USE OF GINGERONE OR DERIVATIVES THEREOF FOR REDUCING OR DELAYING THE SIGNS OF SKIN AGEING

The present invention relates to the cosmetic use of at least one compound of general formula (I):

\[
\begin{align*}
& R_1 \rightarrow \\
& \text{HO} \rightarrow \\
& R_2 \rightarrow \\
& \text{X} \rightarrow \\
& R_3 \rightarrow \\
\end{align*}
\]

\[(I)\]
The present invention relates to the field of ageing and of the signs that are associated therewith, on the skin. It relates in particular to the adjustment of the equilibrium between the proliferation and the differentiation of the epidermal cells.

Women, or even men, currently have a tendency to want to look young for as long as possible and consequently seek to tone down the signs of skin ageing, which result in particular in wrinkles and fine lines, a thinning of the epidermis and/or a flaccid and withered skin appearance. In this regard, the advertising and fashion industries mention products for retaining radiant and wrinkle-free skin, signs of youthful skin, as long as possible, all the more so since physical appearance has an effect on the psyche and/or on morale.

The skin constitutes a physical barrier between the body and its surroundings. It is constituted of two tissues: the epidermis and the dermis.

The dermis provides the epidermis with a solid support. It is also its nourishing element. It is formed mainly from fibroblasts and an extracellular matrix, which is itself composed mainly of collagen, elastin and a substance known as ground substance, these components being synthesized by the fibroblast. Leukocytes, mast cells or other tissue macrophages are also found therein. It also contains blood vessels and nerve fibres.

The epidermis is a desquamating pluristratified epithelium that is 100 μm thick on average and is conventionally divided into a basal layer of keratinocytes that constitutes the germinal layer of the epidermis, a spinous layer constituted of several layers of polygonal cells positioned on the germinal cells, a granular layer constituted of flattened cells containing distinct cytoplasmic inclusions, keratohyalin granules, and finally an upper layer known as the cornified layer (or stratum corneum), constituted of keratinocytes at the terminal stage of their differentiation, known as corneocytes.

These are mummified anucleated cells which derive from keratinocytes. The stack of these corneocytes constitutes the cornified layer that is responsible, inter alia, for the barrier function of the epidermis, i.e. it constitutes a barrier against external attacks, especially chemical, mechanical or infectious attacks and it also makes it possible to protect the body from water loss.

Epidermal differentiation follows a process of continuous and oriented maturation in which the basal keratinocytes transform while migrating so as to result in the formation of corneocytes, dead cells that are completely keratinized. This differentiation is the result of perfectly coordinated phenomena which will result in the thickness of the epidermis being kept constant and thus ensure the homeostasis of the epidermis. This goes through a regulation of the number of cells that enter into the differentiation process and of the number of cells that desquamate. In the course of the normal desquamation process, only the most superficial corneocytes detach from the surface of the epidermis.

Keratins are insoluble proteins produced by the epithelial cells in the form of structurally well organized filaments. These proteins are the main marker of differentiation since throughout epidermal differentiation, various types of keratin will be more or less expressed by the keratinocytes.

Other proteins, associated with keratins, play very important roles in the skin. Filaggrin (or filagrin), a protein present in keratohyalin granules, is produced during the final stages of the differentiation of the epidermis. It is especially involved in the maturation process of the cornified layer by enabling type I and type II keratins to be arranged into coils. This protein thus enables the formation of the cytoplasmic matrix of the surface cornocytes which in particular gives the skin its normal thickness, its smooth appearance and its light-reflecting properties. Furthermore, via its degradation within corneocytes, filaggrin provides water-soluble substances having a high osmotic power (natural moisturizing factors or NMFs) that enable a good hydration of the cornified layer of the skin to be maintained and thus avoid the feelings of "dry skin". Filaggrin therefore enables the barrier function of the epidermis to be maintained and makes it possible to avoid drying out the skin.

In the course of chronobiological ageing, the thickness of the epidermis is reduced, maturation of the keratinocytes is imperfect and keratinization no longer leads to an even and homogeneous cornified layer being created. It is also known that prolonged and/or repeated exposures to the sun lead to quite similar results on the epidermis. This is photoinduced ageing. It is also known that, at the menopause, skin ageing accelerates, the thickness of the epidermis decreases, women complain of their skin tightening and that it takes on the look of "dry skin", or even of the appearance of xerosis.

Surprisingly, the inventors have demonstrated that gingerone and some of the derivatives thereof increased the expression of filaggrin in the keratinocytes. As filagrin is a marker of the differentiation of keratinocytes, gingerone and some of the derivatives thereof therefore have an effect of stimulating the differentiation of these cells and thus the maturation of the cornified layer. They thus enable the skin to retain or regain a normal thickness, to also have a smooth appearance, i.e. without, or with fewer, wrinkles and fine lines than before their use and a more radiant, less dull complexion.

Furthermore, since filaggrin is involved in the skin hydration process, by increasing the expression of this protein in keratinocytes, these compounds enable the skin to fully carry out its barrier function while avoiding, in particular, the drying out thereof. They therefore make it possible to reestablish or maintain good hydration of the skin.

These compounds therefore prove particularly advantageous for combating the appearance of the signs of
skin ageing and for combating the drying out of the skin, whether or not this is linked to the ageing thereof.

Gingerone (INCI name: Zingerone), is a phenolic compound from the vanilloid family. Its formula and those of several of its derivatives are given below. Ginger (Zingiber officinale), mango, cranberry or raspberry may be natural sources of gingerone. Ginger, and in particular ginger oleoresin, is however the main source thereof. This molecule is to a large extent responsible for the hot flavour of ginger.

Gingerone has already been cited among the ingredients of topical anti-ageing care compositions but it was used as a blood circulation "accelerator" (JP 2004323401, JP 2005066831) or as a hyperemizing agent (EP 1 938 789) or as an antioxidant (EP 1 932 514) or as a caustic, bitter or acid substance (JP 2004210656).

To the knowledge of the inventors, gingerone and some of the derivatives thereof have never been described as being pro-differentiating for keratinocytes and as being able to be used specifically for treating or delaying the appearance of the signs of skin ageing.

One subject of the present invention is thus the use of at least one compound of general formula (I):

\[
\begin{align*}
\text{in which:} \\
- R1 & \text{ represents a methyl or ethyl radical;} \\
- R2 & \text{ represents a hydrogen atom or a methyl or ethyl radical;} \\
- R3 & \text{ represents a linear C1-C6 or branched C3-C6 alkyl radical, or else a linear C2-C6 or branched C3-C6 alkenyl radical; and} \\
- X & \text{ represents } =\text{O or } -\text{OH,}
\end{align*}
\]

as an agent for reducing and/or delaying the signs of skin ageing.

Preferably, these compounds are of general formula (I) in which:

- R1 represents a methyl or ethyl radical;
- R2 represents a hydrogen atom or a methyl or ethyl radical;
- R3 represents a C1-C6 linear alkyl; and
- X represents =O or -OH.

In particular, use will be made of compounds of general formula (I) in which:

- R1 represents a methyl or ethyl radical;
- R2 represents a hydrogen atom or a methyl or ethyl radical;
- R3 represents a C1-C6 linear alkyl; and
- X represents =O.

According to the present invention, the compound of general formula (I) mentioned above will preferably be chosen, alone or as a mixture, from the following compounds:
<table>
<thead>
<tr>
<th>Number and name of the compound</th>
<th>Formula of the compound</th>
</tr>
</thead>
</table>
| **Compound 1:** Gingerone or Zingerone or van illylaceton
CAS number: 122-48-5 | ![Formula of Compound 1](attachment:formula.png) |
| **Compound 2:** 4-(3-ethoxy-4-hydroxyphenyl)- 2-butanone (7Ci) or ethyl gingerone
CAS number: 569646-79-3 | ![Formula of Compound 2](attachment:formula.png) |
| **Compound 3:** 4-(3-ethoxy-4-hydroxyphenyl)-2-butanol | ![Formula of Compound 3](attachment:formula.png) |
| **Compound 4:** 1-paradol
CAS number: 53171-99-6 | ![Formula of Compound 4](attachment:formula.png) |
| **Compound 5:** 4-(3-methoxy-4-hydroxyphenyl)-3-methyl butane-2-one
CAS number: 83092-97-1 | ![Formula of Compound 5](attachment:formula.png) |
| **Compound 6:** 3-paradol
CAS number: 53172-01-3 | ![Formula of Compound 6](attachment:formula.png) |
The preferred compound will be chosen from gingerone (or zingerone) or ethyl gingerone. The gingerone may be, for example, supplied by the company Aldrich. Most preferred is ethyl gingerone.

Compounds 2 and 7 may be, for example, supplied by the company SinoChemExper.

The compounds of general formula (I), as targeted above, could be used in the form of a more or less purified molecule of natural or synthetic origin. They will preferably be of natural origin. In particular, some of these compounds could be provided in the form of plant extracts containing them, and especially in the form of an extract of ginger, of mango, of cranberry and/or of raspberry.

Such compounds may be synthesized via synthesis pathways known in the prior art. They may in particular be prepared from commercial vanillin or ethyl vanillin. Gingerone, for example, could be obtained via the condensation of vanillin by acetone, followed by a hydrogenation.

The expression "cutaneous signs of ageing" is understood to mean any modification in the external appearance of the skin due to ageing, whether chronobiological and/or photoinduced, such as, for example, wrinkles and fine lines, withered skin, flaccid skin, slack skin, thinned skin, dry skin, dull skin that lacks radiance, heterogeneity of the complexion and of the surface of the skin. The signs of chronobiological or chronological ageing (also known as chronoageing) correspond to internal degradations of the skin due to the intrinsic ageing of the individuals. The signs of photoinduced ageing (or photoageing) correspond to internal degradations of the skin following exposure to ultraviolet radiation.

The term "skin" is understood to mean, for the purposes of the invention, the whole of the body covering, and in particular the skin, mucous membranes and scalp.

The reduction of the signs of skin ageing and/or the delaying of their appearance, via the use of the compounds according to the present invention, takes place in particular owing to the increase or improvement in the differentiation of the epidermal cells and/or the increase or stimulation in particular of the expression of filaggrin in the epidermal keratinocytes.

Preferably, the compositions used according to the invention are cosmetic compositions, i.e. they are intended to improve the aesthetic appearance of the individual.

The use according to the present invention is especially effective for combating the signs, in particular aesthetic signs, of chronobiological and/or photoinduced ageing of the epidermis. Through the present invention, combating the signs of chronobiological ageing of the skin will preferably be targeted.

The present invention is thus effective in any person regardless of their age. When combating the signs of chronobiological ageing, the individuals preferably targeted will be individuals of more than 30 years old, preferably more than 40 years old.

The signs of skin ageing are preferably chosen from the appearance of wrinkles and fine lines and/or the weakening and/or the slackening and/or the withering and/or the thinning and/or the dryness and/or the dull and/or non-radiant appearance and/or the complexion and/or the heterogeneous surface of the skin.

The signs of skin ageing are preferably chosen from the appearance of wrinkles and fine lines and/or the weakening and/or the slackening and/or the withering and/or the thinning and/or the dryness and/or the dull and/or non-radiant appearance and/or the complexion and/or the heterogeneous surface of the skin.

Through the present invention, skin having a more youthful appearance and better hydrated skin are therefore obtained.

The compound of general formula (I) as targeted above is present, in a composition comprising a physiologically acceptable medium, in a content between 0.1% and 10% by weight relative to the total weight of said composition.

A "physiologically acceptable medium" is, according to the invention, a cosmetically acceptable medium that is compatible with the skin, the mucous membranes, the nails and/or the hair.

The expression "cosmetically acceptable medium" is understood to mean a medium that has no unpleasant appearance, and that does not cause the user any unacceptable stinging, tautness or redness.

The physiologically acceptable medium will be adapted to the nature of the support onto which the composition is to be applied, and also to the form in which the composition is intended to be packaged, in particular solid or fluid at room temperature and atmospheric pressure.
The amount of these additional active agents could vary to a large extent and will be for example from 10-6% to 20% by act on the energy metabolism of cells.

Agents, tensioning agents, agents for combating pollution or free-radical scavengers, calmatives and active agents that their degradation, agents for stimulating fibroblast or keratinocyte proliferation, myorelaxants or dermo-decontracting NO-synthase inhibitors, agents for stimulating the synthesis of dermal or epidermal macromolecules and/or for preventing one other active agent chosen from anti-UV screening agents, moisturizers, depigmenting agents, anti-glycation agents, phobic silica and polyethylenes.

As lipophilic gelling agents, mention may be made of modified clays such as bentones, metal salts of fatty acids, hydro-

Polyethylene glycol fatty acid esters such as PEG-40 stearate and PEG-100 stearate, and polyol fatty acid esters such substances, use may also be made of fatty alcohols (cetyl alcohol), fatty acids and waxes (beeswax).

Sunflower oil), oils of animal origin, synthetic oils, silicone-based oils and fluorinated oils (perfluoropolyethers). As fatty oils that can be used in the invention, mention may be made of mineral oils, oils of plant origin (apricot oil, sunflower oil), oils of animal origin, synthetic oils, silicone-based oils and fluorinated oils (perfluoropolyethers). As fatty substances, use may also be made of fatty alcohols (cetyl alcohol), fatty acids and waxes (beeswax).

As emulsifiers and coemulsifiers that can be used in the invention, mention may for example be made of polyethylene glycol fatty acid esters such as PEG-40 stearate and PEG-100 stearate, and polyol fatty acid esters such as glycercyl stearate and sorbitan tristearate.

As hydrophilic gelling agents, mention may particularly be made of carboxyvinyl polymers (carbomer), acrylic copolymers such as acrylate/alkyl acrylate copolymers, polyacrylamides, polysaccharides, natural gums and clays, and, as lipophilic gelling agents, mention may be made of modified clays such as bentones, metal salts of fatty acids, hydro-

Phobic silica and polyethylenes.

According to one advantageous embodiment, the compositions according to the invention will contain at least one other active agent chosen from anti-UV screening agents, moisturizers, depigmenting agents, anti-glycation agents, NO-synthase inhibitors, agents for stimulating the synthesis of dermal or epidermal macromolecules and/or for preventing their degradation, agents for stimulating fibroblast or keratinocyte proliferation, myorelaxants or dermo-decontracting agents, tensioning agents, agents for combating pollution or free-radical scavengers, calmatives and active agents that act on the energy metabolism of cells.

The amount of these additional active agents could vary to a large extent and will be for example from 10^-6% to 20% by weight, especially from 0.001% to 10% by weight relative to the total weight of the composition.

The agents for stimulating fibroblast proliferation that may be used in the composition according to the invention may be chosen, for example, from plant proteins or polypeptides, extracted especially from soybean (for example a soybean extract sold by the company LSN under the name Eleseryl SH-VEG 8® or sold by the company Silab under the trade name Raffermine®); and plant hormones such as gibberellins and cytokinins.

The agents for stimulating keratinocyte proliferation that can be used in the composition according to the invention especially comprise retinoids such as retinol and esters thereof, including retinyl palmitate; adenosine, cinnamic acid and derivatives thereof, lycopene and derivatives thereof; phloroglucinol; the walnut meal extracts sold by the company Sederma.

Preferably, for the implementation of the invention, the compound of general formula (I) as described above, and/or the composition containing it, will be applied to the part of the skin to be treated, in particular to the face, the neck or the hands, daily or several times daily; the application will be repeated every day for a variable period depending on the effects desired, generally from 3 to 6 weeks, but which could be extended or carried out continuously.

The compound of general formula (I) as described above or the composition containing it will preferably be applied to the areas of skin affected by the signs of ageing that it is desired to combat.

For an oral administration, the composition of the invention may be in any suitable form, particularly in the form of a solution to be taken orally, a tablet, a gel capsule, a capsule or alternatively a nutritional food or a nutritional supplement.
Said composition additionally comprises at least one appropriate excipient suitable for oral administration.

In the case of active agents or of compositions according to the invention being taken orally, the oral administration may be daily or several times daily, for example morning and evening. It could be continued for several weeks and/or several months, depending on the effects desired.

The examples given below are presented as non-limiting illustrations of the invention.

EXAMPLES

1. Method of preparing a compound according to the invention

The method of preparing these compounds of general formula (I) may be, for example, the following:

\[
\begin{align*}
\text{R1} = & \text{methyl, CAS: 121-33-5} \\
& \text{ethyl, CAS: 121-32-4}
\end{align*}
\]

The method of preparing compound 3 comprises a supplementary reduction step:
The compounds according to the invention are prepared here either from commercial vanillin (CAS: 121-33-5), or from commercial ethyl vanillin (CAS: 121-32-4).

2. Demonstration of the activity of a compound according to the invention

The in vitro effect of gingerone (compound 1, the chemical formula of which is given above) on keratinocyte differentiation is studied. The expression and the location of the marker of filaggrin differentiation are especially studied in keratinocytes in culture which thus makes it possible to evaluate the capacity of this compound to increase the differentiation of these cells.

Procedure:

Normal human keratinocytes (NHEKs) were cultured at 37°C and 5% CO₂ for 24 h in a complete SFM medium until moderate confluence was obtained. A complete SFM medium is an SFM culture medium supplemented with pituitary extract (25 μg/ml), EGF (0.25 ng/ml) and gentamicin (25 μg/ml).

At the end of the incubation, the medium was withdrawn and replaced with culture medium that did or did not contain various concentrations of the test product or reference molecules. Calcium chloride and retinoic acid, which are known respectively as a stimulator and as an inhibitor of the keratinocyte differentiation, were used as reference molecules for this test. The keratinocytes were then incubated for 144 hours. The treatments were carried out in triplicate (n=3).

At the end of the incubation, the culture medium was removed and the cells were rinsed, fixed, permeabilized then labelled with the primary antibody targeted against the filaggrin protein of interest (in situ immunolabelling). This antibody was then revealed by a secondary antibody coupled to a fluorochrome (GAM-Alexa 488). At the same time, the nuclei of the cells were stained with Hoechst 33258 (bisbenzimide).

Image acquisition was carried out using an INCell Analyzer™ 1000 machine. The labels were quantified by measuring the fluorescence intensity of the proteins relative to the number of nuclei identified by the Hoechst product.

Results

The results are given in Table 1 below:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% relative to the control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control complete SFM medium</td>
<td>100</td>
</tr>
<tr>
<td>CaCl₂ 1.5mM</td>
<td>158**</td>
</tr>
<tr>
<td>Retinoic acid 10⁻⁷M</td>
<td>3**</td>
</tr>
<tr>
<td>Gingerone 2 μg/ml</td>
<td>133*</td>
</tr>
<tr>
<td>Gingerone 20 μg/ml</td>
<td>151*</td>
</tr>
</tbody>
</table>

Significant difference relative to the control medium (*p<0.05 and **p<0.01).

- Under the experimental conditions of this study, the treatment with calcium chloride, pro-differentiating reference molecule, substantially increases the expression of filaggrin by the keratinocytes (+58% relative to the control).
- Under the experimental conditions of this study, the treatment with retinoic acid, anti-differentiating reference molecule, substantially decreases the expression of filaggrin by the keratinocytes (-97% relative to the control).
- The treatment with gingerone at 2 μg/ml and 20 μg/ml significantly and dose-dependently stimulates the expression of filaggrin (+33% and +51% respectively relative to the control) by the keratinocytes.

Conclusion

Gingerone significantly and dose-dependently increases the expression of the filaggrin protein in normal human epidermal keratinocytes.

The results obtained thus translate into an increase in epidermal differentiation. Gingerone therefore has a pro-differentiating effect on normal human keratinocytes and therefore can thus reduce and/or delay the signs of skin ageing.
3. Composition examples

3.1. Lotion

[0064] A lotion is prepared, comprising (% by weight):

- compound tested in Example 1 (gingerone) 0.75%
- glycerol 2%
- ethyl alcohol 20%
- demineralized water qs 100%

[0065] The composition according to the invention applied daily to the face makes it possible to combat the signs of skin ageing.

3.2. Facial gel

[0066] A facial gel is prepared, comprising (% by weight):

- glyceryl polyacrylate (Norgel) 30%
- polyacrylamide/C13-14 isoparaffin/laureth-7 (Sepigel 305) 2%
- silicone oil 10%
- compound 1 (gingerone) 5%
- water qs 100%

[0067] The composition according to the invention applied daily to the face makes it possible to combat the signs of skin ageing.

Claims

1. Cosmetic use of at least one compound of general formula (I):

\[
\text{HO-}[\overset{\text{R1}}{\text{-R2}}]_{-x}^{\text{R3}} \tag{1}
\]

in which:

- R1 represents ethyl radical;
- R2 represents a hydrogen atom;
- R3 represents a linear C1-C6 alkyl radical; and
- X represents -OH,

as an agent for reducing and/or delaying the signs of skin ageing.

2. Use according to the preceding claim, characterized in that the compound of general formula (I) is:
3. Use according to any one of the preceding claims, for combating the signs of chronobiological and/or photoinduced ageing of the epidermis.

4. Use according to any one of the preceding claims, characterized in that the signs of skin ageing are chosen from the appearance of wrinkles and fine lines and/or the weakening and/or the withering and/or the thinning and/or the dryness and/or the dull and/or non-radiant appearance and/or the complexion and/or the heterogeneous surface of the skin.

5. Use according to any one of the preceding claims, characterized in that said compound is present, in a composition comprising a physiologically acceptable medium, in a content between 0.1% and 10% by weight relative to the total weight of said composition.

6. Use according to the preceding claim, characterized in that the composition is suitable for topical application.
EUROPEAN SEARCH REPORT

Application Number
EP 18 16 5491

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>
| A | EP 1 800 651 A1 (KAO CORP [JP])
* the whole document * | 1-6 | INV, A61K8/34, A61Q19/00, A61Q19/08 |
| A | JP 9 030927 A (KAO CORP)
4 February 1997 (1997-02-04)
* abstract * | 1-6 | |
| A | KR 2004 0094506 A (CHOI JOON MYUNG)
10 November 2004 (2004-11-10)
* abstract * | 1-6 | |
| A | JP 8 225428 A (KAO CORP)
3 September 1996 (1996-09-03)
* abstract * | 1-6 | |
| A | JP 8 268859 A (KAO CORP)
15 October 1996 (1996-10-15)
* abstract * | 1-6 | |
| A | SINGH G ET AL: "Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale", FOOD AND CHEMICAL TOXICOLOGY, PEGAMON, GB, vol. 46, no. 10,
1 October 2008 (2008-10-01), pages 3295-3302, XP025474571,
ISSN: 0278-6915, DOI: 10.1016/J.FCT.2008.07.017 [retrieved on 2008-07-29]
* the whole document * | 1-6 | A61K, A61Q |

The present search report has been drawn up for all claims.

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>2 July 2018</td>
<td>Donovan-Beermann, T</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **A**: technological background
- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **N**: non-written disclosure
- **P**: intermediate document

*: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

02-07-2018

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN 101632625 A</td>
<td>27-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2567061 T3</td>
<td>19-04-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4673851 B2</td>
<td>20-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4619171 B2</td>
<td>24-11-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010227098 A</td>
<td>14-10-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 20111016827 A</td>
<td>27-01-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP W02006025307 A1</td>
<td>08-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070056132 A</td>
<td>31-05-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080050529 A</td>
<td>05-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080093167 A</td>
<td>20-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1361076 B</td>
<td>01-04-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007259057 A1</td>
<td>08-11-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009149550 A1</td>
<td>11-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012322888 A1</td>
<td>20-12-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006025307 A1</td>
<td>09-03-2006</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

Non-patent literature cited in the description

- CHEMICAL ABSTRACTS, 122-48-5 [0019]
- CHEMICAL ABSTRACTS, 569646-79-3 [0019]
- CHEMICAL ABSTRACTS, 53171-99-6 [0019]
- CHEMICAL ABSTRACTS, 83092-97-1 [0019]
- CHEMICAL ABSTRACTS, 53172-01-3 [0019]
- CHEMICAL ABSTRACTS, 53172-03-5 [0019]
- CHEMICAL ABSTRACTS, 121-33-5 [0055]
- CHEMICAL ABSTRACTS, 121-32-4 [0055]