>
<th>SEQ ID NO:</th>
<th>Primer Name</th>
<th>Size (bp)</th>
<th>Sequence (5' to 3')</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4406_W_F1</td>
<td>25</td>
<td>AGGTTGTCAATTCCGCTGAAAGAT</td>
<td>confirmation of 5' border genomic DNA, used with ED_v1_C1</td>
<td></td>
</tr>
<tr>
<td>4406_W_F2</td>
<td>25</td>
<td>CACAGTGAGAATTTCTGATTTCTGG</td>
<td>confirmation of 5' border genomic DNA, used with ED_v1_C</td>
<td></td>
</tr>
<tr>
<td>4406_W_F3</td>
<td>25</td>
<td>GGATTCATCTGAAACGGATCATAT</td>
<td>confirmation of 5' border genomic DNA, used with ED_v1_C1</td>
<td></td>
</tr>
<tr>
<td>4406_W_F4</td>
<td>25</td>
<td>GGAATGGTGAACCACCACGATTAA</td>
<td>confirmation of 5' border genomic DNA, used with ED_v1_C</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. PCR conditions for amplification of border regions and event-specific sequences in soybean event pDAB8264.44.06.1.

<table>
<thead>
<tr>
<th>Target Sequence</th>
<th>Primer Set</th>
<th>PCR Mixture</th>
<th>Pre-denature (°C/min)</th>
<th>Denature (°C/sec.)</th>
<th>Anneal (°C/sec.)</th>
<th>Extension (°C/min:sec)</th>
<th>Final Extension (°C/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5' border</td>
<td>4406-WF1/ED_v1_C1</td>
<td>D</td>
<td>95/3</td>
<td>98/10</td>
<td>66/30</td>
<td>68/4:00</td>
<td>72/10</td>
</tr>
<tr>
<td>5' border</td>
<td>4406-WF3/ED_v1_C1</td>
<td>D</td>
<td>95/3</td>
<td>98/10</td>
<td>66/30</td>
<td>68/4:00</td>
<td>72/10</td>
</tr>
<tr>
<td>3' border</td>
<td>4406-WR5/PAT_12</td>
<td>D</td>
<td>95/3</td>
<td>98/10</td>
<td>66/30</td>
<td>68/4:00</td>
<td>72/10</td>
</tr>
<tr>
<td>3' border</td>
<td>4406-WR7/PAT_12</td>
<td>D</td>
<td>95/3</td>
<td>98/10</td>
<td>66/30</td>
<td>68/4:00</td>
<td>72/10</td>
</tr>
<tr>
<td>3' border</td>
<td>4406-WR8/PAT_12</td>
<td>D</td>
<td>95/3</td>
<td>98/10</td>
<td>66/30</td>
<td>68/4:00</td>
<td>72/10</td>
</tr>
<tr>
<td>Across the insert locus</td>
<td>4406-WF1/4406-WR5</td>
<td>D</td>
<td>95/3</td>
<td>98/10</td>
<td>66/30</td>
<td>68/10:00</td>
<td>72/10</td>
</tr>
</tbody>
</table>
Example 3.1: Confirmation of Soybean Genomic Sequences

The 5’ and 3’ flanking borders aligned to a *Glycine max* whole genome shotgun sequence from chromosome 6, indicating that the transgene of soybean event pDAB8264.44.06.1 was inserted in soybean genome chromosome 6.

To confirm the insertion site of soybean event pDAB8264.44.06.1 transgene from the soybean genome, PCR was carried out with different pairs of primers ([Figure 2](#) and [Table 3](#)). Genomic DNA from soybean event pDAB8264.44.06.1 and other transgenic or non-transgenic soybean lines was used as a template. Thus, to confirm if the 5’ border sequences are correct, 2*mepsps* specific primers, for example ED_v1_C1 (SEQ ID NO:11), and two primers designed according to the cloned 5’ end border sequence and/or its alignment sequence on soybean genome chromosome 6, designated 4406-WF1 (SEQ ID NO:3) and 4406-WF3 (SEQ ID NO:5), were used for amplifying the DNA segment that spans the 2*mepsps* gene to 5’ end border sequence. Similarly, for confirmation of the cloned 3’ end border sequence, a *pat* specific primer, for example PAT-12 (SEQ ID NO:12), and three primers designed according to the cloned 3’ end border sequence, designated 4406-WR5 (SEQ ID NO:7), 4406-WR7 (SEQ ID NO:9) and 4406-WR8 (SEQ ID NO:10), were used for confirmation.

Table 4. PCR mixture for amplification of border regions and event specific sequences in soybean event pDAB8264.44.06.1.

<table>
<thead>
<tr>
<th>Target Sequence</th>
<th>Primer Set</th>
<th>PCR Mixture</th>
<th>Pre-denature (°C/min)</th>
<th>Denature (°C/sec.)</th>
<th>Anneal (°C/sec.)</th>
<th>Extension (°C/min:sec)</th>
<th>Final Extension (°C/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Across the insert locus</td>
<td>4406-WF3/4406-WR7</td>
<td>D</td>
<td>95/3</td>
<td>98/10</td>
<td>66/30</td>
<td>68/10:00</td>
<td>72/10</td>
</tr>
</tbody>
</table>
amplifying DNA segments that span the *pat* gene to 3’ end border sequence. DNA fragments with predicted sizes were amplified only from the genomic DNA of soybean event pDAB8264.44.06.1 with each primer pair, one primer located on the flanking border of soybean event pDAB8264.44.06.1 and one transgene specific primer, but not from DNA samples from other transgenic soybean lines or non-transgenic control. The results indicate that the cloned 5’ and 3’ border sequences are the flanking border sequences of the T-strand insert for soybean event pDAB8264.44.06.1.

To further confirm the DNA insertion in the soybean genome, a PCR amplification spanning the two soybean sequences was completed. Two primers designed according to the 5’ end border sequence, 4406-WF1 (SEQ ID NO:3) and 4406-WF3 (SEQ ID NO:5), and two primers for the 3’ end border sequence, 4406-WR5 (SEQ ID NO:7) and 4406-WR7 (SEQ ID NO:9), were used to amplify DNA segments which contained the entire transgene, the 5’ end border sequence, and the 3’ border sequence. As expected, PCR amplification with the primer pair of 4406-WF1 (SEQ ID NO:3) and 4406-WR5 (SEQ ID NO:7) amplified an approximately 12 kb DNA fragment from the genomic DNA of soybean event pDAB8264.44.06.1 and a 6 kb DNA fragment from the non-transgenic soybean controls and other soybean transgenic lines. Similarly, PCR reactions completed with the primer pair of 4406-WF3 (SEQ ID NO:5) and 4406-WR7 (SEQ ID NO:9) produced an approximately 12 kb DNA fragment from the sample of soybean event pDAB8264.44.06.1 and a 6 kb DNA fragment from all the other soybean control lines, correspondingly. These results demonstrated that the transgene of soybean event pDAB8264.44.06.1 was inserted into the site of soybean genome chromosome 6.

These experiments generated data which demonstrated the integration and integrity of the Southern blot analysis was used to establish the integration pattern of soybean event pDAB8264.44.06.1. These experiments generated data which demonstrated the integration and integrity of the aad-12, *pat* and 2*mepsps* v1 transgenes within the soybean genome. Soybean event pDAB8264.44.06.1 was characterized as a full length, simple integration event containing a single copy of the *aad-12, pat* and *2mepsps* v1 PTU from plasmid pDAB8264.

Southern blot data suggested that a T-strand fragment inserted into the genome of soybean event pDAB8264.44.06.1. Detailed Southern blot analysis was conducted using a probe specific to the *aad-12, pat* and *2mepsps* v1 insert, contained in the T-strand integration region of pDAB8264, and descriptive restriction enzymes that have cleavage sites located within the plasmid and produce hybridizing fragments internal to the plasmid or fragments that span the junction of the plasmid with soybean genomic DNA (border fragments). The molecular weights indicated from the Southern hybridization for the combination of the restriction enzyme and the probe were unique for the event, and established its identification patterns. These analyses also showed that the plasmid fragment had been inserted into soybean genomic DNA without rearrangements of the *aad-12, pat* and *2mepsps* v1 PTU.

Genomic DNA was extracted from leaf tissue harvested from individual soybean plants containing soybean event pDAB8264.44.06.1. In addition, gDNA was isolated from a conventional soybean plant, Maverick, which contains the genetic background that is representative of the substance line, absent the *aad-12* and *2mepsps* v1 genes. Individual genomic DNA was extracted from lyophilized leaf tissue following the standard cetyltrimethylammonium bromide CTAB method. Following extraction, the DNA was quantified spectrophotometrically using Pico Green reagent (Invitrogen, Carlsbad, CA). The DNA was then visualized on an agarose gel to confirm values from the Pico Green analysis and to determine the DNA quality.

For Southern blot molecular characterization of soybean event pDAB8264.44.06.1, ten micrograms (10 µg) of genomic DNA was digested. Genomic DNA from the soybean pDAB8264.44.06.1 and non-transgenic soybean line Maverick was digested by adding approximately five units of selected restriction enzyme per µg of DNA and the corresponding reaction buffer to each DNA sample. Each sample was incubated at approximately 37°C overnight. The restriction enzymes *Bst*Z171, *Hin*DIII, *Nco*I, *Nsi*I, and *Pac*I were used individually for the digests (New England Biolabs, Ipswich, MA). In addition, a positive hybridization control sample was prepared by combining plasmid DNA, pDAB8264 with genomic DNA from the non-transgenic soybean variety, Maverick. The plasmid DNA / genomic DNA cocktail was digested using the same procedures and restriction enzyme as the test samples. After the digestions were incubated overnight, NaCl was added to a final concentration of 0.1M and the digested DNA samples were precipitated with isopropanol. The precipitated DNA pellet was resuspended in 20 µl of 1X loading buffer (0.01% bromophenol blue, 10.0 mM EDTA, 5.0% glycerol, 1.0 mM Tris pH 7.5). The DNA samples and molecular size markers were then electrophoresed through 0.85% agarose gels with 0.4X TAE buffer (Fisher Scientific, Pittsburgh, PA) at 35 volts for approximately 18-22
hours to achieve fragment separation. The gels were stained with ethidium bromide (Invitrogen, Carlsbad, CA) and the DNA was visualized under ultraviolet (UV) light

Example 4.3: Southern Transfer and Membrane Treatment

[0150] Southern blot analysis was performed essentially as described by, Memelink, J.; Swords, K.; Harry J.; Hoge, C.; (1994) Southern, Northern, and Western Blot Analysis. Plant Mol. Biol. Manual F1:1-23. Briefly, following electrophoretic separation and visualization of the DNA fragments, the gels were depurinated with 0.25M HCl for approximately 20 minutes, and then exposed to a denaturing solution (0.4 M NaOH, 1.5 M NaCl) for approximately 30 minutes followed by neutralizing solution (1.5 M NaCl, 0.5 M Tris pH 7.5) for at least 30 minutes. Southern transfer was performed overnight onto nylon membranes using a wicking system with 10× SSC. After transfer the DNA was bound to the membrane by UV crosslinking following by briefly washing membrane with a 2× SSC solution. This process produced Southern blot membranes ready for hybridization.

Example 4.4: DNA Probe Labeling and Hybridization

[0151] The DNA fragments bound to the nylon membrane were detected using a labeled probe. Probes were generated by a PCR-based incorporation of a digoxigenin (DIG) labeled nucleotide, [DIG-11]-dUTP, into the DNA fragment amplified from plasmid pDAB8264 using primers specific to gene elements. Generation of DNA probes by PCR synthesis was carried out using a PCR DIG Probe Synthesis Kit (Roche Diagnostics, Indianapolis, IN) following the manufacturer's recommended procedures.

[0152] Labeled probes were analyzed by agarose gel electrophoresis to determine their quality and quantity. A desired amount of labeled probe was then used for hybridization to the target DNA on the nylon membranes for detection of the specific fragments using the procedures essentially as described for DIG Easy Hyb Solution (Roche Diagnostics, Indianapolis, IN). Briefly, nylon membrane blots containing fixed DNA were briefly washed with 2× SSC and pre-hybridized with 20-25 mL of pre-warmed DIG Easy Hyb solution in hybridization bottles at approximately 45-55°C for about 2 hours in a hybridization oven. The pre-hybridization solution was then decanted and replaced with approximately 15 mL of pre-warmed DIG Easy Hyb solution containing a desired amount of specific probes denatured by boiling in a water bath for approximately five minutes. The pre-hybridization step was then conducted at approximately 45-55°C overnight in the hybridization oven.

[0153] At the end of the probe hybridization, DIG Easy Hyb solutions containing the probes were decanted into clean tubes and stored at approximately -20°C. These probes could be reused for twice according to the manufacturer's recommended procedure. The membrane blots were rinsed briefly and washed twice in clean plastic containers with low stringency wash buffer (2× SSC, 0.1% SDS) for approximately five minutes at room temperature, followed by washing twice with high stringency wash buffer (0.1× SSC, 0.1% SDS) for 15 minutes each at approximately 65°C. The membrane blots briefly washed with 1× Maleic acid buffer from the DIG Wash and Block Buffer Set (Roche Diagnostics, Indianapolis, IN) for approximately 5 minutes. This was followed by blocking in 1× washing buffer, specific DNA probes remained bound to the membrane blots and DIG-labeled DNA standards were visualized using CDP-Star Chemiluminescent Nucleic Acid Detection System (Roche Diagnostics, Indianapolis, IN) following the manufacturer’s recommendation. Blots were exposed to chemiluminescent film for one or more time points to detect hybridizing fragments and to visualize molecular size standards. Films were developed with an All-Pro 100 Plus film developer (Konica Minolta, Osaka, Japan) and images were scanned. The number and sizes of detected bands were documented for each probe (Table 5). DIG-labeled DNA Molecular Weight Marker II (DIG MWM II) and DIG-labeled DNA Molecular Weight Marker VII (DIG MWM VII), visible after DIG detection as described, were used to determine hybridizing fragment size on the Southern blots.

Table 5. Length of probes used in Southern analysis of soybean event pDAB8264.44.06.1.

<table>
<thead>
<tr>
<th>Probe Name</th>
<th>Genetic Element</th>
<th>Length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2mEPSPS</td>
<td>2mEPSPS</td>
<td>1238</td>
</tr>
<tr>
<td>aad-12</td>
<td>aad-12</td>
<td>671</td>
</tr>
<tr>
<td>specR</td>
<td>Spectinomycin resistance gene</td>
<td>750</td>
</tr>
<tr>
<td>OriRep</td>
<td>Ori Rep</td>
<td>852</td>
</tr>
<tr>
<td>trfA</td>
<td>Replication initiation protein trfA</td>
<td>1119</td>
</tr>
</tbody>
</table>
Example 4.5: Southern Blot Results

Expected and observed fragment sizes with a particular digest and probe, based on the known restriction enzyme sites of the *aad*-12 and *2mepsps* PTU, are given in Table 6. Expected fragment sizes are based on the plasmid map of pDAB8264 and observed fragment sizes are approximate results from these analyses and are based on the indicated sizes of the DIG-labeled DNA Molecular Weight Marker II and Mark VII fragments.

Two types of fragments were identified from these digests and hybridizations: internal fragments where known enzyme sites flank the probe region and are completely contained within the insertion region of the *aad*-12 and *2mepsps* PTU PTU, and border fragments where a known enzyme site is located at one end of the probe region and a second site is expected in the soybean genome. Border fragment sizes vary by event because, in most cases, DNA fragment integration sites are unique for each event. The border fragments provide a means to locate a restriction enzyme site relative to the integrated DNA and to evaluate the number of DNA insertions. Southern blot analyses completed on multiple generations of soybean containing event pDAB8264.44.06.1 produced data which suggested that a low copy, intact *aad*-12 and *2mepsps* PTU from plasmid pDAB8264 was inserted into the soybean genome of soybean event pDAB8264.44.06.1.

Table 6. Predicted and Observed Hybridizing Fragments in Southern Blot Analysis.

<table>
<thead>
<tr>
<th>DNA Probe</th>
<th>Restriction Enzymes</th>
<th>Samples</th>
<th>Expected Fragment Sizes (bp)</th>
<th>Observed Fragment Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BstZ17I</td>
<td>pDAB8264</td>
<td>4994</td>
<td>∼5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soybean Event</td>
<td>4994</td>
<td>∼5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pDAB8264.44.06.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hind III</td>
<td>pDAB8264</td>
<td>4731</td>
<td>∼4700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soybean Event</td>
<td>>4078</td>
<td>∼7400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pDAB8264.44.06.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aad-12</td>
<td>pDAB8264</td>
<td>7429</td>
<td>∼7400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soybean Event</td>
<td>>3690</td>
<td>∼3800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pDAB8264.44.06.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nco I</td>
<td>pDAB8264</td>
<td>4974</td>
<td>∼5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soybean Event</td>
<td>4974</td>
<td>∼5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pDAB8264.44.06.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nsi I</td>
<td>pDAB8264</td>
<td>6768</td>
<td>∼6800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soybean Event</td>
<td>6768</td>
<td>∼6800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pDAB8264.44.06.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
plasmid pDAB8264. Subsequently, these enzymes were selected to characterize the aad-12 gene insert in soybean event pDAB8264.44.06.1. Border fragments of greater than 4,078 bp or greater than 3,690 bp were predicted to hybridize with the probe following HinD III and Ncol digests, respectively (Table 6). Single aad-12 hybridization bands of approximately 7,400 bp and approximately 3,800 bp were observed when HinDIII and NcoI were used, respectively. The hybridization of the probe to bands of this size suggests the presence of a single site of insertion for the aad-12 gene in the soybean genome of soybean event pDAB8264.44.06.1. Restriction enzymes BstZ17I, NsiI and PacI was selected to release a fragment which contains the aad-12 plant transcription unit (PTU; promoter/gene/terminator) (Table 6). The predicted approximately 5,000, approximately 5,000, and approximately 6,800 bp fragments were observed with the probe following BstZ17I, NsiI and PacI digestions, respectively. Results obtained with the enzyme digestion of the pDAB8264.44.06.1 samples followed by probe hybridization indicated that an intact aad-12 PTU from plasmid pDAB8264 was inserted into the soybean genome of soybean event pDAB8264.44.06.1. In addition, the molecular weight sizes of the hybridization bands produced for the HinDIII, Ncol, NsiI, and BstZ17I restriction fragments indicate that the aad-12 PTU also contained the linked pat PTU. [0156] The restriction enzymes BstZ17I, Ncol and NsiI bind and cleave restriction sites in plasmid pDAB8264. Subsequently, these enzymes were selected to characterize the 2mepsps gene insert in soybean event pDAB8264.44.06.1. Border fragments of greater than 4,858 bp, greater than 3,756, or greater than 5,199 bp were predicted to hybridize with the probe following the BstZ17I, Ncol and NsiI digests respectively (Table 6). Single 2mepsps hybridization bands of approximately 16,000 bp, approximately 6,100 bp and approximately 5,300 bp were observed when BstZ17I, Ncol and

<table>
<thead>
<tr>
<th>DNA Probe</th>
<th>Restriction Enzymes</th>
<th>Samples</th>
<th>Expected Fragment Sizes (bp)¹</th>
<th>Observed Fragment Size (bp)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BstZ17I</td>
<td>pDAB8264</td>
<td>11024</td>
<td>-11000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soybean Event pDAB8264.44.06.1</td>
<td>>4858</td>
<td>~16000</td>
</tr>
<tr>
<td>15</td>
<td>Nco I</td>
<td>pDAB8264</td>
<td>5203</td>
<td>-5200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soybean Event pDAB8264.44.06.1</td>
<td>>3756</td>
<td>-6100</td>
</tr>
<tr>
<td>20</td>
<td>Nsi I</td>
<td>pDAB8264</td>
<td>11044</td>
<td>11000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soybean Event pDAB8264.44.06.1</td>
<td>>5199</td>
<td>-5300</td>
</tr>
<tr>
<td>25</td>
<td>Pac I</td>
<td>pDAB8264</td>
<td>6768</td>
<td>~6800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soybean Event pDAB8264.44.06.1</td>
<td>6768</td>
<td>~6800</td>
</tr>
<tr>
<td>30</td>
<td>SpecR</td>
<td>pDAB8264</td>
<td>9322</td>
<td>~9300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soybean Event pDAB8264.44.06.1</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>35</td>
<td>OriRep + trfA</td>
<td>pDAB8264</td>
<td>9210</td>
<td>~9200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maverick</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soybean Event pDAB8264.44.06.1</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>
Nsil were used, respectively. The hybridization of the probe to bands of this size suggests the presence of a single site of insertion for the 2mepsps gene in the soybean genome of soybean event pDAB8264.44.06.1. Restriction enzyme PacI was selected to release a fragment which contains the 2mepsps plant transcription unit (PTU; promoter/gene/terminator) (Table 6). The predicted approximately 6,800 bp fragment was observed with the probe following the PacI digestions. Results obtained with the enzyme digestion of the pDAB8264.44.06.1 sample followed by probe hybridization indicated that an intact 2mepsps PTU from plasmid pDAB8264 was inserted into the soybean genome of soybean event pDAB8264.44.06.1.

Example 4.6: Absence of Backbone Sequences

[0157] Southern blot analysis was also conducted to verify the absence of the spectinomycin resistance gene (specR), Ori Rep element and replication initiation protein trfA (trf A element) in soybean event pDAB8264.44.06.1. No specific hybridization to spectinomycin resistance, Ori Rep element or trf A element is expected when appropriate positive (pDAB8264 plus Maverick) and negative (Maverick) controls are included for Southern analysis. Following Hind III digestion and hybridization with specR specific probe, one expected size band of approximately 9,300 bp was observed in the positive control sample (pDAB8264 plus maverick) but absent from samples of the negative control and soybean event pDAB8264.44.06.1. Similarly, one expected size band of approximately 9,200 bp was detected in the positive control sample (pDAB8264 plus maverick) but absent from the samples of the negative control and soybean event pDAB8264.44.06.1 after Pac I digestion and hybridization with mixture of OriRep specific probe and trfA specific probe. These data indicate the absence of spectinomycin resistance gene, Ori Rep element and replication initiation protein trfA in soybean event pDAB8264.44.06.1.

Example 5: Agronomic, Yield and Herbicide Tolerance Evaluation

[0158] The agronomic characteristics and herbicide tolerance of soybean Event pDAB8264.44.06.1 were studied in yield trials at multiple geographical locales during a single growing season. No agronomically meaningful unintended differences were observed between soybean Event pDAB8264.44.06.1 and the Maverick control plants. The results of the study demonstrated that soybean Event pDAB8264.44.06.1 was agronomically equivalent to the Maverick control plants. In addition, soybean Event pDAB8264.44.06.1 provided robust herbicide tolerance when sprayed with a tankmix of glyphosate and 2,4-D.

[0159] The following agronomic characteristics were measured and recorded for all test entries at each location.

1.) Emergence: Calculated by dividing Stand count by number of seeds planted in a one meter section and multiplying by 100.

2.) Seedling Vigor at V1: Vigor is an overall estimate of the health of the plot. Results were rated on a scale of 0-100% with 0% representing a plot with all dead plants and 100% representing plots that look very healthy.

3.) Rated overall visual crop injury, chlorosis and necrosis at 1 day, 7 days, and 14 days after V3 chemical application. Observations were made for any signs of epinasty which is typical of 2,4-D injury. Epinasty is exhibited as twisting or drooping of leaves and stems. All crop injuries used a 0 to 100% scale, where 0% indicates no injury and 100% indicates complete plant death.

4.) Flowering date: This measurement records the date when 50% of the plants in the plot begin to flower. The number of days from planting to when 50% of the plants in each plot were flowering was recorded.

5.) Stand count at R2 or R1: Is a visual estimate of the average vigor of plants in each plot, determined by counting the number of plants in a representative one meter section of one row per plot, and taking note at the R2 or R1 growth stage.

6.) Rated overall visual crop injury, chlorosis and necrosis at 1 day, 7 days, and 14 days after R2 chemical application. Observations were made for any signs of epinasty which is typical of 2,4-D injury. Epinasty is exhibited as twisting or drooping of leaves and stems. All crop injuries used a 0 to 100% scale where 0% indicates no injury and 100% indicates complete plant death.

7.) Disease incidence at R6 growth stage: Is a visual estimate of disease incidence used to record the severity of disease in the plot. Rated on a scale of 0-100%. Where 0% indicates no disease present and 100% indicates all plants in plot had disease.
8.) Insect damage at R6 growth stage: Is a visual estimate of insect damage used to record the severity of insect damage in the plot. Recorded the percentage of plant tissue in the plot damaged by insects using a 0-100% scale. Where 0% indicates no insect damage present and 100% indicates all plants in plot had insect damage.

9.) Plant height at senescence: The average height of the plants in each plot was recorded. Plants were measured from the soil surface to the tip after the leaves had fallen. Measurements were recorded in centimeters. If the plot was lodged, a representative group of plants were stood-up to obtain a measurement.

10.) Days to maturity. Recorded date when 95% of the pods in a plot reached physiological maturity and the plants were a dry down color. The numbers of days to elapse since planting were calculated.

11.) Lodging: Recorded a visual estimate of lodging severity at harvest time. Recorded on a 0 to 100% scale, where 0% indicates no lodging and 100% indicates all plants in a plot flat on the ground.

12.) Shattering: Recorded a visual estimate of pod shattering at harvest time. Recorded as an estimate of percentage of pods shattered per plot. 0-100% scale with 0% indicating no shattering and 100% indicating all pods shattered.

13.) Yield: Recorded the weight of grain harvested from each plot. Harvested the entire 2 row plot and recorded seed weight and moisture. Calculations of bu/acre were made by adjusting to 13% moisture.

14.) 100 seed weight: For each plot 100 seeds were counted out and the weight was recorded in grams.

Herbicide tolerance of soybean Event pDAB8264.44.06.1 was assessed following the application of a tankmix of 2,4-D and glyphosate at 2,185 g ae/ha mixed with 2% weight per weight ammonium sulfate (AMS). The herbicides were sprayed as a V3/R2 sequential herbicide treatment. This herbicide treatment was completed by spraying soybean plants at the V3 growth stage of development followed by a second sequential application at the R2 growth stage of development. The V3 growth stage is characterized when the unifoliolate and first three trifoliolate leaves are fully developed. The R2 growth stage is characterized by a single open flower at one of the two uppermost nodes on the main stem with a fully developed leaf.

These trials were set up using a randomized complete block design with four replications for every treatment. Each plot was 2 rows wide and rows were spaced 30 inches apart. Plots were planted to a total length of 12.5 ft with a 2.5 to 3.0 ft alley between plots. Maverick control plants were expected to die from herbicide applications so they were grown in a separate plot; away from the transgenic soybean plant rows.

The results of soybean Event pDAB8264.44.06.1 sprayed with the 2,4-D and glyphosate herbicide tank mix as compared to unsprayed soybean Event pDAB8264.44.06.1 are summarized. Table 7 presents the means from an analysis comparing soybean Event pDAB8264.44.06.1 sprayed with a tankmix of 2,4-D and glyphosate to unsprayed soybean Event pDAB8264.44.06.1. The herbicide application did not damage soybean Event pDAB8264.44.06.1 plants performed equivalently as compared to unsprayed soybean Event pDAB8264.44.06.1 plants for the reported agronomic characteristics listed in Table 7. With the exception of some early transient injury 1 and 7 daa (days after application) at the V3 stage of development and at 1, 7 and 14 daa at the R2 stage of development, soybean Event pDAB8264.44.06.1 showed robust tolerance to the 2,4-D and glyphosate tank mix. In contrast, none of the Maverick plants were surviving after being sprayed with the herbicide treatment.

Table 7. Comparison of soybean Event pDAB8264.44.06.1 sprayed and unsprayed with a tank mix of 2,4-D and glyphosate.

<table>
<thead>
<tr>
<th>Trait: Agronomic Characteristics</th>
<th>Sprayed</th>
<th>Non-sprayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergence (%)</td>
<td>90.2</td>
<td>84.0</td>
</tr>
<tr>
<td>Vigor V1-V3 (%)</td>
<td>93.4</td>
<td>88.4</td>
</tr>
<tr>
<td>Rated overall visual crop injury after V3 herbicide application; Injury 1 daa (%)</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Rated overall visual crop injury after V3 herbicide application; Injury 7 daa (%)</td>
<td>1.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Agronomic equivalence of soybean Event pDAB8264.44.06.1 as compared to the control line, Maverick, was assessed. These trials were set up using a block design with two replications. Each plot was 2 rows wide and rows were spaced 30 inches apart. Plots were planted to a total length of 12.5 ft with a 2.5 to 3.0 foot alley between plots. Table 8 presents the means from the analysis comparing the agronomic equivalence of soybean Event pDAB8264.44.06.1 with the control line, Maverick. The agronomic data is indicative that soybean Event pDAB8264.44.06.1 performs equivalently to Maverick plants, and does not result in agronomically meaningful unintended differences.
Example 6: Event Specific TaqMan Assay

Two event specific TAQMAN assays were developed to detect the presence of soybean event pDAB8264.44.06.1 and to determine zygosity status of plants in breeding populations. Soybean event pDAB8264.44.06.1 contains the T-strand of the binary vector pDAB8264 (Figure 1). For specific detection of soybean event pDAB8264.44.06.1, specific Taqman primers and probes were designed according to the DNA sequences located in the 5' (SEQ ID NO:14) or 3’ (SEQ ID NO:15) insert-to-plant junction (Figure 4). One event specific assay for soybean event pDAB8264.44.06.1 was designed to specifically detect a 98 bp DNA fragment (SEQ ID NO:16) that spans the 5’ integration junction using two primers and a target-specific MGB probe synthesized by Applied Biosystems (ABI) containing the FAM reporter at its 5’end. Another event specific assay for soybean event pDAB8264.44.06.1 was designed to specifically target a 131bp DNA fragment (SEQ ID NO:17) that spans the 3’ integration junction using two specific primers and a target-specific MGB probe synthesized by ABI containing the FAM reporter at its 5’end. Specificity of this Taqman detection method for soybean event pDAB8264.44.06.1 was tested against 11 different events which contain the 2mEPSPS and aad-12 PTUs and a control non-transgenic soybean variety (Maverick) in duplex format with the soybean specific endogenous reference gene, GMFL01-25-J19 (Glycine max cDNA, GenBank: AK286292.1).

Example 6.1: gDNA Isolation

gDNA samples of 11 different soybean events and non-transgenic soybean varieties were tested in this study. Genomic DNA was extracted using modified Qiagen MagAttract plant DNA kit (Qiagen, Valencia, CA). Fresh soybean leaf discs, 8 per sample, were used for gDNA extraction. The gDNA was quantified with the Pico Green method according to vendor’s instructions (Molecular Probes, Eugene, OR). Samples were diluted with DNase-free water resulting in a concentration of 10 ng/µL for the purpose of this study.

Example 6.2: Taqman Assay and Results

Specific Taqman primers and probes were designed for a soybean event pDAB8264.44.06.1 specific Taqman assay. These reagents can be used with the conditions listed below to detect the transgene within soybean event pDAB8264.44.06.1. **Table 9** lists the primer and probe sequences that were developed specifically for the detection of soybean event pDAB8264.44.06.1.

Table 9. Taqman PCR Primers and Probes.

<table>
<thead>
<tr>
<th>SEQ ID NO:</th>
<th>Name Description</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ ID NO:18</td>
<td>4406_5’F Event specific forward Primer</td>
<td>TTGTCTTTGTTTCTTCAAGGA</td>
</tr>
<tr>
<td>SEQ ID NO:19</td>
<td>4406_5’R Event specific reverse Primer</td>
<td>GACCTCAATTGCGAGCTTCTTAAT</td>
</tr>
<tr>
<td>SEQ ID NO:20</td>
<td>4406_5’P Event specific probe used with 4406_5’F and 4406_5’R</td>
<td>5’FAM/CATGGAGGTCCGAATAG-MGB</td>
</tr>
<tr>
<td>SEQ ID NO:21</td>
<td>4406_3’F Event specific forward Primer</td>
<td>AAACGTCCGAATGTGTTATTAAG</td>
</tr>
<tr>
<td>SEQ ID NO:22</td>
<td>4406_3’R Event specific reverse Primer</td>
<td>CGTTGCCCTGCTTTACATCA</td>
</tr>
</tbody>
</table>
The multiplex PCR conditions for amplification are as follows: IX Roche PCR Buffer, 0.4 μM event specific forward primer, 0.4 μM event specific reverse primer, 0.4 μM Primer GMS116 F, 0.4 μM Primer GMS116 R, 0.2 μM Event specific probe, 0.2 μM GMS116 Probe, 0.1% PVP, 20 ng gDNA in a total reaction of 10 μl. The cocktail was amplified using the following conditions: i) 95°C for 10 min., ii) 95°C for 10 sec, iii) 60°C for 30 sec, iv) 72°C for 1 sec v) repeat step ii-iv for 35 cycles, v) 40°C hold. The Real time PCR was carried out on the Roche LightCycler 480. Data analysis was based on measurement of the crossing point (Cp value) determined by LightCycler 480 software, which is the PCR cycle number when the rate of change in fluorescence reaches its maximum.

The Taqman detection method for soybean event pDAB8264.44.06.1 was tested against 11 different events which contain the $2mEPSPS$ and $aad-12$ PTUs and non-transgenic soybean varieties in duplex format with soybean specific endogenous reference gene, GMFL01-25-J19 (GenBank: AK286292.1). The assays specifically detected the soybean event pDAB8264.44.06.1 and did not produce or amplify any false-positive results from the controls (i.e. the 11 different events which contain the $2mEPSPS$ and aad-12 PTUs and non-transgenic soybean varieties). The event specific primers and probes can be used for the detection of the soybean event pDAB8264.44.06.1 and these conditions and reagents are applicable for zygosity assays.

Example 7: Full Length Sequence of Soybean Event pDAB8264.44.06.1

SEQ ID NO:27 provides the full length sequence of soybean Event pDAB8264.44.06.1. This sequence contains the 5' genomic flanking sequence, the integrated T-strand insert from pDAB8264 and the 3' genomic flanking sequence. With respect to SEQ ID NO:27, residues 1-1494 are 5' genomic flanking sequence, residues 1495-1497 are a three base pair insertion, residues 1498 - 11,774 are the PDB8264 T-strand insert, and residues 11,775 - 13,659 are 3' flanking sequence. The junction sequence or transition with respect to the 5' end of the insert thus occurs at residues 1494 - 1495 of SEQ ID NO:27. The junction sequence or transition with respect to the 3' end of the insert thus occurs at residues 11,774 -11,775 of SEQ ID NO:27. SEQ ID NO:27 is the polynucleotide sequence of soybean Event pDAB8264.44.06.1 and was assembled from an alignment of multiple PCR contigs which were produced via PCR amplification reactions and sequenced using the ABI Big Dye® Terminator sequencing reaction kit (Applied Biosystems, Foster City, CA).

Example 8: Breeding Stack of soybean Event pDAB8264.44.06.1 and Soybean Insect Tolerant Event pDAB9582.812.9.1

Example 8.1: Sexual Crossing of soybean Event pDAB8264.44.06.1 and Soybean Insect Tolerant Event pDAB9582.812.9.1

Soybean event pDAB8264.44.06.1 was sexually crossed with soybean event pDAB9582.812.9.1. The anthers of soybean event pDAB8264.44.06.1 were manually rubbed across the stigma of soybean event pDAB9582.812.9.1,
thereby fertilizing soybean event pDAB9582.812.9.1. The resulting F1 progeny which contained integration events from both soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1 were screened for tolerance to 2,4-D and glyphosate herbicides to identify progeny plants which contained both integration events. Next, the F1 progeny plants were self-fertilized to produce an F2 offspring which was confirmed to segregate independently for both events. The F2 plants were sprayed with a single herbicide application containing both 2,4-D (1120 g ae/ha) and glyphosate (1120 g ae/ha). The resulting F2 plants were screened using a Taqman zygosity based assay to identify plants that were homozygous for both events. Selfing of these F2 homozygous plants produced an F3 offspring that were homozygous for both soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1. The resulting event was labeled as soybean event pDAB9582.812.9.1::pDAB8264.44.06.1.

Example 8.2: Determination of the Zygosity Status of Soybean Event pDAB9582.812.9.1::pDAB8264.44.06.1

To determine the zygosity status of plants produced from the breeding cross of soybean event pDAB8264.44.06.1 and soybean event pDAB9582.812.9.1, separate event specific TAQMAN® assays were developed to detect the presence of either the pDAB9582.812.9.1 or pDAB8264.44.06.1 integration events. Segregating F2 plants, produced from the self fertilization of a breeding cross of soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1, were tested with these event specific TAQMAN® assays to identify individual plants which contained both soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1, and were homozygous for both events.

gDNA Isolation

gDNA samples from segregating F2 plants of the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 were tested in this study. Fresh soybean leaf discs, 4 per plant, were collected from 3,187 segregating F2 plants of the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1. Genomic DNA was extracted from these samples using a modified Qiagen MagAttract Plant DNA kit® (Qiagen, Valencia, CA).

TAQMAN® Assay and Results

TAQMAN® primers and probes as previously described were designed for the use of individual event specific assays for soybean events pDAB9582.812.9.1 (U.S. Provisional Application No. 61/471845) and pDAB8264.44.06.1 (described above). These reagents were used with the conditions listed below to determine the zygosity of each integration event contained within the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1.

The multiplex PCR conditions for amplification are as follows: IX Roche PCR Buffer, 0.4 μM event pDAB8264.44.06.1 specific forward primer, 0.4 μM event pDAB8264.44.06.1 specific reverse primer 0.4 μM event pDAB9582.812.9.1 specific forward primer, 0.4 μM event pDAB9582.812.9.1 specific reverse primer, 0.4 μM Primer GMS116 F, 0.4 μM Primer GMS116 R, 0.2 μM Event pDAB9582.812.9.1 specific probe, 0.2 μM Event pDAB8264.44.06.1 specific probe, 0.2 μM GMS116 Probe, 0.1% PVP, 20 ng gDNA in a total reaction of 10 μl. The cocktail was amplified using the following conditions: i) 95°C for 10 min., ii) 95°C for 10 sec, iii) 60°C for 30 sec, iv) 72°C for 1 sec v) repeat step i-iv for 35 cycles, v) 40°C hold. The Real time PCR was carried out on the Roche LightCycler® 480. Data analysis was based on measurement of the crossing point (Cp value) determined by LightCycler® 480 software, which is the PCR cycle number when the rate of change in fluorescence reaches its maximum.

A total of 3,187 segregating F2 plants, produced from the breeding cross of soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1 were tested with the event specific TAQMAN® assays to determine the zygosity of individual plants for both soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1. The results from these assays indicated that soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1 were both present and detected in 2,360 plants. The zygosity status (also described as ploidy level) of each integration event is indicated in Table 9b. Of the 2,360 identified plants, 237 were determined to contain two copies of soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1.

Table 9b. Event specific TAQMAN® zygosity analysis of the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1

<table>
<thead>
<tr>
<th>Zygosity status for pDAB9582.812.9.1::pDAB8264.44.06.1</th>
<th>Number of plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous::Homozygous</td>
<td>237</td>
</tr>
<tr>
<td>Homozygous::Hemizygous</td>
<td>506</td>
</tr>
</tbody>
</table>
Example 8.3: Characterization of Protein Expression in the Breeding Stack of Soybean Event pDAB9582.812.9.1::pDAB8264.44.06.1

[0177] The biochemical properties of the recombinant Cry1F, Cry1Ac, AAD12, 2mEPSPS, and PAT proteins expressed in the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 were characterized. An Enzyme Linked Immunosorbent Assay (ELISA) was used to quantify the expression of PAT. Comparatively, Cry1Ac/Cry1F and AAD12/2mEPSPS proteins were quantified by multiplexed immunoassays utilizing electrochemiluminescent technology from Meso-Scale Discovery (MSD, Gaithersburg, Maryland). Collectively, these assays were used to characterize the biochemical properties and confirm the robust expression of these proteins in the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1.

Expression of the PAT Protein in Plant Tissues

[0178] Levels of PAT protein were determined in the breeding stack of F3 soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 which were identified to be homozygous for both event pDAB9582.812.9.1 and event pDAB8264.44.06.1 integrations. The levels of PAT protein expressed from soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 was compared to the parental events, soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1.

[0179] The soluble, extractable PAT protein was obtained from soybean leaf tissue and measured using a quantitative ELISA method (APS 014, Envirologix, Portland, ME). Samples of soybean leaf tissues were isolated from greenhouse grown test plants at the unifoliate to V1 stage and prepared for expression analysis. The PAT protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes. The plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using the PAT ELISA kit in a sandwich format. The kit was used following the manufacturer’s suggested protocol (Envirologix, Portland, ME).

[0180] Detection analysis was performed to investigate the expression and heritability of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1. The F3 generation of the breeding stack, soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 expressed PAT at higher concentrations than either the parental events, pDAB9582.812.9.1 and pDAB8264.44.06.1. The increased concentration of PAT in soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 breeding stack was expected. The higher concentrations of PAT are a result of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 containing twice as many copies of the pat coding sequence as compared to either of the parental events (Table 10).

Table 10. Average PAT protein expression from soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 and parental events (soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1).

<table>
<thead>
<tr>
<th>Soybean Event</th>
<th>Average PAT Expression (ng/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDAB9582.812.9.1::pDAB8264.44.06.1</td>
<td>38.0</td>
</tr>
<tr>
<td>pDAB9582.812.9.1</td>
<td>11.0</td>
</tr>
<tr>
<td>pDAB8264.44.06.1</td>
<td>13.3</td>
</tr>
</tbody>
</table>

Expression of the Cry1F and Cry1Ac Proteins in Plant Tissues

[0181] Levels of Cry1F and Cry1Ac protein were determined in the breeding stack of F3 soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 which were identified to be homozygous for both event pDAB9582.812.9.1 and
event pDAB8264.44.06.1 integrations. The levels of CryIF and CrylAc protein expressed from soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 was compared to the parental event, soybean event pDAB9582.812.9.1.

The soluble, extractable CryIF and CrylAc protein was obtained from soybean leaf tissue and measured using a multiplexed electrochemiluminescent MSD assay. Samples of soybean leaf tissue were isolated from greenhouse grown plants at the unifoliate to V1 stage and prepared for expression analysis. The CryIF and CrylAc protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes. The plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a Cry1F/Cry1Ac multiplex MSD assay from Meso-Scale Discovery. The kit was used following the manufacturer’s suggested protocol.

Detection analysis was performed to investigate the expression and heritability of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1. The F3 generation of the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 expressed CryIF and Cry1Ac proteins at concentrations higher than the parental soybean event pDAB9582.812.9.1. (Table 11). These results indicate that soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 plants contained a functionally expressing copy of the cry1F and cry1Ac coding sequences which were inherited from the parental line, soybean event pDAB9582.812.9.1.

<table>
<thead>
<tr>
<th>Soybean Event</th>
<th>Average Cry1Ac Expression (ng/cm²)</th>
<th>Average Cry1F Expression (ng/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDAB9582.812.9.1::pDAB8264.44.06.1</td>
<td>27.1</td>
<td>140.5</td>
</tr>
<tr>
<td>pDAB9582.812.9.1</td>
<td>20.8</td>
<td>112.9</td>
</tr>
</tbody>
</table>

Expression of the AAD12 and 2mEPSPS Proteins in Plant Tissues

Levels of AAD12 and 2mEPSPS protein were determined in the breeding stack of F3 soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 which were identified to be homozygous for both event pDAB9582.812.9.1 and event pDAB8264.44.06.1 integrations. The levels of AAD12 and 2mEPSPS protein expressed from soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 was compared to the parental event, Soybean Event pDAB8264.44.06.1.

The soluble, extractable AAD12 and 2mEPSPS protein was obtained from soybean leaf tissue and measured using a multiplexed electrochemiluminescent MSD assay. Samples of soybean leaf tissue were isolated from greenhouse grown plants at the unifoliate to V1 stage and prepared for expression analysis. The AAD12 and 2mEPSPS protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes. The plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a AAD12 and 2mEPSPS multiplex MSD assay from Meso-Scale Discovery. The kit was used following the manufacturer’s suggested protocol.

Detection analysis was performed to investigate the expression and heritability of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1. The F3 generation of the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 expressed AAD12 and 2mEPSPS proteins at concentrations higher than the parental soybean event pDAB8264.44.06.1. (Table 12). These results indicated that soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 plants contained a functionally expressing copy of the aad-12 and 2mEPSPS coding sequences which were inherited from the parental line, soybean event pDAB8264.44.06.1.

<table>
<thead>
<tr>
<th>Soybean Event</th>
<th>Average AAD12 Expression (ng/cm²)</th>
<th>Average 2mEPSPS Expression (ng/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDAB9582.812.9.1::pDAB8264.44.06.1</td>
<td>479.7</td>
<td>410.3</td>
</tr>
<tr>
<td>pDAB8264.44.06.1</td>
<td>320.4</td>
<td>328.9</td>
</tr>
</tbody>
</table>
Example 8.4: Herbicide Tolerance of the Breeding Stack of Soybean Event pDAB9582.812.9.1::pDAB8264.44.06.1

Herbicide tolerance of the breeding stack, soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 was assayed during two growing seasons. Soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 seed were planted and grown to maturity. Mature plants were sprayed with a single herbicide application which consisted of a combination of 2,4-D and glyphosate. The resulting tolerance to these herbicides was measured by counting the number of surviving plants. Comparatively, control plants which did not contain the aad-12 and 2mEPSPS genes and were expected to be susceptible to the application of the 2,4-D and glyphosate herbicides were included in the study.

During the first season, herbicide tolerance was assessed in 120 field grown plots of F2 segregating lineages of the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1. Each plot was 1 row wide and rows were spaced 30 inches apart. Plots were planted on 12 foot centers (total planted length 7.5 feet) with a 4.5 foot alley between plots. A total of 4,364 plants from F2 segregating lineages of the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 were sprayed with a mixture of 2,4-D and glyphosate (1120 g ae/ha). A single spray application of the glyphosate/2,4-D herbicides was made between V3 and V4 growth stages. The V3 growth stage is characterized by the unifoliate and first four trifoliate leaves being fully developed. After the herbicide treatment was completed, the plots were observed and 3,234 plants were identified as being tolerant to the application of the herbicides. The soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 plants which were susceptible to the herbicide application did not contain copies of the aad-12 and 2mEPSPS as a result of Mendelian segregation of the pDAB8264.44.06.1 integration event.

During the second season, herbicide tolerance was assessed in greenhouse grown F3 homozygous plants of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1. The soybean plants were grown in 4 inch pots which contained one plant per pot. A total of 15, F3 homozygous plants were sprayed with a single application of 2,4-D and glyphosate (840 ae/ha). All 15 plants survived after being sprayed with the herbicides, indicating that the soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 plants were tolerant to the application of the herbicides, glyphosate and 2,4-D.

In summary, the aad-12 and 2mEPSPS genes which were present in the soybean event pDAB8264.44.06.1 parental line conferred tolerance to 2,4-D and glyphosate herbicides. These traits were passed and inherited in soybean event pDAB9582.812.9.1::pDAB8264.44.06.1, thereby providing herbicidal tolerance to soybean event pDAB9582.812.9.1::pDAB8264.44.06.1. Comparatively, control plants which did not contain the aad-12 and 2mEPSPS genes were susceptible to the application of the 2,4-D and glyphosate herbicides.

Example 8.5: Characterization of Insecticidal Activity of Soybean Event pDAB9582.812.9.1::pDAB8264.44.06.1

Greenhouse evaluations were conducted to characterize the insecticidal tolerance of the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 which resulted from the expression of the cry1Ac and cry1F transgenes. Soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 was tested against lab reared soybean pests including Anticarsia gemmatalis (velvetbean caterpillar) and Pseudoplusia includens (soybean looper). The breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 was compared against the parental soybean events (soybean event pDAB9582.812.9.1 and soybean event pDAB8264.44.06.1) in addition to the non-transformed soybean variety Maverick. This comparison was made to determine whether the level of plant protection provided by the CryIF and CryAc proteins would be present in the breeding stack which introduced additional transgenes into the genome of the soybean plant. In addition, the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 and soybean event pDAB8264.44.06.1 were both sprayed with a single herbicide application containing 2,4-D and glyphosate (840 g ae/ha) prior to the insect bioassay to determine whether the spraying of the herbicides had any effect on the plant protection from insects provided by the Cry1F and Cry1Ac proteins.

Greenhouse trials were conducted on approximately three week old plants. Ten plants each were used to evaluate the breeding stack of soybean event pDAB9582.812.9.1::pDAB8264.44.06.1, soybean event pDAB9582.812.9.1, and the negative controls; herbicide sprayed soybean event pDAB8264.44.06.1 and Maverick. For each insect species tested (Anticarsia gemmatalis and Chrysodeixis (formerly Pseudoplusia) includens), 3 leaf punches were made from each plant for a total of 30 leaf discs/plant/insect species. The 1.4 cm diameter (or 1.54 cm²) leaf punches were placed in a test arena on top of 2% water agar, infested with one neonate larva and sealed with a perforated plastic lid. Mortality and leaf consumption were rated four days after infestation. Larvae that were not responsive to gentle probing were considered dead. Leaf damage was assessed by visually scoring the percentage of leaf punch consumed by the insect. Statistical analysis was performed on the data using JMP® Pro 9.0.1 (2010 SAS Institute Inc., Cary, NC).

The results (Table 13) obtained from these replicated experiments indicated that the level of insect protection and mortality provided by the Cry1F and Cry1Ac proteins of the breeding stack of soybean event
Table 13. Shows the mean percent leaf damage and mortality of *Pseudoplusia includens* (SBL) and *Anticarsia gemmatalis* (VBC) fed on various soybean events. (n = 24)

<table>
<thead>
<tr>
<th>Soybean events</th>
<th>Insects</th>
<th>Mean % leaf damage</th>
<th>Mean % mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maverick</td>
<td>SBL</td>
<td>91.46</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>VBC</td>
<td>78.96</td>
<td>0</td>
</tr>
<tr>
<td>pDAB8264.44.06.1</td>
<td>SBL</td>
<td>75.83</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>VBC</td>
<td>58.33</td>
<td>8.3</td>
</tr>
<tr>
<td>pDAB9582.812.9.1</td>
<td>SBL</td>
<td>0.10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>VBC</td>
<td>0.15</td>
<td>100</td>
</tr>
<tr>
<td>pDAB9582.812.9.1 x pDAB8264.44.06.1</td>
<td>SBL</td>
<td>0.10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>VBC</td>
<td>0.10</td>
<td>100</td>
</tr>
</tbody>
</table>
TAQMAN® Assay and Results

[0197] TAQMAN® primers and probes as previously described were designed for the use of individual event specific assays for soybean events pDAB9582.814.19.1 (U.S. Provisional Application No. 61/471845) and pDAB8264.44.06.1 (described above). These reagents were used with the conditions listed below to determine the zygosity of each integration event contained within the breeding stack of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1.

[0198] The multiplex PCR conditions for amplification are as follows: IX Roche PCR Buffer, 0.4 μM event pDAB8264.44.06.1 specific forward primer, 0.4 μM event pDAB8264.44.06.1 specific reverse primer 0.4 μM event pDAB9582.814.19.1 specific forward primer, 0.4 μM event pDAB9582.814.19.1 specific reverse primer, 0.4 μM Primer GMS116 F, 0.4 μM Primer GMS116 R, 0.2 μM Event pDAB9582.814.19.1 specific probe, 0.2 μM Event pDAB8264.44.06.1 specific probe, 0.2 μM GMS116 Probe, 0.1% PVP, 20 ng gDNA in a total reaction of 10 μl. The cocktail was amplified using the following conditions: i) 95°C for 10 min., ii) 95°C for 10 sec, iii) 60°C for 30 sec, iv) 72°C for 1 sec v) repeat step ii-iv for 35 cycles, v) 40°C hold. The Real time PCR was carried out on the Roche LightCycler® 480. Data analysis was based on measurement of the crossing point (Cp value) determined by LightCycler® 480 software, which is the PCR cycle number when the rate of change in fluorescence reaches its maximum.

[0199] A total of 37 segregating F2 plants, produced from the breeding cross of soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1 were tested with the event specific TAQMAN® assays to determine the zygosity of individual plants for both soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1. The results from these assays indicated that soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1 were both present and detected in 23 plants. The zygosity status (also described as ploidy level) of each integration event is indicated in Table 14. Of the 23 identified plants, 1 plant was identified which contained two copies of soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1.

Table 14. Event specific TAQMAN® zygosity analysis of the breeding stack of soybean event DAB9582.814.19.1::DAB8264.44.06.1

<table>
<thead>
<tr>
<th>Zygosity status for pDAB9582.814.19.1::pDAB8264.44.06.1</th>
<th>Number of plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homozygous::Homozygous</td>
<td>1</td>
</tr>
<tr>
<td>Homozygous::Hemizygous</td>
<td>7</td>
</tr>
<tr>
<td>Homozygous::Null</td>
<td>1</td>
</tr>
<tr>
<td>Hemizygous::Homozyg</td>
<td>3</td>
</tr>
<tr>
<td>Hemizygous::Hemizygous</td>
<td>12</td>
</tr>
<tr>
<td>Hemizygous::Null</td>
<td>5</td>
</tr>
<tr>
<td>Null::Homozyg</td>
<td>0</td>
</tr>
<tr>
<td>Null::Hemizygous</td>
<td>2</td>
</tr>
<tr>
<td>Null::Null</td>
<td>6</td>
</tr>
</tbody>
</table>

Example 9.3: Characterization of Protein Expression in the Breeding Stack of Soybean Event pDAB9582.814.19.1::pDAB8264.44.06.1

[0200] The biochemical properties of the recombinant Cry1F, Cry1Ac, AAD12, 2mEPSPS, and PAT proteins expressed in the breeding stack of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 were characterized. An Enzyme Linked Immunosorbent Assay (ELISA) was used to quantify the expression of PAT. Comparatively, Cry 1Ac/Cry1F and AAD12/2mEPSPS proteins were quantified by multiplexed immunoassays utilizing electrochemiluminescent technology from Meso-Scale Discovery (MSD, Gaithersburg, Maryland). Collectively, these assays were used to characterize the biochemical properties and confirm the robust expression of these proteins in the breeding stack of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1.

Expression of the PAT Protein in Plant Tissues

[0201] Levels of PAT protein were determined in the breeding stack of F3 soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 which were identified to be homozygous for both event pDAB9582.814.19.1 and event pDAB8264.44.06.1 integrations. The levels of PAT protein expressed from soybean event
The soluble, extractable PAT protein was obtained from soybean leaf tissue and measured using a quantitative ELISA method (APS 014, Envirologix, Portland, ME). Samples of soybean leaf tissues were isolated from greenhouse grown test plants at the unifoliolate to V1 stage and prepared for expression analysis. The PAT protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes. The plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using the PAT ELISA kit in a sandwich format. The kit was used following the manufacturer’s suggested protocol (Envirologix, Portland, ME).

Detection analysis was performed to investigate the expression and heritability of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1. The F3 generation of the breeding stack, soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 expressed PAT at higher concentrations than either the parental events, pDAB9582.814.19.1 and pDAB8264.44.06.1. The increased concentration of PAT in soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 breeding stack was expected. The higher concentrations of PAT are a result of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 containing twice as many copies of the pat coding sequence as compared to either of the parental events (Table 15).

<table>
<thead>
<tr>
<th>Soybean Event</th>
<th>Average PAT Expression (ng/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDAB9582.814.19.1::pDAB8264.44.06.1</td>
<td>20.1</td>
</tr>
<tr>
<td>pDAB9582.814.19.1</td>
<td>12.0</td>
</tr>
<tr>
<td>pDAB8264.44.06.1</td>
<td>13.3</td>
</tr>
</tbody>
</table>

Expression of the Cry1F and Cry1Ac Proteins in Plant Tissues

Levels of Cry1F and Cry1Ac protein were determined in the breeding stack of F3 soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 which were identified to be homozygous for both event pDAB9582.814.19.1 and event pDAB8264.44.06.1 integrations. The levels of Cry1F and Cry1Ac protein expressed from soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 was compared to the parental event, soybean event pDAB9582.814.19.1.

The soluble, extractable Cry1F and Cry1Ac protein was obtained from soybean leaf tissue and measured using a multiplexed electrochemiluminescent MSD assay. Samples of soybean leaf tissue were isolated from greenhouse grown plants at the unifoliolate to V1 stage and prepared for expression analysis. The Cry1F and Cry1Ac protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes. The plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a Cry1F/Cry1Ac multiplex MSD assay from Meso-Scale Discovery. The kit was used following the manufacturer’s suggested protocol.

Detection analysis was performed to investigate the expression and heritability of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1. The F3 generation of the breeding stack of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 expressed Cry1Ac protein at concentrations higher than the parental soybean event pDAB9582.814.19.1. The F3 generation of the breeding stack of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 expressed Cry1F protein at concentrations lower than the parental soybean event pDAB9582.814.19.1. (Table 16). Despite the variability in expression levels, these results indicate that soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 plants contained a functionally expressing copy of the cry1F and cry1Ac coding sequences which were inherited from the parental line, soybean event pDAB9582.814.19.1.
Expression of the AAD12 and 2mEPSPS Proteins in Plant Tissues

Levels of AAD12 and 2mEPSPS protein were determined in the breeding stack of F3 soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 which were identified to be homozygous for both event pDAB9582.814.19.1 and event pDAB8264.44.06.1 integrations. The levels of AAD12 and 2mEPSPS protein expressed from soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 was compared to the parental event, Soybean Event pDAB8264.44.06.1.

The soluble, extractable AAD12 and 2mEPSPS protein was obtained from soybean leaf tissue and measured using a multiplexed electrochemiluminescent MSD assay. Samples of soybean leaf tissue were isolated from greenhouse grown plants at the unifoliate to V1 stage and prepared for expression analysis. The AAD12 and 2mEPSPS protein was extracted from soybean plant tissues with a phosphate buffered saline solution containing the detergent Tween-20 (PBST) and 1% polyvinylpyrrolidone 40 (PVP-40). The samples were then extracted using a GenoGrinder® at 1500 rpm for 5 minutes. The plant extract was centrifuged; the aqueous supernatant was collected, diluted with appropriate buffer as necessary, and analyzed using a AAD12 and 2mEPSPS multiplex MSD assay from Meso-Scale Discovery. The kit was used following the manufacturer’s suggested protocol.

Detection analysis was performed to investigate the expression and heritability of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1. The F3 generation of the breeding stack of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 expressed AAD12 and 2mEPSPS proteins at concentrations lower than the parental soybean event pDAB8264.44.06.1. Despite the variability in expression levels, these results indicated that soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 plants contained a functionally expressing copy of the aad-12 and 2mEPSPS coding sequences which were inherited from the parental line, soybean event pDAB8264.44.06.1.

Table 17. Average AAD12 and 2mEPSPS protein expression from soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 as compared to parental soybean event pDAB9582.814.19.1::pDAB8264.44.06.1

<table>
<thead>
<tr>
<th>Soybean Event</th>
<th>Average AAD12 Expression (ng/cm²)</th>
<th>Average 2mEPSPS Expression (ng/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDAB9582.814.19.1::pDAB8264.44.06.1</td>
<td>261.3</td>
<td>127.9</td>
</tr>
<tr>
<td>pDAB8264.44.06.1</td>
<td>320.4</td>
<td>328.9</td>
</tr>
</tbody>
</table>

Example 9.4: Herbicide Tolerance of the Breeding Stack of Soybean Event pDAB9582.814.19.1::pDAB8264.44.06.1

Herbicide tolerance of the breeding stack, soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 was assayed. Soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 seed were planted in a greenhouse study and mature plants were sprayed with a single herbicide application which consisted of a combination of 2,4-D and glyphosate. The resulting tolerance to these herbicides was measured by counting the number of surviving plants. Comparatively, control plants which did not contain the aad-12 and 2mEPSPS genes and were expected to be susceptible to the application of the 2,4-D and glyphosate herbicides were included in the study.

Herbicide tolerance was assessed in greenhouse grown F2 plants of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1. The soybean plants were grown in 4 inch pots which contained one plant per pot. A total of 37, F3 homozygous plants were sprayed with a single application of 2,4-D and glyphosate (840 ae/ha) at the unfoliate growth stage. All 25 plants survived after being sprayed with the herbicides, indicating that the soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 plants were tolerant to the application of the herbicides, glyphosate and 2,4-D.

In summary, the aad-12 and 2mEPSPS genes which were present in the soybean event pDAB8264.44.06.1 parental line conferred tolerance to 2,4-D and glyphosate herbicides. These traits were passed and inherited in soybean...
event

pDAB9582.814.19.1::pDAB8264.44.06.1, thereby providing herbicidal tolerance to soybean event pDAB9582.814.19.1::pDAB8264.44.06.1. The soybean event pDAB9582.812.9.1::pDAB8264.44.06.1 plants which were susceptible to the herbicide application did not contain copies of the aad-12 and 2mEPSPS as a result of Mendelian segregation of the pDAB8264.44.06.1 integration event. Additionally, control plants which did not contain the aad-12 and 2mEPSPS genes were susceptible to the application of the 2,4-D and glyphosate herbicides.

Example 9.5: Characterization of Insecticidal Activity of Soybean Event pDAB9582.814.19.1::pDAB8264.44.06.1

[0213] Greenhouse evaluations were conducted to characterize the insecticidal tolerance activity of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 which resulted from the expression of the Cry1Ac and Cry1F transgenes. Soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 was tested against lab reared soybean pests including Anticarsia gemmatalis (velvetbean caterpillar) and Pseudoplusia includens (soybean looper). The breeding stack of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 was compared against the parental soybean events (soybean event pDAB9582.814.19.1 and soybean event pDAB8264.44.06.1) in addition to the non-transformed soybean variety Maverrick. This comparison was made to determine whether the level of plant protection to insect damage provided by the Cry1F and Cry1Ac proteins would be present in the breeding stack which introduced additional transgenes into the genome of the soybean plant. In addition, the breeding stack of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 and soybean event pDAB8264.44.06.1 were both sprayed with a single herbicide application containing 2,4-D and glyphosate (840 g ae/ha) prior to the insect bioassay to determine whether the spraying of the herbicides had any effect on the plant protection from insects provided by the Cry1F and Cry1Ac proteins.

[0214] Greenhouse trials were conducted on approximately three week old plants. Ten plants each were used to evaluate the breeding stack of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1, soybean event pDAB9582.814.19.1, and the negative controls; herbicide sprayed soybean event pDAB8264.44.06.1 and Maverick. For each insect species tested (Anticarsia gemmatalis and Pseudoplusia includens), 3 leaf punches were made from each plant for a total of 30 leaf discs/plant/insect species. The 1.4 cm diameter (or 1.54 cm²) leaf punches were placed in a test arena on top of 2% water agar, infested with one neonate larvae and sealed with a perforated plastic lid. Mortality and leaf consumption were rated 4 days after infestation. Larvae that were not responsive to gentle probing were considered dead. Leaf damage was assessed by visually scoring the percentage of leaf punch consumed by the insect. Statistical analysis was performed on the data using JMP® Pro 9.0.1 (2010 SAS Institute Inc., Cary, NC).

[0215] The results (Table 18) obtained from these replicated experiments indicated that the level of insect damage and mortality provided by the Cry1F and Cry1Ac proteins of the breeding stack of soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 were consistent with the parental soybean event pDAB9582.814.19.1. As expected soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 sustained significantly lower insect damage (0.10-0.12 %) than soybean event pDAB8264.44.06.1 (58-76%) and the Maverick (79-91%) control plants for all insects tested. Additionally, high insect mortality (100%) was recorded for all soybean events which contained the cry1F and cry1Ac coding sequences, while the negative controls, maverick and soybean event pDAB8264.44.06.1, resulted in <10% insect mortality. Thus, the soybean event pDAB9582.814.19.1::pDAB8264.44.06.1 provided protection from insecticidal activity at levels comparable to the parental soybean event pDAB9582.814.19.1.

Table 18. Shows the mean percent leaf damage and mortality of Pseudoplusia includens (SBL) and Anticarsia gemmatalis (VBC) fed on various soybean events. (n = 24)

<table>
<thead>
<tr>
<th>Soybean events</th>
<th>Insects</th>
<th>Mean % leaf damage</th>
<th>Mean % mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maverick</td>
<td>SBL</td>
<td>91.46</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>VBC</td>
<td>78.96</td>
<td>0</td>
</tr>
<tr>
<td>pDAB8264.44.06.1</td>
<td>SBL</td>
<td>75.83</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>VBC</td>
<td>58.33</td>
<td>8.3</td>
</tr>
<tr>
<td>pDAB9582.814.19.1</td>
<td>SBL</td>
<td>0.12</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>VBC</td>
<td>0.10</td>
<td>100</td>
</tr>
</tbody>
</table>
The invention also pertains to the following:

1. A transgenic soybean plant cell comprising a genome comprising a first polynucleotide segment having at least 95% identity with SEQ ID NO:14 and a second polynucleotide segment having at least 95% identity with SEQ ID NO:15.

2. A soybean seed comprising a genome comprising Event pDAB8264.44.06.1 as present in representative seed deposited with American Type Culture Collection (ATCC) under Accession No. PTA-11336.

3. A soybean seed comprising a cell of item 1.

4. A soybean plant produced by growing the seed of item 2, said plant comprising said Event.

5. A progeny plant of the soybean plant of item 4, said progeny plant comprising Event pDAB8264.44.06.1.

6. A transgenic soybean plant comprising a plurality of cells of item 1.

7. The plant of item 6, said cells further comprising an insect resistance gene.

8. The plant of item 6 wherein the plant is resistant to at least one herbicide selected from the group consisting of phenoxyacetic acid herbicides, phenoxybutanoic acid herbicides, pyridyloxyalkanoic acid herbicides, glyphosate herbicides, and glufosinate herbicides, said plant comprising a transgenic genomic insert comprising residues 2026-9222 of SEQ ID NO:13.

9. A part of the plant of item 4 wherein said part is selected from the group consisting of pollen, ovule, flowers, shoots, roots, and leaves, said part comprising SEQ ID NO:14 and SEQ ID NO:15.

10. A plant cell comprising a genome comprising Event pDAB8264.44.06.1 as present in representative seed deposited with American Type Culture Collection (ATCC) under Accession No. PTA-11336.

11. An isolated polynucleotide wherein said polynucleotide comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs:3-28.

12. A method of breeding a soybean plant, said method comprising crossing a first soybean plant comprising SEQ ID NO:14 and SEQ ID NO:15, with a second soybean plant to produce a third soybean plant comprising a genome, and assaying said third soybean plant for presence of SEQ ID NO:14 and/or SEQ ID NO:15 in said genome.

13. The method of item 12 wherein said method is used to introgress a herbicide tolerance trait into a soybean plant.

14. A method of controlling weeds, said method comprising applying at least one of a phenoxyacetic acid, phenoxybutanoic acid, pyridyloxyalkanoic acid, glyphosate, bialaphos, phosphinothricin or glufosinate herbicide to a field, said field comprising a plant of item 6, wherein said plant comprises a transgenic genomic insert comprising residues 2026-9222 of SEQ ID NO:13.

15. The method of item 14, wherein said method comprises applying at least two of said herbicides simultaneously.

16. The method of item 14, wherein said method comprises applying at least two of said herbicides sequentially.

17. The method of item 14, wherein said aryloxyalkanoate herbicide is selected from the group consisting of 2,4-D; 2,4-DB; MCPA; and MCPB; and said pyridyloxyalkanoic acid herbicide is selected from the group consisting of

<table>
<thead>
<tr>
<th>Soybean events</th>
<th>Insects</th>
<th>Mean % leaf damage</th>
<th>Mean % mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDAB9582.814.19:</td>
<td>SBL</td>
<td>0.10</td>
<td>100</td>
</tr>
<tr>
<td>pDAB8264.44.06.1</td>
<td>VBC</td>
<td>0.10</td>
<td>100</td>
</tr>
</tbody>
</table>

[0216] The invention also pertains to the following:

2. A soybean seed comprising a genome comprising Event pDAB8264.44.06.1 as present in representative seed deposited with American Type Culture Collection (ATCC) under Accession No. PTA-11336.

3. A soybean seed comprising a cell of item 1.

4. A soybean plant produced by growing the seed of item 2, said plant comprising said Event.

5. A progeny plant of the soybean plant of item 4, said progeny plant comprising Event pDAB8264.44.06.1.

6. A transgenic soybean plant comprising a plurality of cells of item 1.

7. The plant of item 6, said cells further comprising an insect resistance gene.

8. The plant of item 6 wherein the plant is resistant to at least one herbicide selected from the group consisting of phenoxyacetic acid herbicides, phenoxybutanoic acid herbicides, pyridyloxyalkanoic acid herbicides, glyphosate herbicides, and glufosinate herbicides, said plant comprising a transgenic genomic insert comprising residues 2026-9222 of SEQ ID NO:13.

9. A part of the plant of item 4 wherein said part is selected from the group consisting of pollen, ovule, flowers, shoots, roots, and leaves, said part comprising SEQ ID NO:14 and SEQ ID NO:15.

10. A plant cell comprising a genome comprising Event pDAB8264.44.06.1 as present in representative seed deposited with American Type Culture Collection (ATCC) under Accession No. PTA-11336.

11. An isolated polynucleotide wherein said polynucleotide comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs:3-28.

12. A method of breeding a soybean plant, said method comprising crossing a first soybean plant comprising SEQ ID NO:14 and SEQ ID NO:15, with a second soybean plant to produce a third soybean plant comprising a genome, and assaying said third soybean plant for presence of SEQ ID NO:14 and/or SEQ ID NO:15 in said genome.

13. The method of item 12 wherein said method is used to introgress a herbicide tolerance trait into a soybean plant.

14. A method of controlling weeds, said method comprising applying at least one of a phenoxyacetic acid, phenoxybutanoic acid, pyridyloxyalkanoic acid, glyphosate, bialaphos, phosphinothricin or glufosinate herbicide to a field, said field comprising a plant of item 6, wherein said plant comprises a transgenic genomic insert comprising residues 2026-9222 of SEQ ID NO:13.

15. The method of item 14, wherein said method comprises applying at least two of said herbicides simultaneously.

16. The method of item 14, wherein said method comprises applying at least two of said herbicides sequentially.

17. The method of item 14, wherein said aryloxyalkanoate herbicide is selected from the group consisting of 2,4-D; 2,4-DB; MCPA; and MCPB; and said pyridyloxyalkanoic acid herbicide is selected from the group consisting of.
triclopyr and fluroxypyr.

18. The method of item 14, wherein said method comprises applying at least one additional herbicide to said field.

19. The method of item 18, wherein said at least one additional herbicide is dicamba.

20. A method of controlling weeds in a field, said method comprising applying a phenoxyacetic acid, phenoxybutanoic acid, pyridyloxyalkanoic acid, glyphosate and/or glufosinate herbicide to the field, and planting a seed of item 3, wherein said transgenic insert comprises residues 2026-9222 of SEQ ID NO:13, in the field within 14 days of applying the herbicide(s).

21. The method of item 20, wherein said applying step is performed prior to said planting step.

22. The method of item 14, wherein said at least one herbicide is applied over the top of said plant.

23. The plant of item 6, said plant further comprising a polynucleotide comprising at least 95% identity with a nucleic acid molecule comprising SEQ ID NO:27.

24. The plant of item 23, wherein the plant is from *Glycine max*.

25. A meal or oil product produced by growing a plant of item 6.

26. A plant cell comprising an expression cassette inserted transgenically into a single chromosomal locus of the plant cell's genome comprising:

 a. a first plant transcription unit which expresses a glyphosate herbicide tolerance gene;
 b. a second plant transcription unit which expresses a phenoxyacetic acid herbicide tolerance gene, a phenoxybutanoic acid herbicide tolerance gene, and/or a pyridyloxyalkanoic acid tolerance gene; and
 c. a third plant transcription unit which expresses a glufosinate herbicide tolerance gene.

27. A method for identifying Event pDAB8264.44.06.1 in a sample, said method comprising detecting a junction sequence of pDAB8264.44.06.1, as present in seed deposited under ATCC Accession number PTA-11336, with a probe or at least one primer that specifically binds with or amplifies said junction sequence, said junction sequence comprising residues 570-571 of SEQ ID NO:14, or residues 220-221 of SEQ ID NO:15.

28. The method of item 27, said method further comprising amplifying a DNA fragment from a nucleic acid present in said sample using a polymerase chain reaction with at least two primers, wherein said first primer specifically binds an insert sequence within SEQ ID NO:13 or the complement thereof, and a second primer that specifically binds a sequence within a flanking sequence selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO:2.

29. A method for determining event zygosity of a soybean plant comprising soybean event pDAB-8264.44.06.1, as present in seed deposited under ATCC Accession number PTA-11336, said event comprising a transgene construct, said transgene construct being flanked by a 5' flanking soybean genomic DNA and a 3' flanking soybean genomic DNA, said method comprising:

 a. a first event primer and a second event primer, wherein said first event primer specifically binds said transgene construct, said second event primer specifically binds said 5' soybean genomic flanking DNA or said 3' soybean genomic flanking DNA, and wherein said first event primer and said second event primer produce an event amplicon when subjected to TaqMan PCR conditions

 b. a reference forward primer and a reference reverse primer that produce a reference amplicon from an endogenous soybean reference gene when subjected to TaqMan PCR conditions

 c. a florescent event probe that hybridizes with said event amplicon
d. a fluorescent reference probe that hybridizes with said reference amplicon;

subjecting said contacted sample to fluorescence-based endpoint TaqMan PCR conditions; quantitating said fluorescent event probe that hybridized to said event amplicon; quantitating said fluorescent reference probe that hybridized to said reference amplicon; comparing amounts of hybridized fluorescent event probe to hybridized fluorescent reference probe; and
determining zygosity of pDAB8264.44.06.1 by comparing fluorescence ratios of hybridized fluorescent event probe and hybridized fluorescent reference probe.

30. The method of item 29 wherein said amplicons consist of 50-150 residues.

31. The method of item 29 wherein said 5' flanking DNA comprises SEQ ID NO:1, and said 3' flanking DNA comprises SEQ ID NO:2.

32. The method of item 29 wherein said reference gene is an endogenous soybean GMFL01-25-J19 gene.

33. The method of item 29 wherein said first event primer binds SEQ ID NO:13, and second event primer binds SEQ ID NO:1 or SEQ ID NO:2, or the complements thereof.

34. The method of item 29 wherein said method is used for breeding introgression of the event into another soybean line.

35. The method of item 34 wherein said another soybean line lacks said event.

36. The method of item 29 wherein said reference gene comprises or hybridizes to a sequence selected from the group consisting of SEQ ID NO:24, SEQ ID NO:25, and SEQ ID NO:26.

38. The method of item 29 wherein said probes are labeled with a fluorescent dye and quencher.

39. The method of item 38 wherein said event probe comprises FAM as said fluorescent dye at the 5' end of said event probe and an MGB quencher on the 3' end of said event probe.

40. The method of item 38 wherein said reference probe is labeled with HEX at the 5' end of said reference probe and a Black Hole Quencher 1 (BHQ1) at the 3' end of said reference probe.

41. The method of item 29 wherein said event probe comprises SEQ ID NO:20.

42. The method of item 29 wherein said event primers are selected from the group consisting of SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:21, and SEQ ID NO:22.

43. The method of item 29 wherein results of said method are read directly in a plate reader.

44. The method of item 29 wherein said DNA sample is obtained from a soybean plant in a field.

45. A kit for performing the method of item 29, said kit comprising said first event primer, said second event primer, said reference forward primer, said reference reverse primer, said event probe, and said reference probe.

46. The kit of item 45 wherein said event primers consist of SEQ ID NO:18 and SEQ ID NO:19, said reference primers consist of SEQ ID NO:24 and SEQ ID NO:25, said event probe consists of SEQ ID NO:20, and said reference probe consists of SEQ ID NO:26.

47. A kit for performing the method of item 27, said kit comprising said probe or said at least one primer.

48. The method of item 28, wherein said amplified DNA fragment comprises about 7196 bases.
49. A probe that is at least 95% identical to a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:14, SEQ ID NO:15, and the complements thereof.

50. An isolated polynucleotide molecule wherein said molecule comprises at least 15 nucleotides and maintains hybridization under stringent wash conditions with a nucleic acid sequence selected from the group consisting of SEQ ID NO:1 and SEQ ID NO:2.

51. A transgenic soybean plant comprising a genome and a transgenic insert in a DNA segment of said genome, said DNA segment comprising a 5' end comprising SEQ ID NO:1 and a 3' end comprising SEQ ID NO:2.

52. A method of inserting a transgenic insert into a DNA segment of a soybean genome, said DNA segment comprising a 5' end comprising SEQ ID NO:1 and a 3' end comprising SEQ ID NO:2.

53. A method of making a transgenic soybean plant, said plant comprising a genome, said method comprising inserting a transgenic insert into a DNA segment of said genome, said DNA segment comprising a 5' end comprising SEQ ID NO:1 and a 3' end comprising nucleotide residues SEQ ID NO:2.

54. The method of item 52, wherein said insert comprises SEQ ID NO:27.

55. The method of item 53, wherein said insert comprises SEQ ID NO:27.

56. The seed of item 2, further comprising an insect resistance event as present in seed deposited with the ATCC under an Accession Number selected from the group consisting of PTA-11602 and PTA-12006.

57. The seed of item 3, further comprising SEQ ID NO:28, SEQ ID NO:29, a variant that is at least 95% identical with SEQ ID NO:28, or a variant that is at least 95% identical with SEQ ID NO:29.

58. A plant grown from the seed of item 56 and comprising said Event and said insect resistance event.

59. The plant of item 6, further comprising an insect resistance polynucleotide segment that is at least 95% identical with SEQ ID NO:28 and/or SEQ ID NO:29.

60. The plant cell of item 10, further comprising an insect resistance event as present in seed deposited with the ATCC under an Accession Number selected from the group consisting of PTA-11602 and PTA-12006.

61. The plant cell of item 1, comprising SEQ ID NO:27 or a variant thereof that is at least 95% identical with SEQ ID NO:27.

62. The plant cell of item 61, further comprising SEQ ID NO:28, SEQ ID NO:29, a variant that is at least 95% identical with SEQ ID NO:28, or a variant that is at least 95% identical with SEQ ID NO:29.

63. The seed of item 3, wherein said cell comprises SEQ ID NO:27 or a variant thereof that is at least 95% identical with SEQ ID NO:27.

64. The seed of item 63, further comprising SEQ ID NO:28, SEQ ID NO:29, a variant that is at least 95% identical with SEQ ID NO:28, or a variant that is at least 95% identical with SEQ ID NO:29.

65. A seed comprising Event pDAB8264.44.06.1 and Event 9582.812.9.1 as present in soybean seed deposited on November 18, 2011 with the ATCC with the Designation: pDAB9582.812.9.1:: Event pDAB8264.44.06.1.

66. A plant comprising Event pDAB8264.44.06.1 and Event 9582.812.9.1 as present in soybean seed deposited on November 18, 2011 with the ATCC with the Designation: pDAB9582.812.9.1:: Event pDAB8264.44.06.1.

67. A plant cell comprising Event pDAB8264.44.06.1 and Event 9582.812.9.1 as present in soybean seed deposited on November 18, 2011 with the ATCC with the Designation: pDAB9582.812.9.1:: Event pDAB8264.44.06.1.
68. A plant, plant cell, or seed comprising SEQ ID NO:28.

69. A plant, plant cell, or seed comprising Event 9582.812.9.1 as present in soybean seed deposited with the ATCC under Accession Number PTA-11602.
SEQUENCE LISTING

Dow AgroSciences LLC; M.S. Technologies, Inc.

STACKED HERBICIDE TOLERANCE EVENT 8264.44.06.1, RELATED TRANSGENIC SOYBEAN LINES, AND DETECTION THEREOF

659-34 EPT1

US 61/419,706
2010-12-03

US 61/471,845
2011-04-05

US 61/511,664
2011-07-26

US 61/521,798
2011-08-10

PCT/US2011/063129
2011-12-02

EP 11 845 484.2
2011-12-02

PatentIn version 3.5

1
570
DNA

Artificial Sequence

5’ flanking border sequence for the subject soybean Event pDAB8264.44.06.1

agcttaaacat acaagtaatg taatccacag tacaagaaat gttcaggttc ttatttgtgc

120

tccataatgg tttcttgatt ccgatcaag caagagcatt cagtctccaa atttgtcttt

cctccatcag tcatctcatc aatcagcagc ttttatgcat caaacaagcgt ggaatgttga

240

acctacccatg attacgcccc atacgtgtttg gtgagataaa ctatcaccttg aagttgtctt

ataaaaaca catctgaata ctttttcaat cataacctttc tccggcttttt ggctaaagatc

300

aatgtagta tctgttctta tcaagtttaat atctgatatg tgggtcattg gccccaccatga

360

tatataattt attttttgaat ggggtggggcc tgacatagta gcttggctact ggggggttttt

420

aagctagcc tgtgctttgc actactgcct gggccctgggg caccctacga ttcaggtat

480

atttatgtgt gataagtca tgggtttttta ttggtctttgt tgtttctctct ttaggaacct

540

acatgtaaac ggttaaggtca tcatggaggt

570
<211> 1499
<212> DNA
<213> Artificial Sequence

<220>
<221> 3’ flanking border sequence for the subject soybean Event
pDAB8264.44.06.1

<400> 2
acagagaacg aatgctgtgt gatatgtgga acaagggcaac gacaacaaca tacatgaatc 60
tcacaataga gtcggggtgc ccgagtttgtg atgtaatcca tgccatgagc atgttggcgcg 120
atcgaaaaag aaaaaagaaa tgcatgtata tgtgtgaaaaa tgagagttt tttatccaa 180
ataataaaaa aaattaattt atttacccaa aaaaattttt acatgacgca taagctacct 240
tttttctcta gtaagaaac accgatctct taattacatt tttttataca tttgaaaatt 300
gggtttcttg gaacccagtt caaaagtttc aatttttttt tcacaacccaa gtaagaaat 360
cggtttcttg gaaacgacct tctttaatgc tttttttttt gtttttggttt aaaaagtttt 420
gtttttttatt tttttttttt attaattgtc tattttttttg tttttttttaa atgaaaaca 480
attatttatt tcatatgtgtt ttatctctta atttctttat catatattattt gttttttacat 540
ttttttaagag ttggaaatctct ttgatattttttt atttattataa taatcataatta 600
aaacaaact ataatgaaat taaaaattt atatatatact gacaagttga cttgaactaa 660
aatatttaaa ttcaaaaaat gatatgaaat tacaacaact agaaacaata atataaattt 720
aaataaatac aacaaaaatt ttaaataaca aacaatatgg ctaaaatatta atgttttggtg 780
cctgagcccta cacaatgggg ggaatcgggac acatggaaaca tcatattttttt ttatcattttt 840
cctttgatatc cattttttgt tgtaatccag aggagacatg acaaccccttc gaatcccttt 900
tcattttttgt gggtgggcaaa atttttttttt tttgatccagtg tggacaagacct 960
acaatatatccc aagttatatct tttttatgatgt tattagataact ttccagctta tacaacaagat 1020
gtatgtagtt ctttttactcc agtttgtaggt gtttataaaac aacaactgta gaacaacaaca 1080
ttgtgatattt ttgaaatttt tcacagttac accaaccctttt atcttagtttg accataaatg 1140
ttcctcatag tttgatctct ccacctctgtt attgtctctt tagactaaga attgtagttc 1200
gccatatagc aacatcaagaa caatgtgaga gttttccttt tcctgtatgt cttcaaatgc 1260
cattttttat acttttttgt aacaacctcc aatagtatac acttttggca cttcctcctcc 1320
cctttgtggg aacaatcagct tacaccccag tataaattgt ttatcacaacg cacatctgcc 1380
gatttttggttt ttttttttatt accaaatattt ttaacctgaat gctcccatcg ccagccacca 1440
tcccatgcga gagctccacttt ttttttggga atcctctctaa gttaattaat tggatttga 1499

<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_WF1

<400> 3
ggttgcac tccgctgaag aagat 25

<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_WF2

<400> 4
cacagtggac aatctgatt tctgg 25

<210> 5
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_WF3

<400> 5
gattgcac tgaacggat catat 25

<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_WF4

<400> 6
ggaatgtga accacccatg attaa 25

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_WR5

<400> 7
catgtatgtt gtgtgcgttg ccttg 25

<210> 8
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_WR6
<400> 8
aacatattgta aatcggtcc aagga 25

<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_WR7
<400> 9
aggctcagcc caacaacatt aattt 25

<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_WR8
<400> 10
ggagagaagt cgcaacagt gattcat 27

<210> 11
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer ED_v1_C1
<400> 11
gagtaaagga gaccgagagg atggtt 26

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer PAT_12
<400> 12
gaacgccttac gattggacag ttga 24

<210> 13
<211> 10256
<212> DNA
<213> Artificial Sequence

<220>
<223> Plasmid pDAB8264
<400> 13
agtcagcact atccacccaa aagttaaggcc gaaattagttt gaaattagaa gocgtcgaat 60
tgaggtctac aggcacaaatt gctctttagc gctacaatat tactacccgg gttgtaaacg 120
tgtgtgatcat ggccgcgcat taaaaatctc aattatattt ggtctaatttt aagttggtat 180
tgatgtaaaac aaccttgcac caaaacaaaaa tataaatatat tagtttttat atatatgcct 240
caaagactct ttatagaaa ttcctttaaa aataactgag aatatcttgc acctctctcgg 300
catgtaaatc ttctgttaaat atgaaagttcg ccacccccct taacttcctaa taatggttgg 360
tacagtcaact ttctccatca ggtgacgtcgc aatgcgtcgcct ctcttctgttt ctctcctatt 420
catagtcaaa aacctcatcata atctctttacc cattttttga aatggaattc gcagttgaa 480
atattttaaa attaaataga acaatatcatt attaggttat catattgatt ttttatccta 540
attactcaaat tttgttacact ttgaaaaagtgt acatcaacga aaataagtgc aaagcagctaa 600
aataataata tatccattgct tatataagaaa atctctctat aagaatatatt taatagttca 660
tatgttttga aaaaaaatgg attttctggc atacaatata taatctctaa aaaaatggcct 720
aaagtaagat taaaaataata ttctctacca aaaaaaattc ccgtaaaaaa cgctagacgg 780
gggcgcaccgg aacacactca aaccagattg tagtgggttgg tttggttttt atataaaccag 840
aaccaactgc gcctttcagc acccctaattc atataagctt taatatttcc agatattattt 900
aagttacaagtt gtctaatatat ctaggaatttt ttgaaaaaatga atcagccta tattgctgta 960
atatgaattt aaagcagcct cagatgtgggt gtaatagttg atttcattga ttctaaaaaa 1020
atatcccaag tattataaat ttctgtttagg aagaaggtta gctacgattt acacggaaagc 1080
cagaatacaaa tgaaccataaa agtgatttga gctcgaactta tcaagggaaacaaatattttt 1140
taaaaaaaaa cgcaatgact tggaaacaaaaa gaaagtgcata tatattttgt cctaaacaaa 1200
gcttcccctc taaaagagga cagttctttcc ttgctaatatt ctttatgtct cctttccttta 1260
caaaaatatst ggactctatt ttgggaaccttc ttctggaaaaat agtggcaccc gcctaaaaa 1320
ggcgcggcaga caaatgttcgc ggtacaaacc ttggggactt taaagcgtag ataaatggga 1380
accgaatgat agaatccttg ccctggctgta gcttttctcc ttcgttatatt ttgaagttag 1440
acactgtatt ttacattcata acacaaatttc tgaagttttgct catcaagttgp ctctctaccaaa 1500
tttgtaacggg tttttcttgcct ttttatataa gcagctctttt aacactttac caaaatcgggt 1560
tatgttctta ataagaagat ttgaggctggt sugctctatat agctctcaat gccagcttgtc 1620
gttggcggttt cagtagcttt gcgtttttgtt cattctcgggaa acctttccgg acataggaac 1680
cgcccccttcg ttatctccatt ccatcggtgaa atccagggatat aatgttgtcga aagttgaggg 1740
tcaaaagctg aattctcctgt ttgtctctttt atttagatac aaaaaaaggaat cattcttcaac 1800
caatattaga ccaaaatattt aaaccaagtct gataaagttga aacagttattc gattttatttt 1860
tcaacgacaa cttgtggaagc aagaaaaggaa agcgttaattt cacataacca gcagctttcacc 1920
gcaaatctca aacgccccaa ccaatataca aagttaaacgc cagacgctta agtgagaaac 1980
ccagaaaaa ccaacgcccc aggtgggacgc cactaggtct agagcttaaat ttctgacgaa 2040
agtgtcagc aacatcggaagt agtcgagggaa ggtcctccgg gtcgaccccag ggtccccggt 2100
ggtgcagggg aacctggcac acggcggcaag gggagaaacc atcgccatatc tgtggtcgtc 2160
gtcaggtgcag atgcgccttca gttctccagtt ctctgggcccgt gttgtgatgtc agtgtcggcg 2220
cccttccccaa acagatgcttc ccagttgtgttagttcctgc tccctggcctca ccatcccttc 2280
gtctctcttt accttcactg gacgatcactg tcttgatggtct gccgggcaat cggccaaaag 2340
gcagacacaca gcaagagtca tgccggacatc agggcacttg ttcatagtgc catacaatgc 2400
cggacgttggt tttccctccaa atggctccgg cggtgggccca gtaacagattc cgcaatgtc 2460
gtctcctgta accttcgcttc ccatcatcttc cagatcctca cgaacaccca catactccctg 2520
caaaactggtg gccgcaccaac ctcacttccct cagtaatttc ggcgagccagc 2580
cagaataatc atctcgcttg aggctatcact ccaacacataag gcacccagttttag ggagacgtga 2640
ttttggacct cccttaatgt gacagtctgcgccagctactatca gatgtgtcttg ctctcacacc 2700
aaacgctcct atcaactctca atgtccattc gaugeogcagga atggagattat atttatctat 2760
gattcactgct cccacatcctt caagagccaa aggagagccat atcgcaaggg cactcaagta 2820
cctgactcgctg atggagaaac agagttgctgct cctggccacaa ggtagccctct cacatcatt 2880
gacacacaa cggggtgcagt cagttcccaag gaaacaactca acaatgctggc caagctgtttc 2940
caatcgcac aacacgtggcc caatatgcttc tctctccattt cttggtacttc cataacagcc 3000
gtaacttgca tttctcacaag cagcagtaac agctgtgtgcct aagggacagca ttgcgattcc 3060
agcatacccc aagaagacct gcatctccctt tttagctaatc tcaacgctgga actttccacc 3120
acagccctactaactccacttc ttttggccgctctttgtcgctt ttagacagaga gaccaagact 3180
ccctcaagcctc ggcagctgtgt agtggacatcct ctcactgttcc agcagtttat caacccactgt 3240
tgtcctctctag gacaggggag caggtgtagag gatctgggtgg gaaagccgactt tggaccgaggg 3300
cagcctgagcg gctgccgaggt ctctcctgtg gggctgctgtc agctatcctct ccgcccggcc 3360
catgcacggctactctcccgc cgtgttgctgc gttgccggagg cttctggaagg acgagcggcgc 3420
gacggggggac cggggtggcttg aacatgcacgc ctgtagagccc tgcggacggag cgcacccgag 3480
gggctctatc ccggtcaggg ccagtagagcag cggggccaggg tacagacacgct ttcgcaacctt 3540
cttgttgagc agggccgggcc caacatcctactgcttca ctcccacgtc tgtgggaagaag 3600
ggagggagag tagttgcgaattctctgtggt ggagagagcg ggttggagtct taggagcgtct 3660
gaacggagccc acctgttgctg acgtgcagcg ggtggagcctgg ctaacgtgctg cgtatgagga 3720
ggagatcgga gccattccggcg ctcgaagcattta aacagaaagtg tttggaagct aatttggggt 3780
tttcattatc cataactaaa ttttgagaaga attggaatac taaacgtcacc caacttaaaaac 3840
cctaatccag atgaatcgtt atcgaaccaag atataacccaa aaggggcaaaa attgactctga 3900
aaacccctagt ttctcgtatca cacgcctaggta atgcataacttc cagacagaca cactttgtttta 3960
tacagaaactt cgaagcgaaga aaaaaacgat gaagaatggga ttctcaataa aatcgcactag 4020
actcaatcttt cacaggttta tctgacctgac aaaccttaaaa gacggacacct tatttttaaaa 4080
cctggaatggg acaaaaccccg aaacctctatt gtgctgaatt tcaaaaaagta cagatcgcgg cagacagtaac 4140
agaaaaacca ttaaaaaaga taatggaaagac ctaaaccctt gatctaatatt caaactaacttc 4200
ataacccgctt ttcgctcttag ggttctttaa tcgataagct ttgatcctact cagacagtaac 4260
gaattgtatg ttctgtagaag aagaagacgc gtaaagagta gagtttggtg gagagaatgt 4320
gaattttgatt ttaaggcgaag aagcggaggac tctattttttt gagcaatcag ttcgcatatt 4380
aaatccaaacgc gcttgagatac gctactcggttg gtacaataaa atgatgtata aacggctcgt 4440
cctgctctatt acgacggctta tattagctat cccgcttgagtg ccaaatagag ccaactaaga 4500
tcgtcttttttg ttttcacgtgt ggcgcaccaaa actagggttta tgaagcggca atatccggga 4560
actccggaataa aaaaattgtcg ccacatcattt atttggaatta tcctcactgc ttcttttttta 4620
aaaacccaccg aattacaagtt tacaacccga aagagtttaa aatataagtt tcattataataa 4680
ttttgtatga gctttaatgta tattgtatact ggaaaaaacca tggcaaatcata atgattgtat 4740
tataaagttc tcggttatgtt atggatatgc tcaaatcaca taaggtatatc ttcccttttcga 4800
ccataaatatt cccaaatattt ccagaagtttg tgtatcactca aattttctaat gtaattggga 4860
tgctaaacttt ttaatttcccc ttttgagaaac tataagccac aagaaacacac ttcataagat 4920
aaaaatataa ttaataaactg aggttttttaa aacacattaa cccaaataat tcaacacccgg 4980
caactcaacaa tacaacacag gcacacggaca tcgtaaagccc aacaagtaaat tcgattgatgt 5040
gtggctctctat tcaaatattgtg tcacattccag cacaactaat ctcctgcctcg gatcactactc 5100
agcataaatag acatatcgtcca ctctcagggga acttagtgta tccatgcctc gagctaatatt 5160
tcttctcggc atgctagcttg caggggtcgg ccactgcccgg gcacagggcc gcaacagttt 5220
gtacaaaaaa gcagggctcgg cggtgactgta ctcgaaagct tctgcaggctc caggtcaacgc 5280
gtacagggatat tctttgttta atagatgtgaa ctctctagtgg gttgtgatgta actgatgtc 5340
tagcggagga taagtttcttt tcctctactgc gaacattttc aaagaatttt ttggtgatctc 5400
tttgcttattc atttgatatta atgaaaaaat attattggct attggaactga acagaggtgt 5460	taaatatagg ccagggccccaa aataagatcc attgtatatc gaattaataa acaagaaaa 5520
atcaggtctcc aaaaactattt gcccccttttta acgagacctt tctcactaatc gataaaaaaa 5580
gttcattaactt ctgtcacaatt aataactcata caaagatac ttaaatatatt caaacaatttct 5640
agaaaaagga taatattcaca atatgtttta cgataagagga gttacttttcc caagaaatttc 5700
actgattttta taagccccact tgcattagat aaatggccaa aaaaaacaaa aaggaaga
aataaagcac gaagaattct agaaatatag aaatacgctt caatgcagtg ggacccacgg
5 5820
5 5880
5 5940
5 6000
5 6060
5 6120
5 6180
5 6240
5 6300
5 6360
5 6420
5 6480
5 6540
5 6600
5 6660
5 6720
5 6780
5 6840
5 6900
5 6960
5 7020
5 7080
5 7140
5 7200
5 7260
5 7320
5 7380
5 7440
5 7500
5 7560
ttctcgggat tttaatatat aatatttttt gccagggcattg 7620
cctggagaatc gatctgtcatc taaaatat cgc aaaaaaat tttattttgc taaattatatt 7680
taggattggtgatta aagaggagctg cttaatatttt gatcggttgcgc atcactagctc attgtgatagc 7740
agaagatcaag cgtacggaaatt tattcgtgtatt actatcggtata atttttttaga aaatctctaaa 7800
gaaagcaaa cgttctatgta catgtatgaaa caatacaaacag ccagcaagactacaagcagt 7860	ttgagttatt ggcagaggtttt actggatattt gagtaagatcatc aaggaagtatttc tgcagggagcc 7920
agtctctgaa aatcagccgta atatgagcggca cattgtgcaaactc tattttttttttaa 7980
gatcacttata tatgttatttttt ggttgcagagtg cgcacaaagcag atgcagggagcc 8040
gcgcagcagc aatcttttttg ctaataaagtg ttgcggcgccga tttaaatattttttttaa 8100
ggggttagaa aagggcggccagc ttaaatatttttttttttaa gcagacccagga aaggttataata 8160	tcacaatagtt atcagcagac tattttgagata acttggaggaacattttcggt 8220
gctacggcaag aacagatgtc ttcagctcagttt aatcagttattca aatcagccgtttaa 8280
tgtacagat cagacgtcttc aatcagccagttt gatactttgttg aataagatgccttttaa 8340
agaagaccc aagagcagtta aacgctctatg aacgctctatg aacgctctatg 8400
gaagaagagc aagctcgggtagt ttgtagagga aacagttcatc ggcagggagcc 8460
gaagaggggc aagatcaacttc tatactttttttaa gcagacccagga aaggttataata 8520
tttttctcgg gagctccaattt tttttttattt aagaaacccag aatggggctatttttg 8580
tttgaaacagttt tttttttattt aagaaacccag aatggggctatttttg 8640
tcagagat tttgtagattgattgttacgatttgcgggtattgctggacaagcactttttagagcagagc 8700
aggccagcagc aacgctctatg aacgctctatg aacgctctatg 8760
agtctacag ttaatttttttga cagacccagc ccaacaaccttttaa aagatgggtgattgattgctggagaagagc 8820
gagaggttgcg aagatagata ccccttgtttgt ttgctgtgagg gttaggggtgt ttggtgctttg 8880
attgtcttacag cttgggcccctg gagaagactttg aacgcgcttacg attgagactgtagagacttatttgg 8940
gttagaagac aacagcccgg tattttttttttttt ggcagggagcc 9000
c gaatattttttttg tagagacgatgg cagaggtttttt tttttttttttt ggcagggagcc 9060
gatccatctt gattgtggtttc agagacttttttttg ccctccataa 9120
getggcataac acatggtgatt atggagcatgt tgtggtttttt ggcaaggggagtttggtgttg 9180
ccacgttcttc aacagccagttt tagggcagttt acaccagactgtg aggatatctt gacggtgacagc 9240
ttgctgctatt atgagctttag acgtcgggtaa cactagtaacc ggcagggagcc 9300
tcccttttga ctgataagcc gtcagcagtttt ctgctctttagc ccacgcccggg 9360
tgctgctatt attgtggtttc agagacttttttttg ccctccataa 9420
gcgcagagc caaccaagggagttttgctttttt ggcagggagcc 9480

tctaaagggtc agaggtgtta gogggagtaa gcaaagaagt cccattttaa caagatatgt 9540
tgatccctag taaggtatgtta aaagttatgtta ttcatcacta atataatccag tgttatctcga 9600
tatatctac gatttccaat gtctttatag tcgctagtctg taatctgctgtgc tacaatatat 9660
tccggctcgg aattctttta aatcaggagtt aataataatag ttatttaat ttttgcgtatt 9720
ttgctccggtta ttagaattga agttgtgcctg cctgcggcacc cacttccactt tcataatattt 9780
acatgtatct gaaaaataaaa aattttatatt atctcaattta aacacgtata ctgtaaaga 9840
atgtatactt gaaaaagaaa tagtttaaat atttattgat aaaaataacaa gtcaggtatt 9900
atagtcacag ccgcaacatca aatatttgtta tgcaagttta aatcagagaa tagtttcaata 9960
acgtattata tcagctgttta cattcgcgtta gatgaaagac tgaaggtcggtatt aattggtgtt 10020
atatactacgc gcgcgggttt ctagtccaggg gtaggtctccg tgttaaactc gacggctttggc 10080
catggcata cacacacacac tcatctcatat gatgctttgtta aataattttgc aatgtaggtt 10140
tttatgcat aagtgacacgc gaaatcagcc aatatttagc aatgtaacaa cggatgtgac 10200
tctagtcagtttcaacacac ccgcaatgttg tattatagttg tctagcgctct aattttg 10256

<210> 14
<211> 859
<212> DNA
<213> Artificial Sequence

<220> Provides part of the 5’ soybean genomic flanking and part of the 5’ insert sequence

<400> 14
agccttaacat acaagtaatg taatccacag taccgaaataa gttcgagtttc ttatttttgcc 60
tccataatgt tttctttgttt ccggatcaag caagagcatc cagctctcaa aatattttcttt 120
cgctcttcat aatcagagaa tagtttatagc aatctcaattta gacggctttgct 180
accgcctcatg attaqgctcct gttgagataa ctatcactttg aaggttgttcttt 240
ataaaaaaca catctgaataa ttttattatt aataacccgtt cggccttttt ggctttgctttc 300
aagtgtagta tcggtttttca tcagccctta atctgatatac tggtctctttt gcctatcagc 360
ttattaaat tttttggaag gggtgggccc tgcataatga gtttgctactg ggggtttttcacttt 420
aagcagtcacctgtctgctgc actagctgatg ggcctgctgc caccctagcgag cccatattatg 480
attcatgtgt gataatgcg cgggttttttt tgtgtctcttt gtttctcttt tgtgaggacaaa 540
acatgttaac ccggtgaagtt tcatcgggttt ccgaaatagtt tgggatattg aagctcggcga 600
ttggtccta cagggccaac agctcccttattcgctcacaata ttactccacc gatctcaacc 660
gttcttgatca tggggcggcaag tttttttttct caattatct tttttgttgg gttctcttttt 720
ttgatctaa ccacagcata ccaacacaaa atataaatat atagttttttat cttatagcgc 780
<210> 15
<211> 1719
<212> DNA
<213> Artificial Sequence

<220>
<221> Part of the 3' soybean genomic flanking and part of the 3' insert sequence

<400> 15

gacatagac acacacatca ttcattgat gtttgatatt aattgtcatt gatggttatt 60
tatgcataga tcacactga aacagccat attagacaag tatcaaaacgg agtgaactc 120
agcatacata aacagccgca aatggtgtaat taaggtgttgg aagcgcctact cgggtttataca 180
attgaata tccaaccgca gccagggcag aagtctgattt acagagagcc aatgtctgtg 240
gatagttgga aacaagccac gacaaccaac tataatcagt gacacaactgt cgggtttgctg 300
cgcagtttgtg atgtactcct aagcgttgacct atggcgttttg atgggggtgc 360
tgcatgtata tgcgtgtgaa tggaggttttt ttatcctact aatataaaaa aaaaaattaatt 420
attacaca aaattttc aacctaggtg ctaacctcct tttttctctt accttttaaaa gagagagagac gatcaggttat 480
accgatgtct tattatattc ttttctatag aattaaagta ggttctctct ttgtctttctt 540
ccaatccttc attttttttt tccccacccca gtttacacaa tttttttttt tttttttttttt 600
tttatctcc atttttttttt ctatagttcct ttatatattt actattttttttt 660
atatatattc cattattttg ttcattttatg aatttttaaa atggtttttaa attgagatttt attaataaaa 720
taatattttt atattttattc atatatcagaa atatatggaatt tagatattattt tattaattttt 780
tttatatttt atattttatttt atatatattt attatatgttta aatatttttatt ttatatatttt 840
taaatatatt atatatattt cactataata aaacatattttt aaatttatata atatatctattttaa 900
gatattatagg aagcagcctaatatatatatagttaaatagttatatattat attatatattataaa 960
tatatatata aacaaatat gtaaaatata aattatttttatttaaaatcctatttaaaatcctattt 1020
ggatggaac aagctggtgat atcggttttt ccttttttttgc gccttttttttgcggtttttttttttttttt 1080
tt...
caatgtgaga gtttgcttt ttctgtatgt cttctcatgc cttgattaat acttttgtat 1500
aaacttcacc aatgttaatc actccttgca ga ttctctcccc ctttggttg aacaatgcat 1560
tacacctagt ttagttgttg tttaccaca ccaagattca gatttttgtgt ttctttgagt 1620
acccaaattaa ttaactcagtt ttcccccatcg ccagccacca tcccatgcga gatccactt 1680
tttctgtgga attttcctaa gtcaattaat tggtagtta 1719

<210> 16
<211> 98
<212> DNA
<213> Artificial Sequence

<220>
<223> A 98 base pair sequence spanning the 5' integration junction

<400> 16
ttgtcttgtg tgtttctctct ttaggaacct acaagttaac ggttaaggcta tcatggagt 60
ccgaatagtgg tgaatttgg aagctgtcga tgtggtgc 98

<210> 17
<211> 131
<212> DNA
<213> Artificial Sequence

<220>
<223> A 131 base pair sequence spanning the 3' integration junction

<400> 17
aaacgttccgc aatgttgttat taagttgtct aagcgtcaat ttagtttaca attgaatata 60
tccctgccccca ggcagccacac agctcggatt ccagagaacg aatgtcgtgt gatatgtgga 120
acaagggcag gttgggcctgg gtcgcat 131

<210> 18
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_5'F

<400> 18
ttgtcttgtg tggttcctct ttagga 26

<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_5'R

<400> 19
gacctcaatt gcggagttttc taat

<210> 20
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe 4406_5’P

<400> 20
catggaggtc ggaatag

17

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_3’F

<400> 21
aacgtcggc aatgtgttat taag

24

<210> 22
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer 4406_3’R

<400> 22
cgttgccttg ttccacatat ca

22

<210> 23
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe 4406_3’P

<400> 23
acagagaacg aatgtc

16

<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer GMS116F

<400> 24
gtaataggg ctcagaggaa tggt

24
<210> 25
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer GMS116R

<400> 25
atggagaaga acatggga at gc 23

<210> 26
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Probe GMS116Probe

<400> 26
ccatggcccg gta cc atctg gtc 23

<210> 27
<211> 13659
<212> DNA
<213> Artificial Sequence

<220>
<223> Event pDAB8264.44.06.1

<400> 27
c cgctgaaga agatcaagt g tgtgaacca a atgttaga a gc cca acag 60
tggacaa ttt tgttcttg g ttaatg gt g tgttataat atcagaaac aatgcaaatat 120
tctgagcagg cagt gggtt gcctaatcc a tCAAtagtc tcaaagat tgc tgggt tcaaa 180
gcttcgtaga gt aggc aac cta ccgtgtg t ggcct ctc t ggttgc cattga c1 g 240
c tggacacga catatg acct atg atgc a tcaaac atg g tcatg atc ggtggtgc 300
agacct ag ct ccattt ccac ccgtgttg a atgcaaggg gaaaat acat a gaagaa ag 360
g ggac aaaaat t g ttaacct cc atgtatc ac ggtttt acgc tcaat t tta:c c catttgatt 420
gatt tattag tga aaagt aa ta cttat tca gaaccagagttgtgtaaaagttgatc ggtgtatcg 480	ta cc ct c cttcat gtc aa at tttggtg t ata aa atg ta ttaaatg tga gtc ct ttt ttt 540
attta att tag tt ttaata aat tgg caa aatg gcac ttc caa at ttata tag 600
tgaattgatt taggtg acgt ttat gaaaga ttt ttactta aa g ttaga a ta gtagag t g 660
g ttttgatgaa ttaacctttaa gattggtgta a g ttagtag tt ct cactgg atcc atagtttg 720
gt ctgtggga t tgc atctg a a a cgg a c tgg gatttttttg tttgtgac ggt atttggtgc a 780
at gtaacac c tt gacctttttt caca ctat tt gt aataat cc agttat c ttc acg tgaat ct 840
gaa atttag ta gc atgt tc a cata at a t g acgtt tt at c attattc tcaat tattt a t 900
aaaaactgca ctggtgaaa ttttgtgcaagc ttaaactaca agtaatgtaa tccacagtac
960
gaaaaatgtg caggttctta ttttgtgctcc ataattggtt cttgattcgg atcaaaacga
1020
gagatccag tctcaaaatt tttgttcttc aattcactca ttcataaaaa tcagcagttt
1080
tatgcatcga caagcatggga atgttggaacc acccatgatt aagcccccata tcgttggttt
1140
 gagataacta tccacctgga tttgctttata aaaaaacacat ctgaactact ttataactcat
1200
accttttctcg gccctttttgcg taagatcaag tgtagtatct tgtcttatca gttaaatatc
1260
tgtatgctg gctctttttgcg cactgatatat taatttttatt ttttgaggg tggggcctga
1320
catagtagct tgctactcggg ggtcttttaag cgtagctcgt gctttgcaact atgcatcggg
1380
ccggctgcc cctacgattc agtgtatatt tatgtgtgat aatgtcatgg gtttttatttg
1440
tctctgtgtg ttcccccttta ggaacttaca tgtaaacggt aagtcacgca tggaggtcgc
1500
aatagtttga aattgaaaga ctgcggaaatg agggctcagc cccatcccttg cccttagcgc
1560
tacaatatta ctcacccgggt cctatccggt gtgtctcaggg cccccgttaaa aataatccaa
1620
ttatatttgg ctaaatttgtg ttttgtatttg agtataaaaa attcgaacca aacccaaaat
1680	taaatatat gttttttatat atatgcctttt agaacattpatat atagaaatat ctttaaaaaa
1740	tatctagaaa tatttgcggccttctctgcca tgtaatattt cgttaaatat gaagtgcctcc
1800
atatttttaa actcttttaaa atttgttctgta cgatcaacctttt tccatcaagtt tgttaataaa
1860
tgctgtaactc ttctttttctct cctatatcaaa tattcataaa cctactaaat ttctttatata
1920
tctttttcag aettgaagttg aatatcttcttag ataatttaaat taaaataaaactcatatatt
1980
ttaggtatcc tatgattttt tatactttat tataaattgttg tattaatattt gcacatattttt
2040
tcaacagcaaa aattgctcaca ccaaccccaaa cttctataaat ccatgtgatca ttaaagaaaat
2100
tctcctataaa gataatattt atagatctata tgttgtttaaa aaaaattaat ttttaacgaca
2160
acaatatattt actcttaaaa aatttgagcaaa agtaagatatta aataatatattt ctcatacaaa
2220
aaaaaaaccc agaaatagtgt gaaaaaccgg ccacaaaccgaa ccaatccaa cccatgaatgt
2280	tgatttggtt tattttttgt ataaacccaa ccaactcttgt ccatttgaccc cctttatatt
2340
aataggctta aatattccag aatattatat cttataagtg gtaaaccggtgt tcaaatctcttt
2400
caaaaatgat caagctctata tggctgtatatt atgaattttaa aagcagctccg atgtggtgtgt
2460
aatatgtta ttaaccttatt cttactatat acacaaatat ctaataatttt tctgcttggga
2520
agagtttagc tccagatttac agcaagacca gatacaatag aacccataag tgatgtaagc
2580
tcgaaattata cgaaggaca ccaatttttaa aaaaaatccg caatgactctg gaaaaaagga
2640
aagttgtata ttttttttctc ttaaacaagc atccccctctata aagaaatggcgcc gtatctttttt
2700
gcagttactt attatgctcct cttcgttaca aaaaatttttgg actactattt ggaacctcctt
2760
tgcataatag tggcaccagcc ttaatattaag cggccgaagc aatgtcccccag atccaaatctg
2820
agggacgtta aagcgatgat aaattggaac cagaatatag aaccttttgct ctgcctctagc 2880
ttttctctctg tacattttaat acgattacc tatgatatccc attccaataac caaaaattctg 2940
aagtttgcca tcaagtgcct caatcaaacct tgtacccggtt tgttctcggtt ttatatcagc 3000
tcactgtaac atctttaccac aaatcgtgttt atgtctttaat aaagggattg agtcgggttat 3060
actcatatcc gtaccaatgc gacgtgctgt cccgcttttca gtatctttgc tcatctgcttt 3120
cctacggaac tttcccgagct ataggaaccc cccctttcgtt atccctccac ac tgtgtaaat 3180
aggaaatata atgtttcgaag attgaggttc aaaaagctgaa ttctctgttg tctctcttat 3240
ttatagcttca aatgtgacgaatttaacc aatttaacctg gaaatttaa cacaacgcgtga 3300
taaagtgaaca cctgtgctcag tttataattatc aatccggaacct gtgaagagcag gaagggaaag 3360
cgtaattacta cataacaaga aagctctccgc aaccactaatg acggaacaacc caatacacaata 3420
gtaaaacgcga gacgctttaag tgagaacacc agaaacaaca gacgaggtgcc ggggatccac 3480
cctagcttag acgcttaatcc tgtacgagcag tgcgtcagcac atcgagatgag cgggggaag 3540
tcttcggggt gcacccagggt ttcgccggag gcaggggcagc tcggcgcacag gcggcaaggg 3600
agaagagccat cgccatccctg ttgtgtcgtcg acgtgtctcgac cgcgctacgcg ttcagcttct 3660
ccggcgctcgt gatgatcggt atgtccgagc ctcctcctaacc agatgctcccc agctttggtta 3720
gctctgcctcg gatcgcgaacc atccctcctgg tctcctcttttc tctctccgagaa gcacgcttcc 3780
tgatggtctgt cgggccatcg gcacaagaggg caacccacacg aacgctcagct gcgccatcag 3840
gcatcttggct catgtgctgca taactctgctt tgaggtcttt cttccccaat ggttcccggcg 3900
gtgggcgcaggt aacagttacag ctatgtctgg tgtcgtgtaacc cttggctcccc atcatctccc 3960
gttcggctacg aaacctctcaac tcaccctcggc aaactgtgctgt gcaccacactct tccacagtca 4020
cacgctctcc agataatgca gcaccagcga agaataagctcg tgcgctttgag gcacatcacctt 4080
cacatatagg ccattttagg gcactttgatt ttgacctccc tctaatgtgag aatctgctccc 4140
agctatcaga atgctctcgtct tccacaccaaa aacgctccccat caaccaatct tgcattttgga 4200
cgtcaggggt ggagatttaat tttatcaatgc tttcaatcttc cacatactcaca agagcraaag 4260
gacgacccagc cagaagcgca tccaagtaact gacgctgtcag ggagccagac acgtttgacct 4320
tgccaccaggg tagccctcctg atttctcattga cacaagacagg ttgagctgta atgtgcacagga 4380
aacaatcaac atctgcaacca gcgtctctca aaccgacaaacc caagtgcagca atgggtctctc 4440
cccttacttct tgtgtactcga taagacagtt aagttgctttc tccaccagca gcagtaacag 4500
cagcagtcga gcacgccatt gcagttcacc aatccccacaag gagaagttcgc acttctctttt 4560
tagcatcttc aacttgaggaac tttccaccac aacgcacacac tacatcttct cggccagttc 4620
tgcgcgccttc gacagagaga ccaagagttc tcaagcggccg gacatgtgag tcggactctct 4680
EP 3 382 028 A1

cactgttcag caggttatca accactgttg tcctctccgga cagggcgccc agttagaggag 4740
tcgagttggga aagccgacttg gacccggcagc gttgacaggt gccccagatt tccttgatgg 4800
gtgccagac gtctcctctg gccggccgca tgcacccggat ccctccgctc tgtccgtacgt 4860
tgcgcagct tctggagggag cggcggcgga cggccggagct gggcgtggac ttcagcctcct 4920
ngaacaggcg gcagccggttg gcggcaacag ccatcattca ggtgggctcc atagacagcg 4980
gcggccaggta gcacacgtcc tcgaacctct tgtgacctgt aagcggagccc acctgccatc 5040
atggaacctt ctccacccctt ctggagaatgc gttgacccct tgtgtgggtgg 5100
ngaaggccggc gttggaccta aagccgaggag aagggacccag cattgtgcgg tgcacagggg 5160
cggcaggtgct aaccgcctgcg acctgcggag agatcgaagc cattgggaac tgcgcattta 5220
acaagaaatt gcaacgtcga ttgaggttta tcatactttc taactaatt ttgaagaatg 5280
tggaatacctaaac ggcgcacca cttacaaacc ttacctgatt catctgtgat caagacagat 5340
ataaccaaaa gcggccgaaat cgactggaaac accctgtgct ttgataacgc gctaggttaat 5400
gacaatcgc cacacagaaa tctggcattt cagaactcgg aagcaagaaa aaaaagctga 5460
agaatgggatc atccagtaaaa tctcaagctga tcataatcctt caggttatc acacagccaa 5520
acttaaaaaga cggaccttta ttttcaaact ggataagggac aacacccgaat acctttattg 5580
cgttaaatcga gatcgcggag acagtaacag aaaaaaattt aaaaagtaat ggaagacact 5640
aaaccctctga tcttaattca aacaaatcat accctgtttct ggcctgaggg gttgcaaatc 5700
gataacgttg gatcctctctg agtcgagaga aattgtagtt tcgataagaa gaagaacagt 5760
taagagtaga ttggggtgag aagaagttga aatttttttt atagggcaaa aagggagagtc 5820
taatatatata gcaatcgcag gctatttaatt tcatactcct gcggccacaat 5880
acaataaat gatgtataaa gctgtagtct gttaattctg acggtctcata tttgtgtacc 5940
gctgtagggc agtgatagcc actaagaact gcttttttttt ttatattcgg cggccacaat 6000
tagggtaatg aagccgcaaat attttggaac tcggaaaaata aataggccgc atccacattat 6060
ttgaaatatt ttcatacgctt tattttattat aacccagcgg cattacgatta caacccgaaa 6120
agatttataa tatagtgatt tatataatttt ttttgggtgct tcataagcttt atgatttggga 6180
aaaaaaatag cattgatatt taccggattc tcaattatct gttatttggt ttgtatttagt 6240
acatacaatg ggtattgctt cttttccgacc ataatattca ccaaatttac aaagttttgtg 6300	
tatacacaagt tatcattttgt aaatgggatt acatctttttt aatctccttt ttgagaaacta 6360
tagacccaa gaacacactt caaatagataa agtagacatt tacataagag ttttttaaat 6420
cacattaaaca aaaaatctta cccaacggcca ctccccaaata caacagacgc acagcactg 6480
tcaagcggac aaggtaaatttctgtggagtt gtttcatttt taattttgtct acctcagcaca 6540
caaaactatct tcgtctcggga attcatctcag cattacagat catctctcact tcaggggaact 6600

ttagtgatac ctaggctctga catcataattc tcctcgcacat gcacacgca gcggcggcgc
5 atggccgggc aaggggCcgcgc acaagttttgt acaaaaaagc agggccgcgc gtcagctgtcact
10 gaaaaagcttg tcggccttcgca ggtcaacgga tcggagttatt tctgtttaag atgtgcagact
tctggaagtt ttgtttagac tgatgatcta ggacggaata agttcccttc ttcatacgcg
15 actattcca aagatgttatttt gtgttcatatt cttgtttacat tgttatattat gaaaaatat
20 tattggctct tagcactgacc acaggtgtttta aatatggacc agggcccaaaa taagatccat
tgatatagta attaaataac aagaataaat cgcagtcacca aaccactttgc ctttttttaac
gagaccttgct caccacactgg atacaaaggt cattatctca tgcaaatccaa taacataca
25 aaaaataactg aataactaa aaaaattaaa gaaatggata atttcacaat agtttatacg
atgaagaatt tactttttaa agcaatttc ccagcccttg cattagataa
ggtggaaaaa aaaaaaaagaaa gaagcaccaga agaatgtcag aaataacgaa
30 atacgcttca atgcagttggg acacccaggtt caatatctgc ccattttttgct ccacagctga
tattttaaa attaaacagt aatgctaaaa aaatatataa ctgtaacagtc gtttaatctc
dacgggttga cttcatagac ccggttagac aatgttggttt tcgacagtcg atagaataac
35 ggcgtcaggg tggttggcgc gcggcagaccag gatgtttgctg tatataagtc aagcacaatt
actttttcctc aaccttaaaa taaggcaattt gcggccaaac aacctttggttt gtaaaccaccg
30 cttcaatatcc gttctactcct attttcaggct atttgcttcac cgcctttgcttc tctctgtgac
cattgcttcc tcgctccttcc tcctctcttct cctataaacc aatacccaaa cttctctctct
40 cacaattcag atttcatttt ctctcaatttt taaaaaccctt ctctcaatctc tctctacglt
gatcaggaatt aatattcttgt tcttttatcc tctttaaactc tctgttttctg tttttgtggtg
atcccaattt cgtatatgttt ctttgtggtta gattctgtta atctttagatc gaagacgatt
45 ttctgggttt bgtcggttgca tattcctctta attttcagtt gggttttccat aataatcatc
ccgattttctc aaataaattc agttttttgcgg aataattactt cttttgtggc tgtttttact
ctgatctgg tgttagttttc tagtttttgcg catgaagttttt ctggtttttttt
ctgattaacca gagactctcca tgtgctcaggac cactcttccctc atacacacca ctgggtcggc
50 cttggttgccc agcaagtcacct tgtgctcactt tggccacactt gacgatgtgtg gttttgtgctg
cctcctcaggt gccttgttcct cttgatccttt cctgggcaaac acctccagcga
tggccacacag tagaccttttg ctaaaccgct tggaggcaatt gaggagctgc gcggaggtga
55 catgtggttc atatgcaagt ccattgtggtt caccatgccc tggcagtggcg actcaacctt
catgcgagtc atggctacag gcagttgttt cagcgcagaa gttgttccag cagttggggg

63
cagaacctgc ttgctgaca tgagggccgc ctacgatgcc tttgtatgag cgcccccaat gc 8520
ctttgctcac caaagggtctg tcgtcactcc ccttgtgttat ctccagacga aggggggaca 8580
tggccaaacag ggcgggtcag cctcataagg ttatgctagc gacacaccctg caaactctctt 8640
cagacccatgg gtcacagggtc atccctgagac tgggaaggccc agcctcttgga tccggcgcaca 8700
tgcctcgcccc atctcctggcc tgtgtcgcagc tgtgaatcag aaggtatcgg 8760
tgaactgggcc tgcacaggtc ccaagttcaca tcgctcacaag tgggtctcgtg gagatgtgtg 8820
tgtgtgaggcc aacccgctgtt tgcgcacccg tgcgcgcacct cccggattttca agtggcgaag 8880
tgtgtgtgagc actccagacacacgcgag ccagaaactg caggggtgctg ccctggttatt 8940
agtagtttgc tataactcct agagctctgggt caccagcata atttttatattc atctactaa 9000
ttactgttttt gttaaatgca aatgtgcttt ttgccggtatt taaatcatca aacgtttag 9060
aaataacaaa tatattttttt cagcgtctgtt ggaagatcga tcgtctctca ctttaaaattt 9120
aaaaaaaattt tatattttctc aatttatatttta ggaattgggtatt taaggactctt taatattttt 9180
gtcgggttac atcgcatcatgt ggtattggag aagatcagccg atacgaaata ttcgtatctc 9240	tatcagataat ttatggtaaa atttcatatag ccaaccaaccg ttatctatgat gtatagcaca 9300
atcacaagac agataagccc aggcacatcatt aggatatggcc ggcagatcac gtaatattttga 9360
gtaagatcac ggaatctcag cagcagagcat gctctcataatt cagcccccaatt gcggagtggaa 9420
atcactcaac gcgcctcctat ggcagggggg aatcctcctatt ttttgttgtgt tggcctttttc 9480
ccaaatgagca gtcctcaaggt ggccgacggcc gcggacccag cttttcttgtag caaaggtgtt 9540
ggggggtcgtt ccacatctttt aatgctgctgg ggggttttac ggggggttttatt aatgaagcgg 9600
gggtctgcagc aaaaaagcaa ggtatatttt ctacgatctag ctcacatcag ccaatgttta 9660
ggggaaaccatcgaggtaggtt tattgtgtaagc tcagccagga gcagatcaatt aggcccgaac 9720	tagcacaacct atgtctcagaa atgaaagaatt tacagatata gcacccccata ctgcaggaat 9780
acgagagaga atacgtgataa atttttttacttggcagaaaag aagacgggag cggagaaag aacttctgaaa 9840
acgtaacacc gcagggcacaat aatgaaaaag agaagatagtt gcggctgtgtt gttgaagaga 9900
catagagggc acatgtcaggg tgggaatagtt aagggcgagaa agaaccctgca tcacaaagga 9960
atctttccc ccactactta tccttttattt tttttcctgt tcattttttc cctttggattt 10020
tcttatataa gcaccacagt tgcgcatcttg tgaaaaaacaag aaaaaatattgtgtgtaagctatca 10080	tttttttga agtatgctagc atacaacttc agagaaattt gtaagttttt gatcactcct 10140
gtcctcggag aggagaccag ttdagatcag gcacgtcaca gcagctcata tggccgctgggt 10200
tttagtatct gcctcagagc atccatcgtg aaccttttagg cagacccaca agacccccc 10260
aacacccacaag agatggcttg agatctcaga agggttgccaa gatagatacc cttgggtggtt 10320
ttcgtgaggtt ggagggtgttt cttgcttgatt gcattgctagc ggccccctgga aggcctagaa 10380
cgcctacgat tggacagtgg agagtaactgt ttaaggtgtca catagggcacta aaggttgg 10440
cctaggatcc acattgtaca cacatctgct taaagttctag cagcggcacaag gttttacttc 10500
tgttgttgct tgttatgagcc ttcctagagc tccctctctgg tgggcttgag tgggcttgag 10560
atatcagccgcc cgggttgtagtg tcagtcggtt agtctctctgc tcaacacagcct 10620
tggtttttcg caaagggtat cttatgctgc acgctctcca agcggcagtt gcagctctgc 10680
ccagatctga ggtaacctgta gttgagctt gaagtgttatt gacacaagcgctgctgacta 10740
cctgtaacgct gccagcaggtg gctggtatc gcctttgacl agatagggcgc cccagcatcg 10800
ggcacatgtct ccctagcgcc atccaggggt gtctcaatct cgctggagat catggtggtt 10860
ggcagggctt cttctccaga aggacagcgc ccaaggagacta ccaagggatgt gcgggtctag 10920
gctctcagtt cttggtgcaa gtcagttgctg tggagggcttg agtggtgtaga ggtctctcag 10980
aaaaagtgcc gattgaatac agatagttgtg atctctagtca gggatagatagattctag 11040
cctactaaata taataatcctgtt tactaaactc tttccaaatctt ctcattggtc 11100
agcgtagtct agtggcgtcag cccaaatatatcc cccagggctct cttttttata cccagatgaa 11160
ataatagtt atataatttttt ttcagcattgt ctgcagctttaca ggaattagtg tgcggtcctg 11220
gtgccacaca ctctccattttc atataattggtgtaa agataaaaaaattaatggtcatt 11280
tcattttaaca cactaatctc tgaattttgta gataatatttt aagaaatatattattgtaa 11340
tatggataaa ataataacgtc cagtatattat gtctccagcag aacatattaatgagctcctag 11400
cagtttaaata ctaagataacat ttccttataatgc cagctgtcatttgc agtgcctgaga 11460
tggaaagctg atgtccgctact tttggtctgtactaactagtcttcggcagtcagctgtgctgtgctgg 11520
tagggatcgc taaacttataa cccggttctct cgggtttctgcgttgcgtaagtggctcgaa 11580
tgtcgggtcga taattctgtact tgcattgaga atctgcctgtaa cttccgtgtgcatttctcgtc 11640
ctttagacaagc tggagccgcg gatgtgacact gatcataacacttaaaatctcc gtaatctgcta 11700
ttaagttggctc taagctgctca tttgatattc aattgaatat atcctgcctt cagctggcagccttct 11760
cagctcgatt tacagagccgca gatgtgtgctg tgaatgtgctg aacatggcgtg cgcacaacg 11820
atatcagataact ccaacacagcagtc tgccgctgag ttcgaataactagcccagcagctgctgg 11880
catgttgttcag ccctcagactg atatttaaatt caatatccatact tttttacatac 11940
tttttactaca aataataaaa aaaaattact tttttacacta aaaaattatt caatatgaccg 12000
atagcctacaagc tttttctcttg atgttacaa gacagtccctt ctttaatttatacagagtcgctga 12060
atataagatag ttttttcctg gaaaccagttct ccaatgtttt ttctttttttt tcttaaaaacca 12120
agttttaatag ttggtttcctt gggagagatc ttcatttattggtttttttt tggttgggttt 12180
taaaatttatttt ctttttttttt cttattttttt gtccttttttata 12240
aaattgaaac aatattatat ttctatagtt gtttaattttt aatctttaaat gcataatat 12300
tgttttatatca tttttttaaga gttgaatcct ttggtatatttt tatatttatatt gattttattata 12360
atatataatt aaacaaacaa ctttaaggaa ttaaaaataa tatatttaatc ctgacaatttg 12420
acctgaacta aatattttaa attacaaatct atatatgagaa ttcaacaaacaa tagaacaacaa 12480
tatatttatt tgaataataa ccaaaataatt tttaaatataa aacaatatgct ctaaaatttata 12540
aatgtgtgtg gccctgacgcc acctaataggg ggggaatgcga cacatggaac atcatttttg 12600
ttcatctggt tctctgattct cattcttggc cgtctatcgc gaggagatc gacaaccttt 12660
agaattcttt ttctatgttg gccctggagca aatcttctgcct tttggtacatg gttgcacaaca 12720
tgtctctattt cacaattttcc caagtttaaa tttttatctgt tttagatatc tttttcagctt 12780
atatatacaga ttgatgtgtag tctctatacgt atgtgtgagca tggatttataa caacacacag 12840
agaaacaaacat atgtgcatttt tttgaatttt gtcacagatca caaccttcttt catctagctt 12900
gacaaatgtaa ttctctacta gttgaatcctt ctctctcaggt taattgtcttc atagactaag 12960
aatggtatgt gcgattaatcc gaaactcaaga aacatgtgag agttttgcttt tttctgtatg 13020
tctctcatag cctctgttaa tacctttgtaa taacacttcac caaatgtaaat cacctcttgcg 13080
acctctctcc cctcttgggt gaaacatggcct ttacacccaag tataggtgtaa ttttacacaac 13140
aacacattgcc agaatttttctg ttctctctgag tacacaaatataa attacactcag tggctcccata 13200
gccagccacc atcccatgcgg agagttccact ttctcttttgag aatcctccata agctaatataa 13260
ttgtagtatg gccttgcgct taacacacacat agacacaaata tttttatata aacacaaaca 13320
ccacagtgata caacacatgaa caacacacat gacaactacaa atcatttaaa taataacaat 13380
acaactcaaat aatattgggga ggggtcttttc aaaaatcgtgc tcaaggttcga ttgtatctgt 13440
gaggtattca cccaaacacc ccaaatgcaaa agagtttcgca gaaactgggt gtgggttgtgc 13500
atatgttatg aggggttgtgt ctacggtgtat aacataaaact tcaaggctatg tgaagttgaa 13560
gagtcttccca aatataagaa acaataaatt tatctctctca tctctctgca gcatacactgc 13620
cctctttctgtaaaacactcacc caacataatc taacgggaca 13659

<210> 28
<211> 14619
<212> DNA
<213> Artificial

<220>
<223> Hypothetical sequence of Event 9582.812.9.1 containing 5' genomic flank, 9582 T-strand insert, 3' genomic flank

<400> 28
ttaattataaa tgcacttttatt ataaagtaaaa caatttcccata ctcacacttttaa 60
gattcttttt atacatttttt atatggagaa caccacaccac tctctctttaa aaatgtgag 120
gctgcgctaa aagccagtaa aatgcccaca aacattccc aatatcatttt tatacgttca 180
gttatatcat ccgtaaggat ttagtggctt tattaacatat tggatgagggt acgtgtaagg 240
ttgtagcggc ctagtactgtt gatctgcctt gttgcgcgta caacgacgata aatacataata 300
aaactcttaa atgtaaaaat gataataata attttatatttt ctaatctctc tctggctc 360
agatgacagt gagaaatata attttttaga accgataaat ctaacatca ctaatggacc 420
cgatataataa atgatgtttc ttaaatgagtt ttctgtagac aaaaatcagaa 480
aatttcaaaatatcctca tcgataacac atattaattgt catattagat gctattttc 540
aatgagaaattatataaattccttttaa accttagaata attactataaattattgaa 600
atatatttc attataaaattttttaa aatattcaca aatataccttg gcttcttctgt 660
cagagttatt atgttcctta attgtgctcg aaaaatattt caattgacag tataagttta 720
gtctactttt ctgaattataa attaatcttt tccttggttttt aattatatttt 780
ttaacctttt cttattatatag aaaaatattt caattccttttt ttaacttcttct 840
accttatatt cttatatataa tttagtatga gcagaacttaa actgaaattc ctatattatat 900
aatgtcattg atttggttaga tttctgtgtaa aaaaatgtttt catagggagttctacatcaaa 960
ttttgctcaact gactttttatat ctattttctat tttttttttaa gaaatcctaataa cagttatataat 1020
actttttttatat cttggcattatt cttcaattttgc aagcgtctcgaa tatattatgcc gcaataattttgaa 1080
acatctcgcag tttaaagttta tgcacatctg aatattttcct gaccagttca gctattttc 1140
accacagttt agggcgggaat atggttaaat tggaaagctcc gcaattgagg tctacagggct 1200
aatattccgc ttagcgggtac aatattcttc acggcgcgctt aacgcggtctg atcatggtgctc 1260
ggccatataa atctcaatta tattttgtctt aattttagttt ggtatggtggt aaaaatatttt 1320
cggggcgatgg cccgggccgca cggcggcaca agtgtttgactaaaagacaggg ccctgctgc 1380
actgactgaa aacgttggctt actgcagagtt ccaagggctcg ggtatttttt gattttgtgagtt 1440
ttatgctctatt ggaagtttttt tttatgagttg ccctttcttca gaccttattttt 1500
atatgcaactatt tattctttgctgtctt cttttgatg aatttttttttatttttatt 1560
aatgattatac atggtgcttga actgacacag agtgatattat tggataacacgcccccaatttaa 1620
agetcccattt gatataaattt aataacaag aataatacgta gtcaccaccac cactgtgcctt 1680
atatgaaccttta cctttgctttg ccataccaga aataatccgca gctattttttt 1740
ttcataaaaa atatcaataa acactaaaaa atttataaagat atggcataatt tcacactgat 1800
tttattgataa aagaagtttac tttttcataa aatccacatg tttttataagc ccactgtgcc 1860
ttattaatgt gcacaaaaaa aaaaaaggaa aaagaataa aaacagacga aataatagaaa 1920
atatgtaataa ccggtacagt cgttggtgagg cacaattttt tcgtaaccccct 1980
caccgtatata ttaaaaaata aaacgataaat gctaaaaaaa tataaatcgtt aacgatcgtt 2040
aattcaacca gcctgggtctct tatagcagacc gtttagaaatt gttgggttcg acggagtcat 2100
aataaacggc gtcaaaagtgg ttgcagccgg cacacacggag tgcgttttat caactcaag 2160
cacaatatact ttctcctcaac cttaaaataaa ggcaattagc caaaaaacaac tttgcgtgta 2220
aacaacgcct cattacaccgag tcattttattt attagctattg cctcaacgcg cttaagcttctc 2280
tcgtgaccta gtgcgtccctcg tctttcttctc tctttcttctc ataacaacatt accaaagct 2340
tctttcctac aatccagagtt cttaatctctga aaacctatata taaaattctc 2400
tcaacgtgata caaggtaaatt ttcttggttctc cttaatcttct cataaatctt cttaatcttct 2460
tcgtttccgct ccaattcctgt atagttcctt ttggtttagat tctgttaaac ttgatcgaa 2520
gacgatttttc tgggtttgagtc gtttagatat cactcttaattt ctctgattagg gttcctaaaaa 2580
tatacatccga ttgcttcaaa taattttgagt tttgctgaat aattacccctt cgtattgtaga 2640
tttctatcta gagtttggtt gtagttctttag tttgtgcogat cgaatttgcg gattaactcgt 2700
agtttttttcgt attaacacagag atctcctcaggg agaacaacat ccagaacaccg tgtgtcccct 2760
acaattgcctt caacaatccc ggaattgtaga ttcttcaacgg aagagggaggc acttgagcgc 2820
 ttccccttga catctcccttc tcccccaacaag gtttcttttttt gtcttgatatt ttgctctgttg 2880
tggggttggtgc ctttggtgcctc ttgacctca cttggtcctctt cactcacaatttt cttgatcgaa 2940
gcctctctct ctctcagattt gaacaat tgttagcgcag gattgagacc cttgaaagga 3000
acagagccact caccacactt gttggcccttg ctggcacgctca tgaattctac attgaagcac 3060
tcogtgatagt gggaaggcaat cccacaacat tctcaactcog tgaagatgtg aggattctgct 3120
tggccacaccc agatgacgctt ttgatcacag ccacactcaacaa ttccccctctc acggcgttg 3180
agatcctttct ctctctcagtc tatggtcatag ctgcaaaacct ccactttggagc ttgctctagg 3240
atgtctgtgtgc ctttggtgccac cgggtgggagc ttgcatacag cacctgtaaca aatcactaca 3300
acagactcaat caacttggatt catcogcataa cccaaactagt ctggagacacc tacaatcaag 3360
gatgggagaa cctcagaggc accaactact gcctaatgggc aaggttacaac cagtttaaga 3420
gggtcctcag aaccttcgttg cttgcatacag ttgcctctttct ccccaactat gatgttcgc 3480
cctacccaat tcaaaaccagc tccccaacactt caagggaatatt tccacccctc tcgctctatt 3540
aggacagccc agttccctgc acacatacaca atggtttccta cctgtgctcgagt tttggtctca 3600
gaacacccct tctctagggc accctagggct cctggtcctgct cagttaggt 3660
caaaaacctgt gtttgggaggc caccttggatt gcctccgcac caccgcctggc aaccgcacactca 3720
acctccccttc cttatgggctt ttgctcccttg ttcggaggcat ctggtttgga gatgaggacc 3780
caggtctttt ctacagaacc ttgtcagact ctgtcttttgg cagagggagc ttggcatact 3840
cacactatgt ttgggttggg gcggagttgg ctttccgcga gactggcacc aatcacaaccc 3900
gcacattcag aaacagcgcc accatttgaca gccttgatga gatcccaacct caagacaaca 3960
gccgagccacc ctggtaacgc taccctccatg tgctcaatca tgtcaccttttt gtgcgctggcc 4020
cctgacctgcct actgctcgcttat gagttcgtgga gttctttctttttcctacct accatcagct 4080
caccaccctct ctcagctggag accacgagttg ccagagggccact cagttttactag gttggagaca 4140
tccgcaagag ccaccattcaact ctagttcaggag agagacttcact acagtgggaagcatcgggtg 4200
attccattgcttt ccttctcctatg cccagcaccta cagctgcatcc accccttttaca 4260
tcggccgtaacctg ggtgaggtcag tgaagatctc agcgtgtcata gattctgcata 4320
tgcgtcggct ccagttgtacc gcacatttgcc gcctgacctgcctgctttgcctt cagttttctgtg 4380
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 4440
tgacctgtggcag gggcgtgttcaa cctggtcgataatct ttgaaggtttctt gatgcttcctttcct 4500
tgcgtcggct ccagttgtacc gcacatttgcc gcctgacctgcctgctttgcctt cagttttctgtg 4560
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 4620
tgacctgtggcag gggcgtgttcaa cctggtcgataatct ttgaaggtttctt gatgcttcctttcct 4680
tgcgtcggct ccagttgtacc gcacatttgcc gcctgacctgcctgctttgcctt cagttttctgtg 4740
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 4800
tgacctgtggcag gggcgtgttcaa cctggtcgataatct ttgaaggtttctt gatgcttcctttcct 4860
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 4920
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 4980
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5040
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5100
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5160
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5220
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5280
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5340
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5400
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5460
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5520
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5580
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5640
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5700
atcagtcctgac ctttttcgtttt ccagttttcacagtgctggcagcaggtttgctcctcattcata 5760
tcaaccatcct cagagatagag aacaatagt cattgatggaa gttcagcaac ttggttgagg

5

aagaggtctta cccaaacaat actgtcaccct gcattgacta cactgtcaact caagaagagt

10

atgagggcag ttacatctct cggcaaccggt gcattgatgg agcctatgag acgcaactcat

cgtgacctgc tcagctatag aagagggcag aacctgatgt gcataggctgt

15

acaatccttg tgaagaccac agagcgctatg ggagctactac accccctccca ccgtggctatg

20

tgacacaaaga gttgaggtac ttctctgaaa ctgcaagagggt tttgattgag ataggagaaaa

cgagggcag acctcagttt gacctggact gctggagagtt catggaagag tctgtaggta

25

gcataatcag ctgagagcctg gcaccagcaaa ataccattt gaaaaa tacttatc

30

aatatatctg tcgaagacctg gttcctttat gttgacacat tccaatgtt gccaaagagtg

35

tactgtgcaat atctgtaggg cagagaatcag ccaggtcctaa ttgactgtt gaccaagagct

40

gctgacccct ctgagagcctg gttcctttat gttgacacat tccaatgtt gccaaagagtg

45

tgagctctgt ctagtggatg tggagggcag atctgtaggg cagagaatcag ccaggtcctaa ttgactgtt gaccaagagct

50

gcataatttc tcgaagaactg tttgactttt tacggaagacg ttttgattgag ataggagaaaa

cgagggcag acctcagttt gacctggact gctggagagtt catggaagag tctgtaggta

55

acagataaga ccagtcagatg gttgaggtac ttctctgaaa ctgcaagagggt tttgattgag ataggagaaaa

cgagggcag acetgtaggt gctggagagtt catggaagag tctgtaggta

60

gcataatttc tcgaagaactg tttgactttt tacggaagacg ttttgattgag ataggagaaaa

cgagggcag acetgtaggt gctggagagtt catggaagag tctgtaggta

65

acagataaga ccagtcagatg gttgaggtac ttctctgaaa ctgcaagagggt tttgattgag ataggagaaaa

cgagggcag acetgtaggt gctggagagtt catggaagag tctgtaggta

70
cccgaccaat cctgcttttaa gaggaggat ggcgatctcaa ttcaatgaca tgaacagcgc
7740
gctgacggcc gcaatccggc tcttcgggtct tcagaattac caagttctct ttttatccgt
7800
gtacgtgcag gctgcaccaacc ttgactttgtc ggtgctccggc gatgcttcggc tggzggaga
7860
acggttgggc tttgatgccc caaccttcca tagttggttaa aatgatctga ctaggtttat
7920
tggaactat accgattcag ctgttcggtc gtacacacac ggtaggtggg gttgtgcaggg
7980
accggattctc agagattggg tcaggttaca ccacagggcc cgagatgtga caacttaaggt
8040
cctagacatt gtcgtctcct cttccaaacta gcacttctagg cgctacccca tccgtactgt
8100
gtcaacatgct accgggaaaa cttcacaaca cccagtcctc gagaacttgg aaggttagtt
8160
tcgaggctcg gctcaggggc tagagagaag ctcaggtttc ccacacgtta gttgactatt
8220
gaaagtctca acagatctaa ccacctgggc ccgcgggttta tactactgtg cagggcatca
8280
gatcagggca tccccccttgt ggttctcttg accaagatcc actttccccc accacgggac
8340	tatggggaat ccagctccac aacaaagttat tgttggctca aacgtgctcgg cgggtgtag
8400
aatcttgtcc acagactctat ataggagacc ttcacaactca ggcacatcaaca atcaacaatt
8460
gtctgtgctt gacgagccag aatgtgctta tggacaccttc tccaaactctg gtcacgcggt
8520
cctacagaaagg acgagcaacag ttgtatgctt ggttagagtc ccctccacag acaacaagct
8580
tccacctagg caaggtttaa gcacgctcct tagccatagtg tccatgttccc ttccctggtt
8640
tagtaatgcg acgcttagta tcctcagagcc tggagttttg gttgtctctg atcgagttgc
8700
tggttttaaac aacatattg gctcagtagc ctaaccttactg acctccagctg tcaaggggaa
8760
ccttcttttt aatggttctgt tcatttccgg aacaggggtc actgggggtc actggtcttt
8820
gctgaattct tccgcgcaaca acatcagaga tagaggggtt atttgaaggtgc ccatccgatt
8880
ccccctgaca tcttccagag atcggttcgg tgtaagttgta gctctctgtta cccctattca
8940
cctcaacggtc aatgtgggta attcctcctt cttttcccaat acagtcacag cgcagctac
9000
atcttgggaat aatctcccaat ctacaggttt cggttacctc gaaagttgcca atgccttccac
9060
ccttetctca gtagaactag tagttggttag aatatttctcc ggacagcgcag ggtgataat
9120
cgcagccttc gaattccatcccgttactgc aacggctcgag gcagatctctg ccctggaaga
9180
agcacagaag gcggtgaatg cctgcttcac ttcgctcaaat cagatggggt ctcagacaca
9240
tgtgactgcg tatccatcag atoggttttc caacacttttt ggtgctctct ctagagttgt
9300
cctggtttggg gagaagaagg agttggttcca gaggcttaaa cattgtaagc gacttttagtga
9360
tgacgccac cttggctcag atcccaacct ctcgcttggtt aacagggcact tagatcgtgg
9420
atggagggga agtagacgaca tcaccattca aggaggtgat gatggtttca aggagaacta
9480
tgttagcctc tttggtaccc tttgatgtgct cttcccaaca tacctgtacc agaagataga
9540
tattatgtaa gtcgcacaag aacgcagatca atatgcggcga catatgcacat cttatttcca 11520
aattgaagaa tgtacagata caagatccct taccgccccaga atacgaagaa gaatacgttag 11580
aatggaaaaa aagagacca ggcagaagaa aagatctttg aagacgtaac actgacgcaca 11640
acaatgaaaaa aagagagata agtgctgttga ttgctgaaga gacatagagg acacatgtaa 11700
gtgggaaat tcaagggcgg aatgtaacc tctacaaaaag aatctttatc ccccaactact 11760
tatccctttta tatattttccg tgtcatttttt tgtctctatat aaggaacca 11820
gttggcatt tgtgaaacaa aagaaaaatt tgggtgtaagc tattttttttt ggaagtactga 11880
ggatacaacct tcaggaataa ttgtgatttt tgtgatctcc atgtctccgg agaggagacc 11940
agttgagatt gacggcagcgc cagcagctgta tgtggtgccc ggtggtgata tcgtaacca 12000
tzacattgag acgtctacat tgaaccttttag gacagagccca caaaccacac aagagtgtgat 12060
tgatgatctca gagaagggtgc aagatagata ccccttttggg tgtctctgagg tgtggggtgt 12120
tgtggctgtgt attgcttcag ccgggctctg gaaggcctagg aacggcttacg attggacagt 12180
tgagagtact ctgttacgtgt cacaatggca tcaaaagtttg gccctaggtat ccaacattgta 12240
cacacatttgg cttaaacttca tttgaggcgcga agttttttttag tcttgttggttg ctgttatagg 12300
ccctccaaacc gatccatctg ttaggttcga tggccttttt cggatacacc cccggggtac 12360
attggcgcca gctgggataca acgcatgttg atggcctagat gttggtttttt ggcaaagggga 12420
ttttgaagttg ccagctcctc caagggccagt tagggcacttt acccagatct gaggctcct 12480
gagcttgggc ttatgagcttt atggactttag agctggcata cactaagtaac ggcgcagcgc 12540
gttgctgaatt tggcccccttga cttagatggc ggcagatcgg gcggcaatag cttctttagc 12600
ccatcccggg tgtatccatat cttgtgttggaa atagttgcgg tgtggcaaggct tctctttcag 12660
aaagacaggc ggcacaagag aaccaaggtt ggtggggtcata ctggccctcga ttttttgtgg 12720
aagcgctttgg tctaaaggtgc agaggtggtta gcgggtagaa gcacaaagtgt ccgatgtgaa 12780
caagataagt tgtctcctacg taaggtatat aaagatagta tttctactca ataatacag 12840
tgttatttcca tatgtactac gattttccat gcccttttttgc aatccaggtat gaatataatgc tttattataat 12900
cacaataaa cccgggggtgaa cttctcttttta atccaggtat gaatataatgc tttattataat 12960	ttttggatt tggctccgta taggaaattga agttgcttttg cggtggccac cactcctatt 13020
tctcttaatttct atatatattg gaaagaaata tagtttaaatattttttat tagtttattt gaaataacca 13080
cgggtttatt gcggaggaaaa atgggaaatg gcaagatttc gatgcttggta gttggaagac tggagtcgat 13140
tatattttttt actggtttata tcagcgttggta cattgccgta gatggaagac tggagtcgat 13200
attatgttgtg aatacatagc ggcgcggttttt cttgctcaacgc tgtggatccc gtttaaactc 13260
attatggtgtg aatacatagc ggcgcggttttt cttgctcaacgc tgtggatccc gtttaaactc 13320
gaggctagcgc catgcacata gacacacaca tcatactcatt gatgcttggtt aataattggtc 13380
attagatgtt ttttatgcatt agatgcaacct gaaatcacgcc aatttatgac aagtatcaca 13440
cggatgtgac ttcatgatcat taaaaacgct gcgaatgtgc cattgagccac aaccctgctat 13500
gccgttaacct ttcttttggg tgcctgagat ccaacccgtaa tgggataatc taataacctca 13560
taccccacagt tcccaacaaa gcacaaactc ttctactagt aggcttttgg gttgttttat 13620
atctctaaaa gctttaatat ttttttat ttcccataaa agatatgtaaa 13680
ctcccccttg tccgagaga aatggtgtaa aaaaagaaat aataaaataa ataataaagt 13740
gctgtaacatt ccatatatatt tcataattca aacccctaactc tcatgtgact 13800
ctttttttttc ttttactcct cggacggaga tgtgagaata aatacattac tcacccgtaa 13860
tattgctgaacctt ctaatttttcg ctctgtgcctt ccagagttcact cgttgtttcag 13920
tttctagcgct cccctatattttg gatgctgccag ctaacggagcc cccgagttgaa agttatgacc 13980
attggaacttt ttctgagacgt ccgctggattt atttctcgac gtctcagatat attatgcggc 14040
tgatctccagc cccccacgtgc aagtttatga ctatttagaatt tgcctcaagag cttccattgt 14100
tccatccgct catcgcctag tattattgcag ctatgctcaag aactccgagtt gcagagaattt 14160
gacccctgcta atttctcagag aggtctgattt gccccttatttt gccgctgcag atatattatg 14220
cgacctgacat ggacccctca gaataattgc attctcaagct gctttttgtg tccatattca 14280
agcgttccagc tatattatgc accgtgaattcg gatctccgag tgaatgttata gttccatttgt 14340
aattggtcaac gttgctcattg acgtatgggtg gogagagtac caccctccaca ccaacaaaac 14400
cacctcctat attccctattc tgtatatctt cccttagacaag atctattgatt aacaccaacca 14460
ccttcattag ccccaacgca cccgagacaa acacgcctac gtaattgctat ttcttttttc 14520
tgaatcgtgct tcaagacaca gaaaaggata aataacccaa gaagaccgcca cctctacacc 14580
gaaatgtctt acatgcacatt cagatttttttg ttgcattttta 14619

<210> 29
<211> 15294
<212> DNA
<213> Artificial Sequence

<220> Expected sequence of soybean event 9582.814.19.1

<400> 29
ttaacatga ccaagatcta tgtatatag aagacctgga gggcttaagg ctatgatatata 60
ttatgtgtag tattttgttag ttcttggagta tcaattcaac cattttgttg 120
tataatggga aagaaaaatag ttctctcata tccactctat tgaaaaagata ccaacatggtt 180
taaaccccggc acgaactcaca cccgagagaagaatccaa agatgtgtaa ggtatgagac 240
tgtatagttg atgaaactt aaaaaaattta atttgtacta cttatacaca caagatgcatt 300
atatcttgcg atagccctctac atcataagaccta ttcatagttta aggggtgccta aatcgggagtta 360
gttatgaaat gagtgacccct tttaaatatat tatttgcttata ggttattgta tcgagaataaa 420
aataataatc aataatacat aaaaaataat aatatttttata aataaaactttt ataattcatat 480
taattttatgtt tagattttttag ttatctcatta ttataatatag aggtattaaata gaataataata 540
aataatgtca cattttaaaaaa ttataatgtat aatattttttg aaaccaattta tttttttttttta 600
tacgacattt ataatagaaaa tttggagacta aaaaaaaaat gaaaaatctact aataatattg 660
aatatatcct tttctctcttct gagttacaataataacggttcctcc ataatattatac taagacttttgg 720
tctttgtaggtt cagagttataacttttttgc aattattttgt tagtacagattc acatattaaag 780
aaataataata ttttagcaacc tagagattttta taaaaagtttttaa aataattataa agactattatat 840
ataaatttagc taaaactaga tggtagtccccc aagtaatattttta tatataactta ttcttctgctaca 900
acattaatga aaaaactttgtt tcctattatttt aatattataat tattttttta ttttggaaca 960
atatggtgatt taaaaactttctt ataaatattaata ctttaagataa agttttttctta acatgtttttt 1020
ttatatggtggtt ttctctctac agttttgggtt atccttagtttt tgcctttaaatttt ttgtccggattt 1080
atttttggac ttatattattgtt aatattttttta aacacattttt tagaatttttattgt gatttatgtagttttacttc 1140
ttacataattg aatttgatattt gaattgttgata aatgggaagggttaa aataaagtaaga agaatcaagcgcg 1200
tacaagagtt gccaacactcaa gaggattttga agagagtttaa atattatttaga agattcccatgt 1260
tgagaattata ccaacccttttc gaataaaaaaa taagtttttttttt tctttttggattttt tggtaaattgtct 1320
acagcaacttta ttggtactcctt tccttaaatatttaa gaaccccttagc tatatttttag caacctgatat 1380
tcactgaaatca aactttttccta tgaataaaaaa gocggctgtcctt ggcctggtcctt tattctgggctctt 1440
gcaagtggggg atctttgaagct aagttccgcct cacataactag ctgcttttagaca tgtttttgacctt 1500
tcttggccaaata ctctctactcc tcctttaatttg atcaacagtctt aagcatcatca ccacaaaaagt 1560
tagcccccagag tagttttttgtttt taagaaagcctt cgaatgttgaag ggtctacagcga caatttcctctccgtctt 1620
ccttagctaa caatattact caacggatgcct ttcocgggttgtt gatacgagctgc cggataaaaaa 1680
aatctctatc atatttggttctt tattttttattgt ggttattttgtccttaa aataaaacttttattggtctctttgtct 1740
gcccgccgaa ggcgcggcgcag aagttttgtacc aaaaaaggcgat gcttccggcgtt gagctgacgtga 1800
aaagctttgtcc gacctggagct tcaacggatctt aggatatattcttt ttttttttagaat gttataactc 1860
atggaggtttt gtatgactctctt agcggataaggtt ttcocctcctctt catagcggaaa 1920
 ttatccttaaatggttttttgc gtcctattctttg tatttaatgtaa aaaaattattattattaatatta 1980
ttggtcctgactgcaagctcgttttataa tattggaccag gccctaaattgaagtccactg 2040
atatattaatgtaa ataatatacatg agtcacccaa cccctttgtcct ttttttttacga 2100
gactttttct tcaacatttgtt agaaagatgtta cttatctctctt gaaatcatataa atcataacaa 2160
EP 3 382 028 A1

aatatccaat aacactaaa aatttaaga aatggtataat ttcacaatat gtttatacgat 2220
aaagaagtta ctcttcccaag aatattcactg attttataag ccacctgcca ttagatataat 2280
gcgaaaaaa aacaaaaaag ggaaagaata aaagcaggaag aattctagaa aatatcgaat 2340
acgtccaat gcagttgggc gcacaggtctca attatttgcgca aattttcgct ccacacgata 2400
ttaaaaaat aaacacgataa tctgtaaaaa atataaatcgg taacagacgtg taatctcaaa 2460
cggctggagtc tttgacagac cggctgaat tgggtggtgct gacgagttcgta taataacggtg 2520
cgttcaaaagtg gtctagcccg gcaaacacgac gtcggtttta tcaactcaca gcacaaaaat 2580
tttctctcaca cctaaaaata aggcaattag cccaaaaaaca ctttggtgtgt aaacacagtcg 2640
catacacgat caatttttata tattagctcat tgcctcacgc ccttaggcttt ctcggtacct 2700
agtctgccccgt ctttcttctt ctctttcttc tataaaaaaa ttctttcttca 2760
catctcagat ttcatttctt ctaaatttcta ctaattttcct ctcattttcc ctctacggtga 2820
tcgggttctta ttgtgttgtct cccattttcc ttgtgttttc cttggttctgt 2880
cccaatgtgct tatattgtct ttggttttagt ttgtgttata attagatcga agacgatattt 2940
cctgggttcttg tcaacttaaat ctggtttagata gtgtttccata atatcttctcc 3000
atgttgacaa ataatttgag ttgtgtgcgaata aaatttttacctt tctgattttgt attcttatct 3060
agatctggttg ttagttttctta gttttgtgca ctgcaattttt gattatctgct gattttttct 3120
gttaaagaga gactctccag aatgctgcgc gatgctctgaga gatgctctgaga gttgttcacctg 3180
tcaacatacc gcagttgctggt aatgatccagct cctggctagc ctctcttttg 3240
atcctcctct tctcttcaca aggtctcttt tctctttggtt tgggttccgtg tgggttgccttt 3300
ccctttggttct cctggtcttcct tcttctccctt actggtcctgtttagc actttctttctc 3360
tctctctgccaa ttaaaatcttt cttggtttttt gatgctgatgt gatgctgatgt gatgctgatgt 3420
tcaacatact tcaagttcctt gctgactgtc atgaaattctt cattgagact ctcggtcttgt 3480
ggaaagccca aatcaactac ccagctccag cttgagatgt cattgtgtgt gttggttaaca 3540
cagatgctcgc ttcgtctcaca gcctcacaag aaaaattctt cctgggtcgtt gatgctgatgt 3600
tgtcttctcgt ctatgttctca gttgtcaacc tcaactttgag cttgttcttctt gatgctgatgt 3660
ccctttggacac aggttgggqgt cttggactag ccacgttccaa caatcactac aacagacacta 3720
tcaacattgag tctacgttcac aaccacactg gttgtgaccac tcaatcacaag gatgttgaga 3780
accccagac cccactagat ccagatgtgg ccagtttactg acagtttttc aaggtcgactca 3840
ccacactgtgt cttggtcagtc tccoaactta tgggttcaccgc aacacccaca cccactactg 3900
tcccaacacgc ctttcaacttt acaggggataa ctctacccct ctcggtctctt gaggagcagcc 3960
cctttctgca ccacatacaaac aatgtttcttc acgtggtctga gttgttngtctt aaccacaccc 4020
atctcatgga cttcatgaac tcttctggttg tgcattgcgga gcactgttaagg tcccaaaactg 4080
ttggaggag ccaccctttgtt agctccgccga acaccccttgga caaacccaccc aacccctccct 4140
cctatggggt ttctcaacctct ggtgacgacca tctgaccagtgc agatgaggaac ccaagggcctt 4200
tctacagac cccttgcatgat ccttgcttttg tcagaggaggg ctttgcaaat ccaactacatg 4260
tctctgtttt gaggggagtg gcctttccagc agacccgccac caactccaccc ccgcaactaca 4320
gaacacgagg caccatttcagc agcctctttagg agatcctccacc tcaagacacaac agcggagacac 4380
cctggaagca ctaacctccctgt gtcctccccat atgtccaccttt tctggttcgag cctgtggtcga 4440
tcgagcgtcag agatctttgga agaccaacctgt ttttctccatg gacccatcgc tctggcctcag 4500
ccaaacacac cattgtcacc gaagaaactca cccagatcccc ctgggtgaag gcacacacac 4560
ttctagctcgg aaaccacagt gtcacaggggc cttggttcac tcggtggaac attctcagac 4620
goacocctctgg agggccattt gctttacacca ttgtaaacat caaatgggcaac cttcccccagc 4680
gttacgctgc cagaacccgct tattgctctca ccactaaacct gagaactctat gtcaacagttg 4740
cttggagaaag gatctttcgtct gtcagttcaca aacaagacaat ggacacagtgt gatccatggta 4800
cattcagatc attctctcctat gcccacatca acacgtcatt caccctttcag atggcgcagt 4860
ccagcttcac agtggtggcga gataccttcag gctccggccaa tggagtgtac attgaacgct 4920
TTGAGTGTGTA TCCAGTGGAT GCCACACTG GAGGTGTAGTC TGAACCTGGAG CTTGTGCAGA 4980
AGGCGTGAA TGGTCTCCTC ACTCTTCCAA ATACAGTTGG GCTCAAGACA GATGTGACTG 5040
ACTACCATAT AGACGGTGCT TCCAACTTTG TTGGAGTGCC CTCTGATTGG TCTGCGTTGG 5100
ATGAGAAGAA AGATGTTGCA GAGAAGAGCA AGCAACGCACAA GAGGCTCTCT GATGAGAGGA 5160
ACTGTGTCAC AGACCCCAAC TCAGAGGGGA TCAACGCTGCA ATGGGATGT GGTGAGGAGG 5220
GATCAACTGA CATAACCATT CAAGGAGGTT ACGATGTGTT CAAGGAGAAC TATGTCACAC 5280
TCTTGGGGAC CTTTGATGAG TGCTACCCCA CATACTTTCA CACAGAAATA AGCGAAGACA 5340
AGCTCAGGCG CTACACAGAA TACACAGTTGA GAGGTTCAACT TGAGAAGACT CAAGACCTTG 5400
AAATCTACCT CATAAGATAC ACACCCCAAC ATGAGACAGT CAATGTTCCT GGGGACTGTTT 5460
CACTCTGGCC ACCTTCAGCC CCAAGGCCCCA TTGGCAAGTG TGGCCCATCAG TCAACTACCT 5520
TCTCTTTGGA CATAGATTGT GGGTGCACTG ACTTTGAAATG GACCTTGGTG GCTTGCGTTGA 5580
TCTTAAAGAT CAAGACCCAA GATGGCCATG CAAGAGTTGG CAATCTTGGAG TTCTTGGAAAG 5640
AGAAACCACT TGTTGAGAAA GCCCTTGCGCA GAGTGAGAAG GGTGAGAAG AAATGGGAGG 5700
ACAAGAGAGA GAAGTGGAGG TGAGAACCAC AAATCTGTTA CAAAGAACCA AAAGAAACAG 5760
TTGATGCTCT GTTTGTCGCA TCCGAAATAG TATGGCTCCA AGCTGACACC AACATAAGCA 5820
TGGATCAGC TGCGACCAAA AGGGTTCACA GCATTTGGTA AGCACTACTT CCTGAACTCT 5880
CAGTGATTCC TGGGGTCAAT GCTGCAATCT TGAAGAGCG GGAAGAACGC ATGTTCAACTG 5940
ccttcctcctt gtatgatgca aggaatgtca tcaagaatgg tgacttcaac aatggcctttt 6000
ccgtgctggaa tgtgaaaggg cacgtgggatg ttggaagaca gaacaatcac cgctctgtcc 6060
ttgattctcc tgagtgggaa gctgaagtttt cacaagaagt tcgtgtgtgc cctggctctg 6120
gctacattct tcgtgtgact gttacaaag aaggtctatgg aagaagttgt gtacacattcc 6180
acgagataga gaacaatcatc gatgaattga agttcagcaca ctgtgtggatg gaagaaggtct 6240
acccaaacaa tactgtcact tgcataagct aacctgcaac tcaagaagag tatgagggca 6300
cctacacttc tcgcaaccgt ggctatgatg gagctctatga gaccaactca tctgtgcctg 6360
ctgactatgc ttcagcctat gaagagaagg cataccactga tggaaggggt gacaaacttt 6420
gtgaagac ca cagcttcagca caccctcccc agctggctat gtgaccaaaag 6480
agttggacta ctttccgttg aactgaacag ttggagattga gatagagaga actgaaggca 6540
cattcatagt tgcctctgtg gacgcttggcc tctaggaaga gtaggtgttt agctaaactca 6600
cctagagcctc gttcaccacgc ataatatatttt taatgtactt aattackgtt tttgtaaat 6660
gcaatttttc ttctccggga tttaatatcc aaatactatt tagaaatatc caaatattttg 6720
ttgcaaggctt gtcggagaaat cgtctgtgca tcaataaatg tacaaaaaaa tttatattgc 6780
cctcaattatt ttaggarttg attaaaggac gcttaataatt tttgtgctgg tctactcgcat 6840
cattgtgatt gagaagatca cgcatacggaa atattcgtag tactatcgaat aatttatttg 6900
aaaaacctaa agaaagacaa acgttacatg aatttgtaga aacataacaa gacagataaa 6960
gcgcacgcac cttggcgtat tggccgagat tactaataat tgaagttata tgcggaaatt 7020
cctgacaggag catgtccctca attcagcaca aatggcagt t gaaatcacta aacgcgccca 7080	
tatgcaggag cggatcattc attgttggcttt tgggtgccttt gcacaactat g gactgcagag 7140
gttgcggccg ccgcccgaaa acaacttggct atacaaaaat gtcgcggcgtg actgactgaa 7200
cataacccag aaggttaata tcaagatgt acgatcacga atccaatgttt tgcggggaa 7260
actatgggaag tattatgtaa gtcagcagaa aagcagatac atatgcggca catatgccac 7320
ctatgtccaa aatagagaag tgcacaagata caagatctca tactgcggcag atacgaaag 7380
gaatacgtag aaaaagaaaa agaagaacca ggcgaagaaa aagactctag a gacgcctaac 7440
actgacgaca acatatagaa gaagagata aggtcgggtga tgtgaaaga gacataagg 7500
acacttgaag gttggcaaat gtagggccgg aaggttaacct tatcacaag gaatacttac 7560
ccccactact tatactcttta tatattttcgg tgtcatatggc gcccttgagt tttccatatat 7620
aggaacccag gttcggcatt tgtgaaaca aagaaaaatt tgtgtgtaac gatattttccttt 7680
agaatgtcga ggtataacaact tcagagaaat ttgtaagttt gtagatcacc aatgggaca 7740
catacacaac atcaacaggt gcattaacct caactgcctgt agcacaaccttg agtggaggt 7800
gctgggtggga gaacggattg agacttcttg caacaccttc gacatctcgt tgcactttac 7860
ccaatctcct ttgccagagt tcggtgcccg ggcgtgattc tggctggagc tgtcagatat 7920
catttgggga atcttttggtc cctctcaatg ggacggctttct tgtgtacaga tagagcatgtt 7980
aattacccaa agaatagaaag aatctgtaga gaacacagcc atctcaagggt tagaagctct 8040
cyccacacctt tacccagatt acgccgaatac tttccagagag ggggaaacac accggaccaaa 8100
tcttgccatca agagagggaga tgcgcattca atctcaagcag atgaaacagct cgctgagcag 8160
cgcaatcccg ctctccgccc ctcgaatatt ctttttacgt tgcagctgca 8220
ggctgccaac ctgcacctgtg cgggtgtcccg cgagtctccc tgtttcaggac aacgggtggg 8280
ccttggatgcc gcaacctacca atagctgtta taatgacctg actagctctta tgtggcaacta 8340
taccgattgt ctctttccgct ggtacacacc ggggccctgaa cgggtgtcggg gacccgatcc 8400
tagagattgg gtcagctaca accagttcag ggcgagagtt acacaaacttg tccattagat 8460
tgtgtcattc tttgccacact acgacactag ggcgtcaccac atgcgtactct tgtctcaaat 8520
gaccggggaa atctacaacaa accagtcctt cgagaacctc gacggtgctg tgtcgggtc 8580
ggctcagggc atagagagca gctacaggttc tccacaccttg atggcagatct tgaacagat 8640
cagatctcag accagtgccg accgoggtta tttacacgtgg ttcgggccac agatcatggc 8700
atccacccgtg ggggctctcgg gaccagaaatt caacctccccca tttactctgg gatgagctta 8760
tgcaagttcaca caacacacgt aatggtgtccaa actcggctcag ggcgtgtata gaaccctgtc 8820
cgcaacctca tataaggagac cttccacacat gggcctacacaa ataccaaaat tgtctgtgct 8880
tgagggaga caatctgctct atgagaaccttc ctcaaactctg ccaacctggct tgtcagctag 8940
gagggaggaaca gttgtagatct tgtgtagatct cttcctacccag aacacacagct tccacacagt 9000
gcaaggggttc aggcatcgcct ttaagcatgtct gcctcaggttt cgttctacgct ttaagtaatag 9060
cagctgtaagtt atcataccagag ctctccagttt ctcctttggata cattgtagtct ctagatttaa 9120
cacacaaaatt gcacccgatca gcatctcctca gtttcacggct tgcagagggg aaccttccttt 9180
taatggtctt gctctcctca gacccgacatt aacctggggc gacatgcggtta aagcagtttca 9240
tcccggcaac aacactccaga atagagggta taattgaagtt cccatctcact tccctactgac 9300
atcataaggca tatactgtgttc gtgtagagtt tggccctctgtt acccctacttc acctcaacgt 9360
caatctggtgt aattacctcaca ttctttccccag tacagataca gcggacagaca ctctctggga 9420
taatctccat tcaggtgatt cctggtctcttt gaaagttgcc aatgctcccttc ctctttgccct 9480
aggttaacct gtaggtgtta gaaatttcccc cggaaaccggc ggaggtgtata tcgacccgctt 9540
cgaattcttt cccgcttctag caacgcgtcga gcgcgaggttgt gactttggaa aacgcagcag 9600
ggcggtgtaat gctctgtttca ctctgttccaa tgagatggtgg ctctgaagacag atgtgacctg 9660
catactcctc gctactgttt ctactcccttt ccaacccgttg tgcagtccttc tgcgtgagctg tcggttggga 9720
tgagaagaag gagtgtgccg agaaagctc9 aaatgtgtag agatgctggca
cttgcttcaa gatcccaact ttcgcgggat ccaacggtc9 ctagatcggt gatggagg9g
aagttacgag acgacattc aaggaggtga tggtagcgtc aiggagagctc atgtgtaagct
cttggtcacc cttgatgag ATgcacccagg taagacagtc cggcaggtgc ctgacgggtg
acctcaagcc tacataagat accagttgag aggctcatc gaggacagt cagacattg
agcttacc9a etg9agacgta cgc9agctc9 tgaagcagqc cgtggtctgg gcctgggtg
ctctttggag atgacgtgtg gc9tacggcag cctggaac9a gaacctggtg tc9tggtg
ctccagatc9 accacgctcgc ggctgtgcttc ac9tgctgcttc aattctggag gc9acaagta
gaaccactt gtggcagag ccttctgctag a9tgagac9a gctg9agaac9a aatgaaggg9a
caaagcagag accgtgcss9 aacagcattc cattaggctc c9agaaggcc ac9aac9gc
9tcacgtctgg tttgtagcct cctagctatg taggctc9ca cgc9ataccca cacaagtct
9tgcagctccg ggtgctcatgg cttcgcactt tgaagagact g9agcgccac c9tccactgc
acccttggcgt tagagcgcga ggaacagc9c accaccaggct gactcttaca atggcctactc
ctgcctggaat gtggacgggc ac9tgatagtg agaagacgag aaac9tcacc cgc9ctgc9cc
9ttgtgctgct taggctgggaac caggaagtcc ac9agctggg gctgg9cgcg t9tggctg
ctacattcct cgc9ttcgcg cgtacactg agg9aagcgc ga9gggtagc gc9acactc9c
cc99acaac ac9gtacgtt cc9tgc9cctc gc9gt9ggtct catggctgctg
9tacacetct ggcgctagc gactagtgg ag9gtctgag gc9aatctcct cctg9c9cg9c
tgc9agtcc ca9gctccatg aggg9acgc gc9tcacgc cgtc9gcttc ta9ccaccaca
gag9agt9c cc9acagc9g tgg9gctgag ctcg9gctgg cc9gagggac c99960
attcatttgg tagac9gtgg agttactctc9 tga9gagcag tagatccatgc gccaatctac
ctagctgccc gttactctc aaatctatc taga9atac9a caaatctttg ttcg9ggtct
9tg9gaactg cgatctgct ca tcaaaaaa ttcctctctc c9tcaattt
9ttaggtgg tattaaggac gcttaatta tttgctgggt cactacgcat attgtgatt
ag9agatcgc ggcgc9gc9a atattctgtg tactctgctg aatataattg gc9aatctc9a
agaaaagc9a acgc9tactg aattgctgaa acaatc99a ga9gataaa gc9cgc9caca
tttaggatat tggcgc9gagct tactgtaagat tgc9tgaaatc cgc9gagcag
catgtctttc aattcagccc aatggccagt gaaatactca aacgccccca tatgcagggg
11640
cggatcattc attttttttt gtgttcgcc tgcacatcag ggtggccagt gttgggcgcg
11700
cggcgcgcggacc cagctttttct gtacaaattg tcggcgccg cttaataa ttttaattgcc
11760
cgggctttta aacgggcccg cttattaagg gcggccctgc agcaaaaccc gaaggttaatt
11820
atccaagata tagcactaaag atatacaagt gttccggga aaacttgga aatatttgta
11880
agctcagcagc gaagcaagtc aatagcggcg accatatgcaaa ccatggttca aaaatgaaga
11940
agtatacagta acaagatcttt atactcgccag aatagcagta gaatattgga aa
12000
aagaagaagacc agggaagaga aagatctttcg agagcgtgta cactgacgac aacaagttga
12060
aagaagaagat aaggtcgggtg attgtggaag agacatagac gacacagttta aggtgga3a
12120
tgtaaggggag gaagaatgcc tttatcaaaa ggaattttat ccccccctca tttctcttttt
12180
atatatcattc gtgtcatttt gcccttggag tttttctata taagagacc aagttcgccat
12240
ttgtagaaac aagaaaaaaaaa tggtagaag agaatgttgta aagttatatac gaggataaac
12300	tcagagaaaa tttgtaagtt tgtgatcttc catgtctcccg gagaggagac cagtggagat
12360
tagccagct acagcagcttg atatggccgcgc gttttgtgat atcgtaatcc attcattggta
12420
gagctctaca gtgaactttta ggacagagcc aacaacacca caagagtggga ttgatgtctc
12480
agagaggttg caagatagat accctttggtt gttggtcgag gttgaggggtg tgtgtggtgg
12540	tatggctattc gctggccctct ggaaggttag gcagcgcttc gattggcagc tgttagatcag
12600	tgtttcggtgc ttcaacaagatc ggccctagg ccacactttg acacacattttc
12660
gtttaagtct atggagggccgc aaggtttttaa gttctttgtgtgt gctgtttatag gccttccaaa
12720
gatcctattct gttaggtttc atggagcttt gggataacaa gccgggggta catgtgccgcc
12780
agcttgggattc aacagctgttg gatggcagtt ctggcttttt tggcacaaggg attttgagtt
12840
gccagctccc ccaagggccag ttagggccagtt tacccagatcc taggttaccc tggagtcttag
12900
tctatgacct tatgagcttt gacgtccgcat ccactctgtaa cgccccgcag tgtgcctcggaa
12960
ttcggccccct actagataagg ccgtggccaga aataatacttc gccatcccg ccacagtttct
13020
gtttragctta tctgtgtgtga aatagttgcg gcgggcaaggctttcttttaa gaagaagccaggg
13080
cggccaaaggg aacccagagg gaggtggtgct atggctctcc aactcttttgc gaaagctctgg
13140
gtctaatggg cagaggtttt actgctgggag ccagacaaagtt cccgattttt gtaaagatcatg
13200
tttaatcactc gtaaagatgt aattctacact atataataca gttgtatttcca
13260
atatgtacta cgtatatccaa tgtttttttatt gtcggcgtat gtaatcggcg tcacaaataata
13320
atcccccgtt aacttttttg aatccagatat gaataaatat ttatatataa tttttgcgtat
13380
ttggtgctgtt atagggataag gattttgcc gtttgcgtcc gaacaccccat ttttataattt
13440	tactattttactttactttttttaaattttttagg ttttacatattt caaaaacttgc attgtgttaag
13500

atatatatct tgaagagaat atagtttaaa tatatttattga taaataaca agtcatagt 13560
tatatccaa gcggacacat aaatttattg atgcagtttt aaatccagaa atatattcata 13620
aatagtatt atcgagctgt atcattgccgt agatgaaaga ctagatgcaga tattattggt 13680
taatacatag cgcggcggggt tcatgcacc ggttggagtc ggtttttaact cggagctgac 13740
gcagccacat agacacacac atcactctcat tgaagcttgg taataattgt cattagattg 13800
tttttacga tagatgcact gcgaatcagc caatcataca gaagtatcga acggagttga 13860
cttcatcaca ataaaaagct ccgcataatg atatcactta attttatatt atctaaagag 13920
gttaaagag aaaaagaaa ttagccaata tttttcttcc aaatccctca acctaaagaagt 13980
atgacctctat ggaggcttaa ttaacaaaaa gatacggttc tagggtggtg aaacataaat 14040
ggcacacctc ttctattttt caatcaatttg gttttgtcct tatcttttca tttttctctt 14100
tttttccca cgcctatcctca aatatcttgct ttagccgggtg attactctcttt ttttttttt 14160
agatgcacat tatttttcctt ctatgtatata aattagagta tattgtgcttg aaggtgacctt 14220
agttatatatg tttatagttct cataaagaac gcacaccttttt attcttaacct ctcttttatca 14280
agtttttatatt taaattttat taaaattaag tattgcatcata tgtctttataa ttttttttaa 14340
atatattatt cttataaaaa aatcccttaaa atttatgtttt tcatataaagtt taagagatat atatatatt 14400
tatatattata gataaaacct atttttctgc atataaaataa agaaagagac agtcataaca 14460
atatataatt tattccagat atttatagct tttaaacctt tatattctatt caattaagta 14520
ataacttttaa ataaaatttta gatacttttt tttatctttaa aagaattttaa ttttttttaa 14580
caaatcgcctc tgactgctttc aattgatcat tattcagccta gcataaccta aatttcattt 14640
tcaaacataaa cttttggcac ccaatccaccc gcaccgtgccaa aaaaagtcttt tgcgatagta 14700
ccctccaggca gcgacaactc ctgtatttcttc tttcacttcac ttttaattct attttcccat 14760
acacttacct ttttcattgcac atctttcaag cttttttttt gtttttttctg tttaagctgt 14820
tttaccttaa tttctgtcat ataaacaaaag agcagagtcg caaattattatat ttgtagctat 14880
agtttttttaag cagaaaagga aagtaatta tagagataat gaagttttgtct ttttttaatt 14940
cgtcgtgtgtg ttatcacatca tatcttaaagt cttattctcttg ttttgcttct ttctttcttt 15000	taacggagtt tatttttatatt aataattaagtt agtagttagta tctatattcttt ttttttgtaga 15060
taatccacct ccctttggagg cacatcagtc attaatacata gatgttttgg aagcattttactc 15120
actaaagcct caattaatta tattccataaa acgggtattgg tttgtatggt tattgatagca 15180
aatagataat ctaactctaa cggacccaca aaggggcctag aactctaatcc tgcagaaaaatt 15240
gagcagatgag ggattgagat tggcaccttg tggctttattt gcgcactaat catt 15294
Claims

1. An expression cassette for providing herbicide tolerance to a plant wherein the expression cassette is inserted into the genome of the plant to produce a polynucleotide having at least 95% identity with SEQ ID NO:27.

2. A transgenic soybean plant cell comprising a genome comprising a polynucleotide having SEQ ID NO:27 wherein the soybean plant cell is herbicide tolerant.

3. A soybean seed comprising a genome comprising SEQ ID NO:27 or comprising the cell of claim 2.

4. A soybean plant (i) produced by growing the seed of claim 3, said plant comprising said SEQ ID NO:27 or (ii) comprising a plurality of cells of claim 2.

5. A progeny plant of the soybean plant of claim 4, said progeny plant comprising said SEQ ID NO:27.

6. A method of controlling weeds, said method comprising planting the seed of claim 3, and growing the plant of claim 4 on a field, wherein said plant comprises a transgenic genomic insert comprising residues 2026-9222 of SEQ ID NO: 13, and applying at least one of a phenoxyacetic acid, a phenoxybutanoic acid, a pyridyloxyalkanoic acid, a glyphosate, a bialaphos, a phosphinothricin or a glufosinate herbicide to said plant in said field.

7. The method of claim 6, wherein said method comprises applying at least two of said herbicides simultaneously or sequentially.

8. The method of claim 6, wherein said herbicide is an aryloxyalkanoate herbicide selected from the group consisting of 2,4-D; 2,4-DB; MCPA; and MCPB; or a pyridyloxyalkanoic acid herbicide selected from the group consisting of triclopyr and fluoroxypr.

9. The method of claim 6, wherein said method comprises applying at least one additional herbicide to said field, wherein preferably said at least one additional herbicide is dicamba.

10. A soybean plant according to claim 4, manufactured by crossing a first soybean plant comprising SEQ ID NO: 14 and SEQ ID NO: 15, with a second soybean plant to produce a third soybean plant comprising a genome, and assaying said third soybean plant for presence of SEQ ID NO: 14 and/or SEQ ID NO: 15 in said genome.

11. A polynucleotide wherein said polynucleotide comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 13-17 and SEQ ID NO: 27.

12. A polynucleotide comprising SEQ ID NO: 27.

13. A method of controlling weeds in a field, said method comprising applying a phenoxyacetic acid, a phenoxybutanoic acid, a pyridyloxyalkanoic acid, a glyphosate and/or a glufosinate herbicide to the field, and planting the seed of claim 3, wherein said seed comprises a transgenic insert comprising residues 2026-9222 of SEQ ID NO: 13, in the field within 14 days of applying the herbicide(s).

14. A method for identifying SEQ ID NO:27 in a sample, said method comprising detecting a junction sequence of said SEQ ID NO:27, with a probe or at least one primer that specifically binds with or amplifies said junction sequence, said junction sequence comprising residues 570-571 of SEQ ID NO: 14, or residues 220-221 of SEQ ID NO: 15.

15. The seed of claim 3, further comprising SEQ ID NO: 28, SEQ ID NO: 29, a variant that is at least 95% identical with SEQ ID NO: 28, or a variant that is at least 95% identical with SEQ ID NO: 29.
Figure 1. Plasmid Map of pDAB8264 containing the 2mepsps v1, aad-12 and pat Expression Cassettes.
Figure 2. Schematic diagram of primer locations for soybean event pDAB8264.44.06.1 from 5’ to 3’ borders.

Figure 3. Schematic diagram depicting primer locations and genomic deletion in soybean event pDAB8264.44.06.1.
Figure 4. The schematic diagram depicts the primer locations for the Taqman assay of the soybean event pDAB8264.44.06.1.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims.

Place of search: Munich
Date of completion of the search: 11 June 2018
Examiner: Kania, Thomas

CATEGORY OF CITED DOCUMENTS

T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons

A: technological background
O: non-written disclosure
P: intermediate document

&: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 11-06-2018. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AR 099291 A2</td>
<td>13-07-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 099292 A2</td>
<td>13-07-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 100952 A2</td>
<td>16-11-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 103362 A2</td>
<td>03-05-2017</td>
</tr>
<tr>
<td>AU 2006308959 A1</td>
<td>10-05-2007</td>
<td>BR PI619025 A2</td>
<td>16-08-2011</td>
</tr>
<tr>
<td>CN 103361316 A</td>
<td>23-10-2013</td>
<td>DK 1947926 T3</td>
<td>26-01-2015</td>
</tr>
<tr>
<td>EP 2484202 A2</td>
<td>08-08-2012</td>
<td>EP 2484767 A1</td>
<td>08-08-2012</td>
</tr>
<tr>
<td>ES 2612119 T3</td>
<td>12-05-2017</td>
<td>ES 2637948 T3</td>
<td>18-10-2017</td>
</tr>
<tr>
<td>JP 2009513139 A</td>
<td>02-04-2009</td>
<td>JP 201304662 A</td>
<td>07-03-2013</td>
</tr>
<tr>
<td>JP 201304662 A</td>
<td>07-03-2013</td>
<td>MX 341844 B</td>
<td>02-09-2016</td>
</tr>
<tr>
<td>NZ 567807 A</td>
<td>30-09-2011</td>
<td>NZ 595200 A</td>
<td>26-04-2013</td>
</tr>
<tr>
<td>NZ 608188 A</td>
<td>31-10-2014</td>
<td>US 2011203017 A</td>
<td>18-08-2011</td>
</tr>
<tr>
<td>WO 200803982 B</td>
<td>25-02-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008251445 A1</td>
<td>20-11-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI811294 A2</td>
<td>07-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2686835 A1</td>
<td>20-11-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101688219 A</td>
<td>31-03-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 107177606 A</td>
<td>19-09-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6241168 A2</td>
<td>20-01-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2145007 A2</td>
<td>20-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2621919 T3</td>
<td>05-07-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5907657 B2</td>
<td>26-04-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016526535 A</td>
<td>05-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 581361 A</td>
<td>30-11-2012</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 11-06-2018. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2010251432 A1</td>
<td>30-09-2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2013040815 A1</td>
<td>14-02-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2016002662 A1</td>
<td>07-01-2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2008141154 A2</td>
<td>20-11-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZA 200907746 B</td>
<td>28-07-2010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5633435 A [0002]
- US 6225114 B [0003]
- US 6568587 B [0004] [0044] [0056]
- US 6040497 A [0004]
- US 7608761 B [0005]
- US 6153401 A [0009]
- US 5608147 A [0009]
- WO 2007053482 A [0011] [0056]
- US 61471845 A [0037] [0174] [0197]
- US 61511664 A [0038]
- US 61521798 B [0038]
- US 13303502 B [0045]
- WO 9727207 A [0056]
- US 5510471 A [0056]
- US 5428147 A [0056]
- US 20030135879 A [0069]
- US 20090111188 A1 [0073]
- WO 2008021207 A [0073]
- US 6720475 B [0073]
- US 5658772 A [0073]
- US 011666 A [0076]
- US 4965188 A [0114]
- US 5176995 A [0114]
- US 4683195 A [0120]
- US 4683202 A [0120]
- WO 03080809 A2 [0126]
- US 20030232410 A [0126]

Non-patent literature cited in the description

- PUCHTA et al. PNAS USA, 1996, vol. 93, 5055-5060 [0073]
- UPOV. Sixth Meeting with International Organizations, 30 October 1992 [0086]